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Abstract Standing oscillations with multiple periods have been found in a number of atmospheric struc-
tures on the Sun. The ratio of the period of the fundamental to twice the one of its first overtone, P1/2P2, is

important in applications of solar magneto-seismology. We examine how field-aligned flows impact P1/2P2

of standing modes in solar magnetic cylinders. For coronal loops, the flow effects are significant for both fast
kink and sausage modes. For kink modes, they reduce P1/2P2 by up to 17% relative to the static case even

when the density contrast between the loop and its surroundings approaches infinity. For sausage modes, the
reduction in P1/2P2 due to flow is typically . 5.5% compared with the static case. However, the threshold
aspect ratio, only above which can trapped sausage modes be supported, may increase dramatically with the

flow magnitude. For photospheric tubes, the flow effect on P1/2P2 is not as strong. However, when applied
to sausage modes, introducing field-aligned flows offers more possibilities in interpreting the multiple peri-
ods that have recently been measured. We conclude that field-aligned flows should be taken into account to
help better understand what causes the departure of P1/2P2 from unity.

Key words: magnetohydrodynamics (MHD) — Sun: corona — Sun: magnetic fields — waves

1 INTRODUCTION

The frequently measured waves and oscillations can be

exploited to deduce the physical parameters of the struc-
tured solar atmosphere that are otherwise difficult to mea-
sure, thanks to the diagnostic power of solar magneto-
seismology (SMS) (see e.g., the reviews by Roberts

2000; Aschwanden 2004; Nakariakov & Verwichte 2005;
Nakariakov & Erdélyi 2009; Erdélyi & Goossens 2011;
De Moortel & Nakariakov 2012). In the context of SMS,

multiple periodicities interpreted as a fundamental stand-
ing mode and its overtones detected in a substantial num-
ber of oscillating structures are playing an increasingly

important role (see Andries et al. 2009; Ruderman &
Erdélyi 2009, for recent reviews). In the case of stand-
ing kink oscillations, both two (e.g., Verwichte et al. 2004;
Van Doorsselaere et al. 2007) and three periodicities (De

Moortel & Brady 2007; van Doorsselaere et al. 2009;
Inglis & Nakariakov 2009; Kupriyanova et al. 2013) have
been found. Moreover, the ratio between the period of

the fundamental and twice the period of its first over-
tone, P1/2P2, deviates in general from unity. This was first
found by Verwichte et al. (2004) in two loops in a post-flare

arcade observed by the Transition Region and Coronal

Explorer (TRACE) in its 171Å passband on 2001 April 15,
where values of 0.91 and 0.82 were measured for P1/2P2.

A similar value (0.9) was found for 171Å loops observed

by TRACE on 1998 November 23 (Van Doorsselaere et al.

2007), and also in flaring loops as measured with the
Nobeyama Radioheliograph (NoRH) on 2002 July 3 where
P1/2P2 is deduced to be 0.83 (Kupriyanova et al. 2013).

In this latter study the deviation of P1/2P2 from unity
is likely to be associated with wave dispersion at a fi-
nite aspect ratio of the flaring loop. However, loops seem
thin in extreme ultraviolet (EUV) images, thereby prompt-

ing Andries et al. (2005) to attribute the finite 1 − P1/2P2

to the longitudinal structuring in loop densities, given that
wave dispersion is expected to be minimal for kink modes

supported by a static longitudinally uniform loop with tiny
aspect ratios. When it comes to standing sausage modes,
fundamental or global modes together with their first over-

tones were identified. In flare-associated quasi-periodic
pulsations measured with NoRH on 2000 January 12, the
global (fundamental) sausage mode was found to have a

P1 of 14 − 17 s, and its first overtone corresponds to a P2

of 8− 11 s (Nakariakov et al. 2003; Melnikov et al. 2005).
Interestingly, sausage modes were also seen in cool post-
flare loops in high spatial resolution Hα images and corre-

spond to a P1 ≈ 587 s and a P2 ≈ 349 s (Srivastava et al.
2008). Actually, sausage modes have been directly imaged
in magnetic pores (Morton et al. 2011) and the chromo-

sphere (Morton et al. 2012). Using the Rapid Oscillations
in the Solar Atmosphere (ROSA) instrument situated at
the Dunn Solar Telescope, the former study employed an
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Empirical Mode Decomposition (EMD) analysis to reveal

a number of periods, some of which seem to correspond
to a fundamental mode and its higher overtones with the
standing mode set up by reflections between the photo-

sphere and transition region.

In the solar atmosphere, flows seem ubiquitous (e.g.,
Aschwanden 2004), and have particularly been found

in oscillating structures (e.g., Ofman & Wang 2008;
Srivastava et al. 2008). In the coronal case, where the flow
speeds tend to be . 100 km s−1 and are, therefore, well
below the Alfvén speed, they are not necessarily always

small. As a matter of fact, speeds reaching the Alfvénic
range (∼ 103 km s−1) have been seen associated with ex-
plosive events (e.g., Innes et al. 2003; Harra et al. 2005).

In the context of standing modes supported by loops, a
siphon flow causes their phases to depend on the locations,
which is true even for the fundamental mode where only

two permanent nodes are present and are located at loop
footpoints. Actually this location-dependent phase distri-
bution was seen for the standing kink mode measured with

TRACE and Solar and Heliospheric Observatory (SOHO)
on 2001 September 15 (Verwichte et al. 2010), and yields
a flow speed indeed in the Alfvénic regime (Terradas et al.
2011). The authors went on to find that neglecting the

flows leads to an underestimation of the loop magnetic
field strength by a factor of three.

Given that multiple periodicities have received consid-

erable interest, and that a significant flow may play an im-
portant role as far as the applications of solar magneto-
seismology are concerned, one naturally asks: how do the

flows affect multiple periodicities from a theoretical per-
spective? In addition, what would be the observational im-
plications? In a slab geometry, these questions were ad-
dressed by Li et al. (2013) (hereafter Paper I) where a

rather comprehensive analytical and numerical examina-
tion was conducted. In cylindrical geometry, the flow effect
on the period ratio for standing kink modes was assessed

by Ruderman (2010) for thin coronal loops. The present
work extends both Paper I and the one by Ruderman (2010)
by examining how the flows affect the dispersion proper-

ties and hence the period ratios of both standing kink and
sausage modes supported by a magnetized cylinder with
an arbitrary aspect ratio. In addition to a coronal environ-

ment, a photospheric environment will also be examined
in detail to demonstrate how introducing a flow helps of-
fer more possibilities in interpreting the recently measured
multiple periods in oscillating photospheric structures.

This paper is organized as follows. Section 2 presents
a brief description of the cylinder dispersion relation (DR).
Section 3 is concerned with coronal cylinders, where we

first give an overview of the dispersion diagrams, briefly
describe a graphical means to compute the period ratios,
and examine how the flow affects the period ratios for

standing kink and sausage modes. Likewise, Section 4 ex-
amines in detail isolated photospheric cylinders. Finally,
Section 5 summarizes the results, ending with some con-

cluding remarks.

Fig. 1 Schematic diagram illustrating the magnetic cylinder (de-
noted by subscript 0) and its environment (subscript e). The vari-
ables ρi, ci, vAi and Ui (i = 0, e) represent the mass density, adi-
abatic sound speed, Alfvén speed and flow speed, respectively.

2 CYLINDER DISPERSION RELATION

Consider a cylinder of radius a with time-independent
field-aligned flows. As illustrated in Figure 1, the cylinder

is infinite in the z-direction, and is bordered by the inter-
face r = a in a cylindrical coordinate system (r, θ, z). The
physical parameters take the form of a step function, char-
acterized by their values external to (denoted by a subscript

e) and inside (subscript 0) the cylinder. The background
magnetic fields (B0 and Be), together with the flow veloc-
ities (U0 and Ue), are in the z-direction. Let ρ and p denote

the mass density and thermal pressure respectively. It fol-
lows from the force balance condition across the interface
that

ρe

ρ0
=

2c2
0 + γv2

A0

2c2
e + γv2

Ae

, (1)

where γ = 5/3 is the adiabatic index, c =
√

γp/ρ is the

adiabatic sound and vA =
√

B2/4πρ is the Alfvén speed.
It is also necessary to introduce the tube speeds, cTi (i =
0, e),

c2
Ti =

c2
i v

2
Ai

c2
i + v2

Ai

, (2)

and the kink speed ck,

c2
k = ρ̂0v

2
A0 + ρ̂ev

2
Ae, (3)

where ρ̂i = ρi/(ρ0 + ρe) is the fractional density with
i = 0, e.

The DR for linear waves trapped in a cylinder

with a flow has been examined by a number of au-
thors (e.g., Narayanan 1991; Somasundaram et al. 1999;
Terra-Homem et al. 2003; Vasheghani Farahani et al. 2009;

Zhelyazkov 2009, 2012). Its derivation starts with the
ansatz that any perturbation δf(r, θ, z; t) to the equilibrium
f(r) takes the form

δf(r, θ, z; t) = Re
{

f̃(r) exp [i (kz + nθ − ωt)]
}

, (4)
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where Re(· · · ) means taking the real part of the func-

tion. Besides, k and n are the longitudinal and azimuthal
wavenumbers, respectively. The phase speed vph is defined
as vph = ω/k. One proceeds by defining

m2
i = k2

[

c2
i − (vph − Ui)

2
] [

v2
Ai − (vph − Ui)

2
]

(c2
i + v2

Ai)
[

c2
Ti − (vph − Ui)

2
] , (5)

where i = 0, e. To ensure that the waves are trapped, m2
e

has to be positive, meaning that

c2
m,e < (vph − Ue)

2 < c2
M,e or (vph − Ue)

2 < c2
Te, (6)

where cm,e = min(ce, vAe) and cM,e = max(ce, vAe). On
the other hand, the spatial profiles of the perturbations in
the r− direction are determined by the sign of m2

0. When
m2

0 < 0 (m2
0 > 0), the waves are body (surface) ones,

corresponding to an oscillatory (a spatially decaying) r-
dependence inside the cylinder.

With Equation (4) inserted into the linearized, ideal
MHD equations, the DR follows from the requirements

that the radial component of the Lagrangian displacement
ξr and the total pressure δpT be continuous at r = a. The
DR reads

ρe

ρ0

m0

|me|

[

v2
Ae − (vph − Ue)

2
]

[

v2
A0 − (vph − U0)

2
]

I ′n(m0a)

In(m0a)
=

K ′
n(|me|a)

Kn(|me|a)
(7)

for surface waves, and

ρe

ρ0

n0

|me|

[

v2
Ae − (vph − Ue)

2
]

[

v2
A0 − (vph − U0)

2
]

J ′
n(n0a)

Jn(n0a)
=

K ′
n(|me|a)

Kn(|me|a)
(8)

for body waves (n2
0 = −m2

0 > 0). Furthermore, kink and
sausage waves correspond to the solutions to the DR with n
being 1 and 0, respectively. The prime denotes the deriva-
tive of the Bessel function with respect to its argument,
e.g., J ′

n(n0a) ≡ dJn(x)/dx with x = n0a. One may note
that me only appears as absolute values to ensure that the

waves external to the cylinder are evanescent.

It proves necessary to examine the importance
of density fluctuation relative to the transverse dis-
placement. This is readily done by evaluating X ≡
(ρ̃/ρ0)/(ξ̃r/a)

∣

∣

∣

r=a
,

X =
(m2

0a)(ω − kU0)
2

[k2c2
0 − (ω − kU0)2]

p̃T

dp̃T/dr

∣

∣

∣

∣

r=a

. (9)

For body waves, p̃T inside the cylinder is proportional to
J1(n0r) for a kink wave, and to J0(n0r) for a sausage one,

resulting in

X =
(vph − U0)

2

(vph − U0)2 − c2
0











(n0a)J1(n0a)/J ′
1(n0a)

kink,
(n0a)J0(n0a)/J ′

0(n0a)
sausage.

(10)

Likewise, for surface waves, inside the cylinder p̃T ∝
I1(m0r) for a kink wave, and ∝ I0(m0r) for a sausage
one, leading to

X =
(vph − U0)

2

c2
0 − (vph − U0)2











(m0a)I1(m0a)/I ′1(m0a)
kink,

(m0a)I0(m0a)/I ′0(m0a)
sausage.

(11)

The dispersion relations (7) and (8) possess three sym-
metric properties that allow us to simplify our examina-

tion of the standing modes. The first two dictate that if
[vph, k; U0, Ue] represents a solution to the DR, then so
does [vph,−k; U0, Ue]; if [vph, k; U0, 0] is a solution, then

so is [−vph, k;−U0, 0] (see Eq. (5) with Ue = 0). They
were detailed in the appendix of Paper I which adopts a
slab geometry, and can be readily shown to hold in the
cylindrical case if one recognizes that xZ ′

n(x)/Zn(x) is

an even function for Bessel functions Zn of integer order
n, where Zn is Jn or In. They are summarized here for
one to realize that as long as the external medium is at

rest (Ue = 0), as will be assumed throughout this study,
then for the purpose of examining how the period ratio
depends on the internal flow U0, one needs only to con-

sider positive U0. The third symmetry property simply re-
flects a Galilean transformation, which relates the phase
speed vph(k; U0, Ue) in one frame, where the speeds read

U0 and Ue, to vph(k; U †
0 , U †

e ) in a different one where

the speeds read U †
0 and U †

e respectively. Certainly one

requires that U †
e − U †

0 = Ue − U0. One then sees that

vph(k; U †
0 , U †

e ) = vph(k; U0, Ue)+ (U †
0 −U0), and in par-

ticular, vph(k; U0 − Ue, 0) = vph(k; U0, Ue) − Ue. What

this means is that, even though the wave dispersion prop-
erties expressed as a series of analytical expressions in a
number of physically interesting limits in both coronal and

photospheric environments are to be derived in a frame
where Ue = 0, they can be easily extended to an arbitrary
frame of reference.

3 PERIOD RATIOS FOR STANDING MODES

SUPPORTED BY CORONAL CYLINDERS

3.1 Overview of Coronal Cylinder Dispersion

Diagrams

Consider first the coronal case, where the ordering vAe >
vA0 > c0 > ce holds. To be specific, we choose vA0 = 4c0

and ce = 0.72c0, the observational justification of which
was given in Paper I. For the external Alfvén speed, un-

less otherwise specified, we will discuss in detail a refer-
ence case where vAe = 2vA0. Evidently, the larger the ratio
vAe/vA0 is, the stronger the density contrast will be.

Figure 2 presents the dependence on longitudinal
wavenumber k of the phase speeds vph for a series of

U0 = M0c0, where the internal Mach number M0 reads 0,
0.8, 1.2 and 3.2, from top to bottom respectively. Kink and
sausage waves are plotted with the dashed and solid curves,

respectively. As shown in Figure 2(b), they are labeled by
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Fig. 2 Phase speeds vph as a function of longitudinal wavenumber k for a series of internal flows U0. Expressing U0 in units of the
internal sound speed U0 = M0c0, panels (a) to (d) correspond to an M0 of 0, 0.8, 1.2 and 3.2, respectively. On the left (right) of each
panel, the characteristic speeds external (interior) to the cylinder are given by the horizontal bars. In particular, the external Alfvén speed
provides the lower and upper bounds, as indicated by the long red dashed bars. Kink and sausage modes are presented by the dashed
and solid curves, respectively. They are further labeled, as shown in panel (b), using combinations of letters b/f+F/S+K/S, representing
backward or forward, Fast or Slow, and Kink or Sausage. The number appended to the letters denotes the order of occurrence. Hence,
bFK1 represents the first branch of backward Fast Kink mode. Moreover, here vAe = 8c0, ce = 0.72c0, cTe = 0.719c0 , while
vA0 = 4c0 and cT0 = 0.97c0.

combinations of letters b/f+F/S+K/S, representing back-

ward or forward, Fast or Slow, and Kink or Sausage. “Fast”
or “Slow” is related to the magnitude of the phase speed,
while “backward” or “forward” is deriveds from the sign of
the phase speeds when the flow is absent, and was termed

“originally backward-(forward-) propagating” by Andries
et al. (2000) in the same sense. The number appended
to the letters denotes the order of occurrence, meaning

that fFK1 represents the first branch of a forward Fast
Kink wave. The characteristic speeds external (interior) to
the cylinder are given on the left (right) of each panel to

aid wave categorization. In agreement with Terra-Homem

et al. (2003) (hereafter TEB03), Figure 2 indicates that all

waves in such a coronal environment are body waves.

A clear flow dependence can be seen in Figure 2.
Consider first the slow waves. The propagation windows
always encompass (−c0 + U0,−cT0 + U0) and (cT0 +
U0, c0 + U0), which is readily understandable when one
examines the slender and thick cylinder limits. In the for-
mer limit (ka ≪ 1),

vph ≈ U0 ± cT0

√

1 +
c4
T0

c2
0v

2
A0

k2a2

h2
l,±

, (12)
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where hl,± has an infinite number of values. For kink

waves, hl,± is an arbitrary root of the transcendental equa-
tion

xJ ′
1(x)

J1(x)
= −ρ0

ρe

v2
A0 − c2

T0

v2
Ae − c2

T0,±

, (13)

where cT0,± = ±cT0 + U0, and x denotes the unknown.
For sausage waves, hl,± can be approximated by

hl,± ≈ j1,l. (14)

When the opposite limit holds (ka ≫ 1), one finds

vph ≈ U0 ± c0

√

1 − c2
0

v2
A0 − c2

0

g2
l

k2a2
, (15)

where

gl =

{

j1,l kink

j0,l sausage
(16)

in which l = 0, 1, 2, · · · , and jn,l denotes the l-th zero
of Jn. The plus and minus signs in Equations (12) and
(15) correspond to the upper and lower bands, respectively.

However, the slow waves in the coronal case are not of in-
terest as far as the period ratio P1/2P2 is concerned, be-
cause they are nearly dispersionless due to the nearly in-

distinguishable values of c0 and cT0, and the deviation of
P1/2P2 from unity in the present study is based entirely
on wave dispersion.

In view of their stronger dispersion, let us more closely
look at fast waves whose propagation windows encompass

(−vAe, U0 − vA0) and (U0 + vA0, vAe). One may read-
ily understand this by examining the thick cylinder limit
(ka ≫ 1), where one finds

vph ≈ U0 ± vA0

√

1 +
v2
A0

v2
A0 − c2

0

h2
l,±

k2a2
. (17)

With the exception of bFK1 and fFK1, there are wavenum-
ber cutoffs for both kink and sausage waves, and these are
given by

(ka)c = glΛ±, (18)

where

Λ± =

√

(c2
0 + v2

A0)[(vAe ∓ U0)2 − c2
T0]

[(vAe ∓ U0)2 − c2
0][(vAe ∓ U0)2 − v2

A0]
.

On the other hand, for bFK1 and fFK1 in the slender cylin-
der limit ka ≪ 1, vph may be approximated by

v±

ph ≈ d±

{

1 ±
ρ̂0

[

v2
A0 −

(

d± − U0

)2]

2d±dk

(λ±ka)2K0(λ±|k|a)
}

, (19)

where

d± = ρ̂0U0 ± dk, (20a)

dk =
√

c2
k − ρ̂0ρ̂eU2

0 , (20b)

λ± =

√

(d2
± − c2

e)(v
2
Ae − d2

±)

(c2
e + v2

Ae)(d
2
± − c2

Te)
. (20c)

Moreover, v+
ph and v−ph represent the upper and lower

branches, respectively.

Compared with available ones, our study offers some

new analytical expressions for the phase speed vph in a
number of physically interesting limits. Equations (12) and
(15) offer the approximate expressions of vph for slow

waves in the slender and thick cylinder limits, respectively.
For the fast ones, Equation (17) presents an explicit ex-
pression for vph in the limit of ka ≫ 1, thereby extending

the original discussion of static cylinders in this situation
by Edwin & Roberts (1983) (hereafter ER83) where the au-
thors emphasized the analogy with the Love waves of seis-
mology and Pekeris waves of oceanography (see eq. (13) in

ER83). Moreover, Equation (19) examines fast kink waves
in the slender cylinder limit ka ≪ 1, and extends avail-
able results in three ways. First, neglecting the first or-

der correction, Equation (19) reduces to d±, which agrees
with equation (70) in Goossens et al. (1992). Second, tak-
ing U0 = 0, we recover the expression for a static cylin-

der, namely equation (15) in ER83. Our expression also
shows that equation (15) as given in ER83 is in fact not
restricted to the cold plasma limit (ce = c0 = 0), but
is valid for a rather general coronal environment as long

as λ is generalized to incorporate ce and cTe, as given by
our Equation (20). Third, the plus version v+

ph reduces to
equation (5) in Vasheghani Farahani et al. (2009) where the

transverse waves propagating in soft X-ray coronal jets are
examined, when one notes that (d2

+ − c2
e)/(d2

+ − c2
Te) ≈ 1

and v2
Ae ≫ c2

e . However, it turns out that except for ex-

tremely small ka, retaining the original form in terms of
the modified Bessel function K0 is more accurate than
the logarithmic form given by equation (5) in Vasheghani

Farahani et al. (2009). Furthermore, the expression v−ph
gives the phase speed for the waves that are propagating
backward in the absence of flow.

3.2 Procedures for Computing Standing Modes

By “standing,” we require that the radial Lagrangian dis-

placement ξr(r, θ, z; t) is zero at the interface r = a at both
ends of the cylinder z = 0, L, irrespective of θ and t. One
requirement for this to be true for arbitrary θ is that only

propagating waves with identical azimuthal wavenumbers
n can combine to form standing modes. A pair of propagat-
ing waves characterized by a common angular frequency ω
but different longitudinal wavenumbers kr and kl then lead
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to

ξr(r, θ, z; t) =

Re
{

ξ̃r,l(r) exp
[

i
(

klz + nθ − ωt
)]}

+Re
{

ξ̃r,r(r) exp
[

i
(

krz + nθ − ωt
)]}

. (21)

Specializing to (r, z) = (a, 0), one finds ξ̃r,l(a) =

−ξ̃r,r(a), meaning that one is allowed to choose ξ̃r,l(a) =
Aξ to be real. It then follows that

ξr(a, θ, z; t) =

Aξ

[

cos
(

ωt − klz − nθ
)

− cos
(

ωt − krz − nθ
)]

=

−2Aξ sin
(kr − kl

2
z
)

sin
(

ωt − kl + kr

2
z − nθ

)

. (22)

For ξr(a, θ, L; t) to be zero at arbitrary t, this requires

kr − kl =
2πm

L
, m = 1, 2, · · · (23)

By convention, m = 1 corresponds to the fundamental
mode and m = 2 to its first overtone.

At this point, it suffices to say that the procedure for
computing the period ratios of standing modes is identical

to the slab case, which was detailed in Paper I. Basically it
involves constructing an ω − k diagram where each prop-
agating wave in a pair that forms standing modes corre-
sponds to a particular curve, meaning that a horizontal cut

with a constant ω would intersect with the two resulting
curves at two points. If the separation between the two
points is 2π/L, then one finds the fundamental mode. If

it is twice that, then one finds the first overtone. Let the an-
gular frequency of the fundamental mode (first overtone)
be denoted by ω1 (ω2), then the period ratio is simply

P1/2P2 = ω2/2ω1. The existence of cutoff wavenum-
bers for sausage waves to be trapped translates into the
existence of cutoff aspect ratios (a/L)cutoff for standing

sausage modes to be non-leaky. As emphasized by Paper I
(see fig. 3 therein), this (a/L)cutoff is not determined by
the difference between the two cutoffs of the two ω − k
curves divided by 2π, but is larger than that.

When computing the coronal standing modes, we con-

sider only bFK1 and fFK1 for kink modes, and bFS1
and fFS1 for sausage modes. Branches with larger mode
numbers like bFK2 or bFS2 would form standing modes
only for relatively thick cylinders where a/L is of the or-

der unity. For the same reason, we discard the combina-
tions between slow and fast sausage propagating waves.
On the other hand, combinations of slow with fast kink

waves, such as bFK1 plus fSK, turn out to be extremely
unlikely as well. This happens because, while slow kink
waves are dominated by the intensity oscillations instead

of transverse displacements (|X | ≫ 1), the opposite holds
for fast ones (|X | ≪ 1). The end result is that if a fast
kink wave does combine with a slow one to form a stand-

ing mode, a transverse loop displacement on the order of

the cylinder radius will lead to a relative intensity varia-

tion that exceeds unity. To see this, consider slender cylin-
ders such that ka → 0, and consider the case where the
components to form standing modes are bFK1 and any

branch of fSK. For bFK1, one sees that vph ≈ d− and

n0a → 0, and hence X ≈ (d
−
−U0)2

(d
−
−U0)2−c2

0

(n0a)2. Because

d− − U0 ≈ −dk − ρ̂eU0 is of the order of vA0, and

v2
A0 ≫ c2

0, X would be roughly (n0a)2 and hence ap-
proaches zero as well. However, for slow kink waves, by
noting that (vph − U0)

2 → c2
T0 when ka → 0, one finds

that X ≈ (n0a)2(1 − v2
ph/v2

Ae)(ρev
2
Ae)/(ρ0c

2
T0), which

is approximately (n0a)2v2
A0/c2

0 since ρev
2
Ae ≈ ρ0v

2
A0 and

cT0 ≈ c0. Note that in coronal conditions, hl,± as given by
Equation (13) can be approximated by (l + 3/4)π. When
ka → 0, with n0a approaching hl,±, X will be large.

3.3 Period Ratios for Standing Kink Modes

Figure 3 presents the dependence on the aspect ratio a/L
of the period ratio P1/2P2 pertinent to standing fast kink

modes. Here the results for a number of different U0 are
shown with different colors, with U0 represented by the
internal Alfvén Mach number MA = U0/vA0. One can
see that all curves decrease from unity at zero a/L, attain

a minimum, and then increase towards unity. Increasing
U0 substantially strengthens the deviation of P1/2P2 from
unity relative to the static case (the black curve). Take the

minimum for instance. While in the static case it reads
0.938, attained at a/L = 0.405, when MA = 0.8 it is
significantly reduced to 0.778 attained at a/L = 0.267.

At smaller aspect ratios, the dispersion introduced by the
flow, and hence the deviation from unity of the period ra-
tio P1/2P2, is not as strong. However, at an aspect ratio

of a/L = 0.19, one finds that P1/2P2 decreases signifi-
cantly from 0.953 in the static case to 0.79 when MA =
0.8. Actually this aspect ratio corresponds to the NoRH
loop that experienced standing kink oscillations on 2002

July 3 with multiple periodicities that yield P1/2P2 =
0.82 (Kupriyanova et al. 2013). One finds that while the
wave dispersion due to transverse density structuring alone

cannot account for this measured value of P1/2P2, it may
be attained with the aid of the additional wave dispersion
due to flow shear. In this regard, we agree with Andries

et al. (2009) in the sense that the contribution of the density
contrast alone to the deviation of P1/2P2 from unity seems
to be marginal for extremely thin cylinders. However, we
note that when a substantial flow shear exists between the

cylinder and its surroundings, the shear-associated wave
dispersion may not be neglected for loops with finite aspect
ratios. As a matter of fact, for loops with a/L as small as

0.05, the flow effect is still substantial enough to be of ob-
servational significance: while P1/2P2 reads 0.989 in the
static case, when MA = 0.8 it is 0.934, which is already

below the minimum that P1/2P2 can reach when the flow
is absent. We note that this a/L is not unrealistic but lies
within the range of the measured values of oscillating EUV

loops examined in Ofman & Aschwanden (2002) (see their
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table 1). The point that we want to make here is that the

wave dispersion associated with the transverse structuring
needs to be considered for a theoretical understanding of
the period ratios of standing kink modes, and this is partic-

ularly necessary in the presence of a strong flow shear and
when the loop aspect ratios are not extremely small.

Figure 4 further examines the flow effect by showing
(a) the minimal period ratio, (P1/2P2)min, and (b) its lo-
cation, (a/L)min, as a function of the internal Alfvénic

Mach number MA. In addition to the reference case where
vAe/vA0 = 2, Figure 4 also examines other ratios of
3, 4, 10 and 20, shown in different colors. Regarding

Figure 4(a), one sees that the flow effect on the period
ratios is significant for all the considered vAe/vA0, or
equivalently, the density contrast. As a matter of fact, at
a given MA, even though (P1/2P2)min tends to decrease

with increasing density contrast, this tendency is rather
weak, and seems to saturate when vAe/vA0 exceeds, say,
10, as evidenced by the fact that the two curves corre-

sponding to vAe/vA0 being 10 and 20 can hardly be dis-
tinguished. Consequently, when vAe/vA0 is as large as 20,
(P1/2P2)min decreases from 0.914 in the static case to

0.768 when MA = 0.8, amounting to a relative differ-
ence of 16%, which is almost the same as in the case when
vAe/vA0 is 2 where this fractional difference reads 17.1%.

Looking at Figure 4(b), one notices that for a given density
contrast, the aspect ratio at which the minimum period ra-
tio is attained tends to decrease with increasing flow, and
this tendency is clearer for weaker density contrasts. When

vAe/vA0 is at the two extremes, (a/L)min reads 0.405 and
0.31 in the static case, and goes down to 0.267 and 0.248
for an MA being 0.8, respectively. The fractional change

due to the flow in the former reads 34% while it is 20% in
the latter.

It is interesting to contrast the cylinder case with
the slab one. In both cases the minimal period ratio
(P1/2P2)min and the aspect ratio (a/L)min have been ex-

amined analytically. Note that in the slab case, a refers to
the half-width of the slab. For cold static slabs, Macnamara
& Roberts (2011) established that (P1/2P2)min can never

drop below
√

2/2, which is attained for the infinite den-
sity contrast at a zero aspect ratio. While this was estab-
lished by employing the Epstein profile to connect the slab

density and the density of its surroundings, the numerical
results in both Macnamara & Roberts (2011) and Paper I
demonstrate that this lower limit for P1/2P2 is also valid
when the density profile is in the form of a step func-

tion. When a flow U0 is introduced, Paper I shows that
P1/2P2 is no longer subject to this lower limit and the
change in P1/2P2 relative to the static case is typically

∼ 20%. Besides, (a/L)min tends to increase with increas-
ing U0. For cold static cylinders, McEwan et al. (2006)
(hereafter M06) and also Andries et al. (2009) established

that (P1/2P2)min also suffers from a lower limit of ∼ 0.92
when the density contrast approaches infinity, and the as-
pect ratio where this lower limit is attained is ∼ 0.3 (see

fig. 2 in M06, and note that the symbol L therein is the

loop half-length, and hence their a/L corresponds to twice

the value of a/L in the present study). The static case in
Figure 3 agrees remarkably well with figure 2 in M06,
even though the sound speeds are allowed to be non-zero

now, which is not surprising given that the sound speeds
are significantly smaller than the Alfvén speeds. However,
Figure 3 offers the new result that in the cylinder case, the

introduction of the internal flow provides significant revi-
sion to the period ratio, making it no longer suffer from
the lower limit established for static cylinders. This is true
even when the density contrast approaches infinity, and the

revision to the period ratio is typically ∼ 16 − 17%, sim-
ilar to the slab case. At a given vAe/vA0, the tendency for
(a/L)min to decrease with increasing U0 in the cylinder

case is opposite to what happens for slabs with flows.

3.4 Period Ratios for Standing Sausage Modes

Figure 5 presents the period ratio P1/2P2 as a function of
aspect ratio a/L for a series of vAe/vA0, pertinent to stand-

ing sausage modes. The solid, dotted and dashed curves
correspond to vAe/vA0 being 2, 3 and 20, respectively. As
indicated by the different colors, a set of U0 is investi-
gated and measured in units of the internal Alfvén speed

U0 = MAvA0. It is clear from Figure 5 that the effect
of flow on the period ratio P1/2P2 is not as strong as
for the kink modes. Since this effect increases with in-

creasing vAe/vA0, one may examine the extreme value
where vAe/vA0 = 20, in which case one finds that at
a/L = 0.4, P1/2P2 reads 0.611 when MA = 0.5, which

is 5.4% lower than the value 0.646 obtained in the static
case. This fractional change in P1/2P2 is typical in this
case at a given aspect ratio. However, the flow effect is

much stronger when it comes to the cutoff aspect ratio
(a/L)cutoff only above which can standing sausage modes
be supported. This effect is substantial even when it is
the weakest among the three vAe/vA0 considered: when

vAe/vA0 = 2, (a/L)cutoff increases from 0.456 to 0.53 to
0.651 with MA increasing from 0 to 0.1 to 0.2 respectively.
Regarding the other extreme value vAe/vA0 = 20, while

(a/L)cutoff reads 0.04 for the static case, it reads 0.083
when MA = 0.2, and 0.197 when MA = 0.4. This means
that at a given vAe/vA0, relative to the static case, cylin-

ders with a flow can support standing sausage modes only
when they are sufficiently thicker if the cylinder length is
fixed.

At this point, a comparison with studies of sausage

modes supported by magnetized slabs is informative. As
demonstrated numerically by Inglis et al. (2009) and ana-
lytically by Macnamara & Roberts (2011), static coronal

slabs P1/2P2 may reach as low as 1/2 with the lower limit
attainable when the density contrast is infinite. Besides,
the cutoff aspect ratio lowers with increasing density con-

trast. While an analytical expectation of the lower limit of
P1/2P2 is not available for cylinders, our study of an ex-
tremely large density contrast (vAe/vA0 = 20) represented

by the dashed curves in Figure 5 shows that the sausage
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Fig. 3 Period ratio P1/2P2 as a function of the cylinder aspect ratio a/L for standing fast kink modes. Curves with different colors
represent results computed for different values of the flow speed U0 measured in units of the internal Alfvén speed U0 = MAvA0.

Fig. 4 Effects of flow speed on (a) the minimal period ratio, (P1/2P2)min, and (b) the aspect ratio at which the minimum is attained,
(a/L)min. Here both (P1/2P2)min and (a/L)min are displayed as a function of the Alfvénic Mach number MA.

Fig. 5 Period ratio P1/2P2 as a function of the cylinder aspect ratio a/L for standing sausage modes. The solid, dotted and dashed
curves are for the cases where vAe/vA0 = 2, 3 and 20, respectively. Curves with different colors represent results computed for
different values of the flow speed U0 measured in units of the internal Alfvén speed U0 = MAvA0.

modes in a cylindrical geometry follow a similar pattern:
P1/2P2 is also subject to a lower limit of 1/2 and the cut-
off aspect ratio decreases with vAe/vA0. Likewise, the in-

fluence of flow on the standing modes is qualitatively sim-
ilar in both geometries: introducing a flow in the structure

has a more prominent effect in determining the cutoff as-
pect ratio than on the value of the period ratio. With MA

in the examined range [0, 0.6], in both geometries a flow

may alter (a/L)cutoff in an order-of-magnitude sense and
the fractional change is more pronounced at higher density
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Fig. 6 Similar to Fig. 2 but for an isolated photospheric cylinder (vAe = 0). The characteristic speeds are ce = 1.2c0, vA0 = 1.5c0 and
cT0 = 0.83c0 . Panels (a) to (d) correspond to an M0 of 0, 0.1, 0.25 and 0.4, respectively, where M0 = U0/c0 measures the internal
flow in units of the internal sound speed. The curves in blue (black) correspond to surface (body) waves. The waves of interest are
labeled with their phase speeds at zero longitudinal wavenumber ka, where ce± = ±ce, and cT0,± = ±cT0 + U0.

contrasts; whereas the fractional change in P1/2P2 with
respect to the static case is . 5%.

Figure 5 also allows us to more closely inspect the ob-
served period ratios P1/2P2 of standing sausage modes.
While 1 − P1/2P2 of standing kink modes has been ex-
amined in considerable detail (see e.g., the introduction

in Macnamara & Roberts 2011, and references therein)
and put in seismological applications (e.g., Andries et al.
2005, 2009), the use of 1 − P1/2P2 for standing sausage

modes seems not as popular (see e.g., Inglis et al. 2009).
Before making serious use of it, one may first ask what
leads to the departure of P1/2P2 from 1 in the first place.

The available data for NoRH flare loops yield a value of
P1/2P2 ≈ 15.5 s/(2 × 9.5 s) = 0.82 at an aspect ra-
tio a/L = 0.12 (Nakariakov et al. 2003; Melnikov et al.

2005), while those for cool H alpha post-flare loops yield

a value of P1/2P2 ≈ 587 s/(2 × 349 s) = 0.84 at an
a/L = 0.03 (Srivastava et al. 2008). In view of Figure 5
which addresses trapped modes, the two values of P1/2P2

are difficult to explain: whichever value a/L takes, P1/2P2

is far from the measured values, which are actually outside
the range of the vertical extent of this figure. Introducing

a flow shear makes the comparison of the theoretically ex-
pected values with the measured ones even more undesir-
able: at a given a/L, P1/2P2 in the flowing case is actu-

ally even smaller than in the static case. Adopting a slab
description for coronal loops as was done in Inglis et al.
(2009, fig. 6) and in Paper I (fig. 6 therein) does not help,
and neither does varying the parameters of the equilibrium,

because the periods of standing modes are mostly deter-
mined by the density contrast (Inglis et al. 2009). On the
other hand, in the leaky regime, the periods (and hence
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Fig. 7 Period ratio P1/2P2 as a function of the cylinder aspect ratio a/L for standing kink modes. Curves with different colors represent
results computed for different values of the flow speed U0 measured in units of the internal sound speed U0 = M0c0. Presented in (a)
to (d) are combinations of d− + d+, d− + cT0,+, cT0,− + d+ and cT0,− + cT0,+, respectively.

their ratios) subtly depend on the parameter range of the
problem (Nakariakov et al. 2012). We conclude that for
sausage modes, what causes the deviation of P1/2P2 from

unity needs a dedicated detailed investigation.

Figure 9 extends our examination on the effects of flow
speed on the cutoff aspect ratio (a/L)cutoff pertinent to
the standing sausage modes by showing the distribution of

(a/L)cutoff with varying Alfvén speed ratios vAe/vA0 and
Alfvén Mach numbers MA. The contours of (a/L)cutoff

are equally spaced by 0.02. It can be seen that (a/L)cutoff

decreases monotonically with increasing vAe/vA0 at a
given MA, but increases rather dramatically with increas-
ing MA at a given vAe/vA0. What is more important in the

context of SMS is that Figure 9 helps constrain the combi-

nations of density contrast and internal flow when trapped
standing sausage modes are observed in a coronal cylinder
with a known aspect ratio. This point can be illustrated if

one examines the flaring loop reported in Nakariakov et al.
(2003), which is 25 Mm long and 6 Mm in diameter, re-
sulting in an aspect ratio of a/L = 0.12. Now that the
fundamental sausage mode occurred in this loop, its aspect

ratio has to be larger than the cutoff value, meaning that the
pair of density contrast and internal flow has to be located
in the region below the thick contour in Figure 9 which

corresponds to 0.12. If the density contrast, or equivalently
vAe/vA0, is known, then the internal flow U0 as measured
in terms of MA = U0/vA0 has to be smaller than some crit-

ical value, which in this particular example reads ∼ 0.16
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Fig. 8 Similar to Fig. 7 but for standing sausage modes. Presented in (a) to (d) are combinations of ce−+ce+, ce−+cT0,+, cT0,−+ce+

and cT0,− + cT0,+, respectively.

Fig. 9 The lowest allowed aspect ratio for standing sausage modes to occur, (a/L)cutoff , as a function of the Alfvén speed ratio vAe/vA0

and the internal flow speed measured in units of the internal Alfvén speed. The thick contour delineates where (a/L)cutoff = 0.12,
corresponding to the aspect ratio of the flaring loop that experienced oscillations in the form of a global sausage mode as reported
by Nakariakov et al. (2003).
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if vAe/vA0 = 10, and ∼ 0.21 if vAe/vA0 = 12. If one

can further find the flow speed U0 via, say, Doppler shift
measurements using coronal emission lines, then one can
derive a lower limit of the internal Alfvén speed. For in-

stance, supposing U0 to be 40 km s−1, found for warm
EUV loops (Winebarger et al. 2002), one finds that vA0

should be larger than ∼ 200 km s−1 if vAe/vA0 is found

to be ∼ 12. Obviously, this practice of SMS makes more
sense when the contours in the upper half of Figure 9 can
be employed, otherwise the deduced lower limit of vA0

is subject to large uncertainties. Despite this and the dif-

ficulties associated with inferring the density contrast as
well as flow speeds in coronal loops (see section 3.5 in
Reale 2010), Figure 9 offers a possibility of exploiting the

measured sausage oscillations.

4 PERIOD RATIOS FOR STANDING MODES

SUPPORTED BY PHOTOSPHERIC CYLINDERS

4.1 Overview of Photospheric Cylinder Dispersion

Diagrams

In this case the ordering vA0 > ce > c0 > vAe holds.
Similar to Terra-Homem et al. (2003), only an isolated
cylinder embedded in an unmagnetized atmosphere is con-

sidered: vA0 = 1.5c0, ce = 1.2c0, vAe = 0 (and hence
cT0 = 0.83c0, cTe = 0, ρe/ρ0 = 2). If assuming c0 to
be 8 km s−1, then one finds that vA0 = 12 km s−1 and

ce = 9.6 km s−1, which fall in category (ii) in Evans &
Roberts (1990).

Figure 6 shows the dependence on longitudinal
wavenumber k of phase speeds vph for a series of U0, the
magnitude of which is indicated by the internal Mach num-

ber M0 = U0/c0. In addition, the dashed (solid) curves
are for kink (sausage) waves. Note that the hatched area,
corresponding to where |vph| ≤ 0.4, does not contain any
solutions to the DR, and therefore its vertical extent is ar-

tificially reduced to emphasize the area where solutions to
the DR exist. Labeling different waves is not as straightfor-
ward as in the coronal case, the reason being that in addi-

tion to body waves (the curves in black), surface waves are
also allowed now (the curves in blue). Instead of using the
convention of grouping the wave modes into fast and slow

ones (Evans & Roberts 1990), let us name them after their
phase speeds at ka = 0, with the exception of the major-
ity of the body waves whose phase speeds are consistently
bordered either by cT0 + U0 and c0 + U0, or by −c0 + U0

and −cT0 + U0. This naming practice is necessary due to
the change of identities of a number of wave modes in the
presence of flow to be detailed shortly. Note further that

the surface waves labeled cT0,− in all panels actually con-
tain both a kink and a sausage solution, which though can
hardly be distinguished. The same is also true for the cT0,+

surface waves in (a). However, with increasing magnitude
of U0, the cT0,+ kink surface wave is replaced by the d+

one, which becomes increasingly separated from the cT0,+

sausage surface wave (panels (b) and (c)).

While modest in magnitude, the flow has the subtle

effect of making some propagating windows disappear as
indicated by Figure 6. This is best illustrated by the body
waves, which correspond to the two bands shifted upwards

with increasing U0. For forward (backward) ones, and for
both kink and sausage waves, it turns out in the slender
cylinder limit (ka ≪ 1) the behavior of the phase speeds

vph can still be described by Equation (12). Moreover, in
the opposite limit (ka ≫ 1), with the exception of the
cT0,+ wave the phase speeds vph approach ±c0 + U0 in
the same way as given by Equation (15). The consequence

is that, as trapped waves are bounded from above by ce,
the propagation windows in the upper half-plane will dis-
appear when U0 > ce − cT0 (Fig. 6d). It is also inter-

esting to note that with varying U0, the identity of wave
modes may change. For instance, in Figure 6(b) while the
cT0,+ wave starts at small k as a body wave, it switches

to a surface wave when ka exceeds ∼ 3 where vph ex-
ceeds c0 +U0. This behavior was termed “mode crossing,”
as was noted in Terra-Homem et al. (2003). Another fea-
ture is that, when ce − cT0 > U0 > ce − c0 (Fig. 6c),

the slow body kink waves can no longer be trapped when
ka exceeds a certain value, meaning that short wavelength
waves then become leaky.

Other kink waves that undergo mode crossing in-
clude the d+ mode in Figure 6(a), and the d− modes
in Figure 6(a) and 6(b). In the absence of flow, the d±
modes are just the usual ck body modes, as examined ex-
tensively (e.g., Goossens et al. 1992). At relatively low
values of U0, d+ turns out to be smaller than c0 + U0,

and d− larger than −c0 + U0 in an algebraic sense. Now
that vph increases (decreases) with increasing ka for the
upper (lower) branch, it eventually overtakes c0 + U0

(−c0 + U0), making the waves transition to surface ones.

Furthermore, as has been mentioned, when U0 exceeds a
certain value, 0.051c0 to be specific, the kink body wave
starts with cT0,+ instead, and likewise, the kink surface

wave derives its label from d+. Of course, this particu-
lar value of U0 is what makes d+ equal to cT0,+. When
ka ≪ 1, it turns out that, be it a surface or a body wave,

the d± waves have a phase speed that can still be approx-
imated by Equation (19), in which λ± may be simplified

to λ± =
√

1 − d2
±/c2

e given that vAe = cTe = 0. Taking

U0 = 0, one recovers the static expression (11) in ER83

for photospheric cases.
We now move on to surface waves. Consider first the

cT0,± ones. It turns out that at ka ≪ 1, the phase speeds

of the kink ones labeled with cT0,± have the form

vph = U0 ± cT0

√

1 − c2
T0

c2
0 + v2

A0

(ka)2

ξ2
±

, (24)

where ξ± are the solutions to the equation

xI ′1(x)

I1(x)
=

c2
T0

c2
T0,±

v2
A0

c2
0

ρ0

ρe
, (25)

with x denoting the unknown. This equation offers an ex-

tension to its static counterpart, equation (12) in ER83.
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One may readily verify this by restricting oneself to

the plus version, and by noting that xI ′1(x)/I1(x) =
xI0(x)/I1(x) − 1. Note that, when U0 > 0.051c0, this
transcendental equation has no solution when the plus sign

is adopted, because beyond this U0 the kink surface waves
start with d+ when ka → 0. On the other hand, for the
sausage ones labeled cT0,±, one has for ka ≪ 1

vph = U0 ± cT0
√

1 − 1

2

ρe

ρ0

c2
T0,±c2

T0

v4
A0

(ka)
2
K0(χ±ka) (26)

where χ± =
√

1 − c2
T0,±/c2

e . This equation agrees closely

with equation (27) in TEB03, save the typo therein that
the parentheses in the first line should be removed. Despite

the difference in the form of vph for the kink and sausage
waves, one can hardly discern the difference between
the kink and sausage ones sharing the label cT0,− in

Figure 6(a) to 6(d). For the cT0,+ sausage one, while it
virtually merges with the d+ kink one at sufficiently large
wavenumbers, which reads ka ∼ 1.8 in Figure 6(b), its

difference from the d+ kink one becomes more and more
obvious with increasing U0 at small ka. Now consider the
ce± surface ones, where ce± = ±ce. One can see that while
in all panels the ce− wave exists, it is slightly different in

panel (d) where it is a body wave at ka . 2. This is un-
derstandable because at this U0 the Doppler-shifted Alfvén
speed −vA0 +U0 is actually larger than −ce, thereby mak-

ing m2
0 negative at small k (see Eq. (5)). Concerning the

ce+ mode, it tends asymptotically at ka ≫ 1 to some value
slightly above c0+U0, as shown in Figure 6(a) and 6(b). As

such, when U0 > ce − c0, this mode disappears as shown
in Figure 6(c). At sufficiently strong U0 > ce − cT0, the
cT0,+ sausage surface mode starts with ce instead. One can

see that only sausage solutions are allowed, and these are
not subject to a cutoff wavenumber at small k, meaning
that even thin cylinders with tiny aspect ratios can support
standing sausage modes that are formed by a pair of ce+

and ce− propagating waves. It is informative to analytically
consider the nearly dispersionless range of ka where vph is
literally ±ce. If this range is not considered part of the so-

lution to the DR, then one may have the impression that
a low-wavenumber cutoff exists, which actually is not the
case. It turns out that vph at small ka can be approximated

by

vph ≈ ±ce

√

1 − 4

k2a2
exp

[

− η±
(ka)2

]

, (27)

where

η± =
4ρ0

ρe

(c2
0 + v2

A0)(c̄
2
e,± − c2

T0)

c2
e(c̄

2
e,± − c2

0)
, (28)

with c̄e,± = ±ce − U0. Previous studies correctly sus-
pected that this apparent cutoff may be caused by the dif-

ficulty for a numerical DR solver to adequately resolve

the difference between vph and ±ce at small wavenum-

bers (see Moreels & Van Doorsselaere 2013, Erdélyi &
Fedun 2010). Equation (27) shows that the particular ka
dependence of vph is the culprit for this numerical diffi-

culty. The same approximate expression also applies to the
ce− mode in Figure 6(d) even though it starts as a body
wave.

4.2 Computing Standing Modes

Constructing standing modes requires us to properly

choose a pair of propagating waves, and by saying a com-
bination is realistic or not we mean the resulting standing
mode corresponds to a realistic density fluctuation in the

slender cylinder limit. Let us recall that for the two prop-
agating waves in question, they may be both kink ones or
sausage ones, but they are not allowed to be a mixture of

the two kinds.
Let us show that the combinations involving one or

two slow body waves are not of interest. Here “slow body

waves” refer to the body waves that have phase speeds
close to ±cT0 + U0 at small wavenumbers with the ex-
ception of those labeled d+ and cT0,+ in Figure 6. The
combination of a forward and backward slow body wave

may be interesting in its own right, but is not so when the
period ratios are concerned in view of the very mild disper-
sion these waves possess. Is it then possible that one of the

two propagating waves is a slow body one, but the other
is not? Once again, this turns out to be unlikely because
when ka → 0, for slow body waves X tends to large val-

ues for the kink and sausage waves alike, whereas for all
other wave modes X either tends to zero or to something
finite. The reason is given as follows.

For ease of discussion, let us rewrite Equations (10)
and (11) as

X = ΛvΛx, (29)

where

Λv = (vph − U0)
2/[c2

0 − (vph − U0)
2],

Λx =























−(n0a)Jn(n0a)/J ′
n(n0a),

for kink (n = 1) and sausage (n = 0) body waves,

(m0a)In(m0a)/I ′
n(m0a),

for kink (n = 1) and sausage (n = 0) surface waves.

For waves with phase speeds starting with cT0,±, one finds
Λv = v2

A0/c2
0, which evaluates to 2.25. Also of interest are

the waves with vph starting with ce±, for which Λv lies
in the interval between −9.26 and 5.76. Furthermore, for
slow kink body waves, with ka approaching zero, n0a ap-

proaches hl given by Equation (13). For the photospheric
computations hl is found to be rather well approximated
by (l + 3/4)π, making J ′

1(n0a) tend to zero and hence

Λx approaches large values. Likewise, for slow sausage
body ones, when ka tends to 0, n0a as given by hl in
Equation (14) causes J ′

0(n0a) to approach zero and con-

sequently Λx to tend to infinity. Now to examine the rest
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of the labeled waves, we may start with the kink category.

It can be shown that the d± waves, be them body or surface
ones, correspond to an X that tends to zero when ka → 0,
because Λx → (m0a)2. Furthermore, for the cT0,+ kink

body wave in Figure 6(b) to 6(d), one may find that Λx

in the zero wavenumber limit ranges from −3.5 to −0.45.
In Figure 6(a) this cT0,+ kink mode is a sausage one and

one finds Λx = 0.46. Its minus counterpart, the cT0,− kink
mode, is always a surface one and one finds Λx ranges be-
tween 0.46 and 5. On the other hand, the cT0,± sausage
surface waves correspond to Λx = 2 when ka → 0. The

same value of Λx at zero ka is found for all the ce± sausage
waves, regardless of whether they belong to the body or
surface category.

4.3 Period Ratios for Standing Kink Modes

Figure 7 presents the aspect ratio dependence of the pe-
riod ratio P1/2P2 for standing kink modes for a number
of U0 indicated by different colors. Distinct from the coro-

nal case, to construct standing modes, one is allowed to
pick one component from the d± waves, and the other
from the cT0,± ones, resulting in four possible combina-
tions, namely, “d− + d+,” “d− + cT0,+,” “cT0,− + d+”

and “cT0,−+cT0,+.” Note that instead of four curves, there
are only three in Figure 7(b) and 7(d), since the cT0,+ wave
does not exist when M0 = 0.4. Moreover, as opposed to

the coronal case where the period ratios are consistently
less than one, now P1/2P2 may be larger than 1, as seen in
the combinations involving d− (Fig. 7(a) and 7b), as well

as the “cT0,− + d+” one in the static case (black curve
in Fig. 7c), and the “cT0,− + cT0,+” one when M0 is 0.1
or 0.25 (red and green curves in Fig. 7d). Evidently, this

happens when one or both waves in a combination corre-
spond to a phase speed that increases in magnitude with
increasing wavenumber in part of or the whole range of
considered wavenumbers.

Overall, the flow effect is rather modest in the pa-
rameter range explored. Consider Figure 7(a) for instance,
where the flow effect is almost the strongest in the four.

One can see that the maximum the period ratio attained,
(P1/2P2)max, reads 1.057 in the static case. The largest
deviation from this occurs when U0 = 0.1c0, where

(P1/2P2)max reads 1.014, resulting in a fractional differ-
ence of 4.1%. That this is not associated with the largest
flow speed results from the fact that when U0 exceeds
0.051c0, the cT+ mode is shifted upwards to an extent

that it takes the original position of the d+ mode, as dis-
cussed regarding Figure 6. Consequently, beyond this par-
ticular value P1/2P2 tends to increase rather than decrease

with increasing U0. The same U0 dependence of the pe-
riod ratio also occurs in the rest of the panels. For in-
stance, for the combination “d−+cT0,+,” one can see from

Figure 7(b) that (P1/2P2)max reads 1.012 in the static case
and increases to 1.056 when M0 = 0.1, corresponding
to a relative difference of 4.3%. For the combinations in-

volving cT0,−, Figure 7(c) and 7(d) indicates that the flow

effect is less pronounced. In the case of “cT0,− + d+”

(“cT0,− + cT0,+”), the maximal relative difference in the
extremes of P1/2P2 reads 3.7% (3.8%).

4.4 Period Ratios for Standing Sausage Modes

Figure 8 presents the aspect ratio dependence of the pe-
riod ratio P1/2P2 for a number of U0 pertinent to standing
sausage modes. As opposed to the coronal case, one can

see no cutoff in a/L any longer, meaning that cylinders
with arbitrary aspect ratios can support sausage modes.
Moreover, all curves start with unity at zero aspect ra-

tio, indicating that wave dispersion is negligible at small
wavenumbers for any component wave that is employed
to construct a standing mode. Four pairs of combina-

tions, “ce− + ce+,” “ce− + cT0,+,” “cT0,− + ce+” and
“cT0,− + cT0,+” are possible and presented from top to
bottom, respectively. Note that when M0 is 0.25, the ce+

mode does not exist, hence there are only three curves in
Figure 8(a) and 8(c). Likewise, there are no blue curves in
Figure 8(b) and 8(d), since the cT0,+ wave is absent in the
M0 = 0.4 case.

The flow effect is stronger than for the standing kink
modes as far as the period ratio is concerned. While hardly
discernible for the combination “cT0,− + cT0,+” (Fig. 8d)
and marginal for “cT0,− + ce+” (Fig. 8c), the flow effect is

rather significant for the top two combinations. In the case
of “ce− + cT0,+,” from Figure 8(b) one can see that intro-
ducing a finite U0 leads to a decrease in P1/2P2 in general.

The relative change between the static case and the one
with M0 = 0.25 may reach 4.89%, attained at the biggest
aspect ratio considered. In the case of “ce−+ce+,” one can

see from Figure 8(a) that while there is no difference be-
tween the two curves corresponding to the static case and
the case where M0 = 0.1, significant changes appear for

aspect ratios above ∼ 0.05 when U0 is further increased
to 0.4c0. With this M0, P1/2P2 may decrease by up to
5.85% relative to the static case. Note that even though the
fractional change in P1/2P2 of a few percent is similar to

what was found for standing kink modes, the deviation of
P1/2P2 from unity is considerably more prominent, with
P1/2P2 reaching as low as 0.897 when M0 = 0.4. For

comparison, |P1/2P2 − 1| for standing kink modes always
lies below 0.06 regardless of the combinations.

Our examination of standing sausage modes may
be relevant for interpreting the very recent direct mea-

surements of sausage oscillations with imaging instru-
ments (Morton et al. 2011) (hereafter MEJM, see also
Dorotovič et al. 2008, Morton et al. 2012). Let us focus

on the multiple periods revealed therein. Let P1 stand for
the period of the fundamental and Pn (n = 2, 3, ...) de-
note that of the (n − 1)-th overtone. For illustrative pur-

poses, we restrict ourselves to P̂ = 281 ± 18 s. Taking P1

to be 550 s pertinent to the fast modes (the distinction be-

tween fast and slow modes is described in quite some detail
by Evans & Roberts 1990), one finds that P1/nPn would

lie in the range [0.92, 1.05] ([0.61, 0.70]) if P̂ corresponds
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to the first (second) overtone. Now the loop aspect ratio in

question, that was measured to be a/L, is ∼ 0.3, and our
Figure 8(a) and 8(b) indicates that the computed P1/2P2

lies in the range that corresponds to n = 2. This lends sup-

port to the suggestion by MEJM that this P̂ corresponds to

the first overtone. Is it possibly related to the second over-
tone? This turns out to be unreasonable since a computa-
tion indicates that P1/3P3 for the combination “ce−+ce+”
cannot drop below 0.86. If one chooses P1 to be 660 s per-

tinent to slow modes instead, then P̂ would correspond to

a P1/nPn in the range [1.1, 1.26] ([0.74, 0.84]) if it corre-
sponds to n = 2 (n = 3). The former can be ruled out,
since we have seen that for photospheric standing sausage

modes, P1/2P2 never exceeds unity. The latter does not
appear to be likely either. This is because, strictly speak-
ing, by convention slow modes correspond to the combi-
nation “cT0,− + cT0,+,” for which we find that P1/3P3 is

in excess of 0.954; i.e., outside the deduced range for all
the flow speeds considered. Despite this comparison be-
ing admittedly inconclusive, let us make the point that the

incorporation of flow shear in addition to a transverse den-
sity structuring offers more possibilities in interpreting the
measured oscillation periods.

5 SUMMARY AND CONCLUDING REMARKS

The present study is dedicated to examining the effects of
a field-aligned flow on the period ratios P1/2P2, where P1

and P2 represent the periods of the fundamental and its first
overtone, for both standing kink and sausage modes, and
for both a coronal and a photospheric environment. It was

motivated by the fact that in the field of SMS, multiple pe-
riodicities are playing an increasingly important role on the
one hand (e.g., Andries et al. 2009; Ruderman & Erdélyi
2009), and significant flows were found to have important

consequences for seismological applications on the other
hand (Terradas et al. 2011). While our previous work (Li
et al. 2013) regards magnetic loops as slabs, here they

are modeled as magnetized cylinders. To be specific, we
numerically solve the dispersion relations for waves sup-
ported by cylinders incorporating flows, devise a graphical

method to construct standing kink and sausage modes, and
examine in detail how the period ratios depend on the loop
aspect ratio a/L, the flow magnitude, as well as the density

contrast between the loop and its surroundings. Here a is
the loop radius and L is its length. Concerning the period
ratios, our conclusions can be summarized as follows.

(1) For standing kink modes supported by coronal cylin-
ders, introducing a significant field-aligned flow in the
cylinder may reduce the period ratio by up to 17%

compared with the static case. This fractional change
depends only weakly on the density contrast; a similar
amount of reduction is found even in the limit where

the density contrast approaches infinity. In addition,
the reduction in the period ratio due to a finite flow
may readily help explain the observed values at finite

aspect ratios of the recently reported oscillating NoRH

loops, and is not negligible for thin cylinders in large

shear flows (high U0).
(2) For standing sausage modes supported by coronal

cylinders, even a significant flow can only lead to a re-

duction in P1/2P2 that is typically no more than 5.5%
relative to the static case. Despite that, it has important
effects on the threshold aspect ratio only above which

standing sausage modes can be supported. At a given
density contrast, this threshold may be larger than its
static counterpart by an order-of-magnitude. On the
one hand, this may explain why the measured standing

sausage modes are rare since the existence of a flow in
the loop makes the modes more difficult to become
trapped. On the other hand, we show that this param-

eter dependence of the threshold may be exploited to
constrain the combinations of density contrast ρ0/ρe

and Alfvén Mach number MA. If the density contrast

and flow speed are further known, then this practice
can help yield the lower limit of the internal Alfvén
speed.

(3) For the isolated photospheric cylinders, we find that

the flow effect is marginal on the period ratios P1/2P2

for the standing sausage modes, and even less so for
the kink modes. Having said that, we note that stand-

ing modes in this case are distinct from the coro-
nal case in that standing sausage modes may be sup-
ported by cylinders with arbitrary aspect ratios and

are not subject to an aspect ratio cutoff any more.
Furthermore, for standing kink modes, P1/2P2 may
exceed unity as a result of the wavenumber depen-

dence of the phase speed.
(4) While this study focuses on the period ratios of stand-

ing modes, it offers some new results for the disper-
sion properties of propagating waves as well in the

form of a series of approximate expressions for the
phase speed vph in both slender (ka ≪ 1) and thick
(ka ≫ 1) cylinder limits. In particular, the expression

for vph in the slender cylinder limit for photospheric
loops (Eq. (27)) provides an explanation for the nu-
merical difficulty associated with finding solutions to

the dispersion relation pertinent to sausage waves in
this limit.

Before closing, a few remarks on the applications of
the presented study are necessary. First, let us stress that

allowing the loop parameters to be time-dependent may be
important as far as the period ratio is concerned (Morton
& Erdélyi 2009; Al-Ghafri & Erdélyi 2013; Erdélyi et al.
2014), and hence it is necessary to address the consequence

of a time-varying flow speed in this regard. Our results on
the effect of flow on standing sausage modes in a coronal
environment make such a further investigation particularly

necessary. Second, in agreement with Morton et al. (2011),
the idea of seismology may be equally applicable to other
parts of the structured solar atmosphere, particularly pho-

tospheric structures.



92–16 H. Yu et al.

Acknowledgements This research is supported by the

973 program 2012CB825601, the National Natural
Science Foundation of China (41174154, 41274176,
41274178 and 41474149), and by the Provincial Natural

Science Foundation of Shandong (Grant JQ201212).

References
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