# The high-amplitude $\delta$ Scuti variable CY Aqr is probably a triple system

Wei-Jing Fang<sup>1</sup>, Zhi-Quan Luo<sup>1</sup>, Xiao-Bin Zhang<sup>2</sup>, Li-Cai Deng<sup>2</sup>, Kun Wang<sup>2</sup>, Yang-Ping Luo<sup>1</sup>, Yang Pan<sup>1</sup>, Yin-Jiang Peng<sup>1</sup>

- <sup>1</sup> Physics and Space Science College, China West Normal University, Nanchong 637002, China; *nczqluo@126.com*; *fangwjap@163*
- <sup>2</sup> Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China

Received 2015 December 29; accepted 2016 February 5

Abstract Data representing 864 times of light maxima of the high-amplitude  $\delta$  Scuti star CY Aqr were collected from the literature, based on which, long-term period changes of the variable star were investigated. A revised period and new ephemerides were given for the pulsating star. Remarkable cyclic variations were found in the O - C residuals which can be attributed to the light-time effects due to probable unseen components of the object. By using Kopal's method, the orbital parameters of the supposed component stars were derived. The solution suggests that CY Aqr is very probably in a triple system orbited eccentrically by two low-mass companions with periods of 54.2 and 47.3 yr. The lower limits on masses were estimated as 0.04  $M_{\odot}$  and 0.02  $M_{\odot}$ , respectively, for the two hidden companions.

Key words: methods: data analysis — stars: variables:  $\delta$  Scuti — stars: individual (CY Aqr)

## **1 INTRODUCTION**

 $\delta$  Scuti stars are in the core or shell hydrogen burning stage of evolution. On the Hertzsprung-Russell Diagram, they are located around the intersection of the classical instability strip and the main sequence. The masses of these stars range from 1.5  $M_{\odot}$  to 2.5  $M_{\odot}$ , and they usually pulsate in multiple modes with periods between 18 min and 8 h, and amplitudes from mmag up to tenths of a magnitude (Yang et al. 2012). High-amplitude  $\delta$  Scuti stars (HADS) are characterized by pulsation periods shorter than 0.25 days, pulsation amplitudes larger than 0.1 mag and a spectral type between A3 and F5 (Boonyarak et al. 2011). SX Phoenicis stars, a subgroup of HADS, are low-metallicity old Population II stars (Yang et al. 2012). Pulsation in  $\delta$ Scuti stars allows the study of the internal structure and evolution. For this reason they have been extensively observed and studied. Recently, many investigations have revealed that some HADS are actually in binary systems and usually show long-term orbital period variations (Derekas et al. 2009). These changes are typically displayed in an O-C plot, in which the differences between the observed times of light maxima and those predicted by the original ephemeris are displayed as a function of Julian Date. For a given period, the residuals are distributed along O - Caround 0. If the period applied is incorrect, the residuals are distributed somewhat aslant with a slope (Sterken 2005). Many HADS have an even more complex O - C diagram in which the cause of their variations remains a mystery.

CY Aqr is a well studied SX Phoenicis star which was discovered in the 1930s (Jensch 1934). Because of its short period (88 min) and large amplitude (0.74 mag in V), CY Aqr has been extensively observed for more than eight decades. Hardie & Tolbert (1961) contributed the first photoelectric photometry of CY Aqr in the UBV system and noted the gradual decrease of its pulsation period. After that, the period changes of the star attracted considerable attention (Percy 1975, Mahdy & Szeidl 1980, Rolland et al. 1986, Coates et al. 1994). A number of interpretations were postulated to explain the discrepancies between the observed and calculated times of light maxima (Powell et al. 1995). Coates et al. (1994) suggested that the shape of the O-C diagram might be due to a light-time effect in a binary system. Under such assumption, Fu & Sterken (2003) derived a reliable model for the period variation of CY Aqr. Their solution yielded a 52.5 yr highly eccentric orbit for the probable companion. The binary explanation, however, could not account for the full range of period changes. The mysterious period variation of CY Aqr is still not understood.

Pursuing an accurate determination of the period variation of CY Aqr, after Fu & Sterken (2003) was published, we carried out an extensive literature search and collected a large number of new times of light maxima. Based on the O - C method, the long-term period behavior of CY Aqr was investigated.

#### 2 OBSERVATIONAL DATA

As a result of an extensive literature survey of CY Aqr, we were able to find 864 times of light maxima between 1934 and 2015. These data are shown in Table 1.

Since the times of light maxima were obtained by different observation techniques as technology advanced, from visual, to photographic, photoelectric and CCD, the sensitivity and accuracy in the collection have a huge range. In order to combine such a diverse data set, we assign different weights to each method so that the issue of data quality can be reasonably taken into account. We use weight = 1 for visual records, 4 for photographic data, and 10 for photoelectric and CCD measurements.

### 3 NEW LINEAR EPHEMERIS AND THE CYCLIC CHANGE IN THE O - C DIAGRAM

Using all 864 times of light maxima in Table 1 and applying weights to the different data types, the best fitting gives the following new linear ephemeris.

$$Max.(HJD) = 2453334.9426(\pm 0.0001) + 0.061038381(\pm 0.000000006) \times E,$$
(1)

where E is the number of cycles. The O - C curve computed with the ephemeris given in Equation (1) is displayed in Figure 1 (top panel), in which an obvious cyclic residual signal exists. Such an O - C residual pattern is normally interpreted as the light-time effect in a binary system (Coates et al. 1994, Fu & Sterken 2003). According to the prescription of Fu & Sterken (2003), we assumed the existence of one companion star around CY Aqr. Therefore, the following method was used to analyze the O - C data. First, the approximate frequency harmonics and amplitudes can be recognized by using the discrete Fourier transformation method. These frequencies are then refined with the following fitting

$$O - C(t) = 0.5a_0 + \sum_{k=1}^{2} \left[ a_k \sin\left(\frac{2\pi kt}{P_1}\right) + b_k \cos\left(\frac{2\pi kt}{P_1}\right) \right].$$
 (2)

The results of the fitting are shown in Figure 1. The top panel gives the O - C data and the solid line shows the fit derived by Equation (2). The bottom panel shows the residuals from subtracting the solid line of the top panel. The orbital parameters can then be computed from the Fourier coefficients (Kopal 1978) as follows

$$e' = 2\sqrt{\frac{a_2^2 + b_2^2}{a_1^2 + b_1^2}},\tag{3}$$

where  $a_1$ ,  $a_2$ ,  $b_1$  and  $b_2$  are the Fourier coefficients, and e' is the eccentricity of the long-period orbit. Using the method above, we obtained the eccentricity for the long-period orbit, and we find that e' > 1. As shown in the lower panel of Figure 1, the fitting residual has a strong periodic signal after extracting the primary orbital period. Therefore, a single companion scenario cannot fully explain the O - C diagram.

In order to validate our conjecture, we assume an additional star and re-fit a curve with the following form to the O - C data

$$O - C(t) = 0.5a_0 + \sum_{k=1}^{2} \left[ a_k \sin\left(\frac{2\pi kt}{P_1}\right) + b_k \cos\left(\frac{2\pi kt}{P_1}\right) \right] + \sum_{k=1}^{2} \left[ c_k \sin\left(\frac{2\pi kt}{P_2}\right) + d_k \cos\left(\frac{2\pi kt}{P_2}\right) \right], \quad (4)$$

where the first Fourier transform term is for the first companion and the other is for the second star.

The fitting diagram is provided in Figure 2. The top panel shows the new O - C data and the solid line shows the fit derived by Equation (4). The bottom panel shows the residuals from subtracting the solid line of the top panel, where no variation can be found.

#### **4 RESULTS**

Comparing Figures 1 and 2, and noting the final residual in the lower panel of Figure 2, it is clear that a triple system with two companions is more feasible for CY Aqr than previous studies. On the basis of the spectral type of  $\delta$  Scuti stars (Chang et al. 2013), the mass of CY Aqr is estimated

| Table 1 Times of Light Maxima of CY Ac | ļr |
|----------------------------------------|----|
|----------------------------------------|----|

| $T_{\max}$ | Detector | Ref  |
|------------|----------|-----|------------|----------|-----|------------|----------|-----|------------|----------|-----|------------|----------|------|
| 27013.2930 | pg       | [1] | 36546.0949 | pe       | [1] | 43011.5832 | vis      | [9] | 47410.4283 | pe       | [1] | 53569.5167 | CCD      | [19] |
| 27413.2200 | pg       | [1] | 36546.1555 | pe       | [1] | 43011.6412 | vis      | [9] | 47410.4891 | pe       | [1] | 53605.7721 | CCD      | [13] |
| 27659.5067 | pg       | [2] | 36549.0860 | pe       | [1] | 43012.4361 | vis      | [9] | 47411.4047 | pe       | [1] | 53612.3657 | CCD      | [19] |
| 27668.9730 | pg       | [2] | 36549.1472 | pe       | [1] | 43012.4971 | vis      | [9] | 47411.4661 | pe       | [1] | 53612.4269 | CCD      | [19] |
| 27671.5317 | pg       | [1] | 36568.0690 | pe       | [1] | 43012.5573 | vis      | [9] | 47411.5265 | pe       | [1] | 53612.4878 | CCD      | [19] |
| 27671.5299 | pg       | [1] | 36569.0457 | pe       | [1] | 43012.6185 | vis      | [9] | 47411.5871 | pe       | [1] | 53612.5483 | CCD      | [19] |
| 27682.5211 | pg       | [1] | 36569.1069 | pe       | [1] | 43014.5121 | vis      | [9] | 47792.7727 | pe       | [1] | 53613.7080 | CCD      | [13] |
| 27684.9629 | pg       | [1] | 36570.0834 | pe       | [1] | 43014.5732 | vis      | [9] | 47792.8338 | pe       | [1] | 53613.7678 | CCD      | [13] |
| 27688.9906 | pg       | [1] | 36735.8044 | pe       | [1] | 43014.6326 | vis      | [9] | 47792.8948 | pe       | [1] | 53647.0339 | CCD      | [13] |
| 27690.3940 | pg       | [1] | 36735.8654 | pe       | [1] | 43015.4880 | vis      | [9] | 47799.6702 | pe       | [1] | 53682.3752 | CCD      | [13] |
| 27692.5287 | pg       | [1] | 36740.9929 | pe       | [2] | 43016.4644 | vis      | [9] | 47799.7313 | pe       | [1] | 53683.2906 | CCD      | [13] |
| 27692.6520 | pg       | [1] | 36749.7819 | pe       | [1] | 43016.5256 | vis      | [9] | 47799.7924 | pe       | [1] | 53683.3517 | CCD      | [13] |
| 27693.3829 | pg       | [1] | 36749.8432 | pe       | [1] | 43016.5906 | vis      | [9] | 47799.8534 | pe       | [1] | 53684.3285 | CCD      | [13] |
| 27693.4462 | pg       | [1] | 36792.6920 | pe       | [1] | 43017.3802 | vis      | [9] | 47801.6844 | pe       | [1] | 53688.3568 | CCD      | [13] |
| 27694.3590 | pg       | [1] | 36792.7528 | pe       | [1] | 43017.4416 | vis      | [9] | 47801.7456 | pe       | [1] | 53689.3337 | CCD      | [13] |
| 27695.4600 | pg       | [1] | 36792.8750 | pe       | [1] | 43017.5012 | vis      | [9] | 47801.8064 | pe       | [1] | 53989.3372 | CCD      | [13] |
| 27696.6793 | pg       | [1] | 36792.9367 | pe       | [2] | 43017.5618 | vis      | [9] | 47807.6051 | pe       | [1] | 53989.3980 | CCD      | [13] |
| 27697.4721 | pg       | [1] | 36803.8012 | pe       | [1] | 43017.6243 | vis      | [9] | 47807.6664 | pe       | [1] | 54007.0997 | CCD      | [13] |
| 27702.0519 | pg       | [1] | 36803.8617 | pe       | [1] | 43018.3583 | vis      | [9] | 47807.7273 | pe       | [1] | 54008.7473 | CCD      | [13] |
| 27710.5949 | pg       | [1] | 36832.6114 | pe       | [1] | 43018.4184 | vis      | [9] | 47807.7882 | pe       | [1] | 54032.4907 | CCD      | [13] |
| 27712.3069 | pg       | [1] | 36832.7330 | pe       | [1] | 43018.4788 | vis      | [9] | 47807.8494 | pe       | [1] | 54032.5523 | CCD      | [13] |
| 27717.4332 | pg       | [1] | 36835.6017 | pe       | [1] | 43018.5420 | vis      | [9] | 47818.7141 | pe       | [1] | 54092.2510 | CCD      | [13] |
| 27744.2302 | pg       | [1] | 36835.6624 | pe       | [1] | 43018.6004 | vis      | [9] | 47818.7752 | pe       | [1] | 54092.3110 | CCD      | [13] |
| 27744.2909 | pg       | [1] | 36838.7150 | pe       | [2] | 43401.3706 | pe       | [1] | 48022.0354 | pe       | [3] | 54307.5293 | CCD      | [13] |
| 28035.3842 | pg       | [1] | 36842.6818 | pe       | [1] | 43401.4327 | pe       | [1] | 48065.9203 | pe       | [1] | 54308.5073 | CCD      | [13] |
| 28045.3924 | pg       | [1] | 36842.7430 | pe       | [1] | 43401.4937 | pe       | [1] | 48070.9257 | pe       | [1] | 54381.4464 | CCD      | [20] |
| 28046.3071 | pg       | [1] | 36845.7345 | pe       | [1] | 43402.3478 | pe       | [1] | 48099.7970 | pe       | [1] | 54410.5627 | CCD      | [13] |
| 28046.4901 | pg       | [1] | 36871.1246 | pe       | [1] | 43402.4086 | pe       | [1] | 48530.6693 | pe       | [1] | 54671.5630 | CCD      | [13] |
| 28047.2826 | pg       | [1] | 36902.0108 | pe       | [1] | 43402.4699 | pe       | [1] | 48530.7302 | pe       | [1] | 54709.4677 | CCD      | [13] |
| 28047.3464 | pg       | [1] | 36902.0716 | pe       | [1] | 43402.5311 | pe       | [1] | 48531.6459 | pe       | [1] | 54729.3056 | CCD      | [13] |
| 28047.4064 | pg       | [1] | 36903.0490 | pe       | [1] | 43425.4207 | pe       | [1] | 48531.7068 | pe       | [1] | 54729.3665 | CCD      | [13] |
| 28047.4668 | pg       | [1] | 36906.0397 | pe       | [1] | 43425.4814 | pe       | [1] | 48531.7679 | pe       | [1] | 54729.4272 | CCD      | [13] |
| 28048.3823 | pg       | [1] | 36928.0728 | pe       | [1] | 43482.2454 | pe       | [1] | 48813.8885 | pe       | [1] | 54730.2815 | CCD      | [13] |
| 28074.3254 | pg       | [1] | 36928.1343 | pe       | [1] | 43490.2434 | pe       | [1] | 48887.7451 | pe       | [1] | 54730.3428 | CCD      | [13] |
| 28074.3860 | pg       | [1] | 36928.9895 | pe       | [1] | 43490.3038 | pe       | [1] | 48888.9048 | pe       | [1] | 54730.4039 | CCD      | [13] |
| 28090.3189 | pg       | [1] | 36929.0511 | pe       | [1] | 43815.3325 | pe       | [1] | 49199.8356 | pe       | [1] | 54730.4647 | CCD      | [13] |
| 28090.3800 | pg       | [1] | 36929.1105 | pe       | [1] | 43815.3636 | pe       | [5] | 49199.8964 | pe       | [1] | 54734.3710 | CCD      | [13] |
| 28092.1508 | pg       | [1] | 37195.7276 | pe       | [1] | 43815.3947 | pe       | [1] | 49199.9578 | pe       | [1] | 54734.4318 | CCD      | [13] |
| 28094.2860 | pg       | [1] | 37195.7894 | pe       | [1] | 44158.3069 | pe       | [1] | 49222.8470 | pe       | [1] | 54736.3854 | CCD      | [13] |
| 28397.5233 | pg       | [1] | 37196.6432 | pe       | [1] | 44896.6878 | pe       | [1] | 49275.6441 | CCD      | [1] | 54738.3388 | CCD      | [13] |
| 28422.4259 | pg       | [1] | 37198.2906 | pe       | [1] | 45194.7999 | pe       | [1] | 49280.0396 | pe       | [3] | 54738.3993 | CCD      | [13] |
| 28422.4874 | pg       | [1] | 37202.1968 | pe       | [1] | 45194.8583 | pe       | [1] | 49281.0776 | pe       | [3] | 54738.3999 | CCD      | [13] |
| 28422.5490 | pg       | [1] | 37204.1506 | pe       | [1] | 45194.9208 | pe       | [1] | 49281.1390 | pe       | [3] | 54739.3754 | CCD      | [13] |
| 28423.3418 | pg       | [1] | 37222.1557 | pe       | [1] | 45195.7756 | pe       | [1] | 49282.0540 | pe       | [3] | 54749.3254 | CCD      | [13] |
| 28423.4027 | pg       | [1] | 37222.2165 | pe       | [1] | 45195.8979 | pe       | [1] | 49282.1150 | pe       | [3] | 54749.3867 | CCD      | [13] |
| 28423.4650 | pg       | [1] | 37224.2303 | pe       | [1] | 45199.8034 | pe       | [1] | 49282.1760 | pe       | [3] | 54757.2605 | CCD      | [13] |
| 28423.5251 | pg       | [1] | 37225.6365 | pe       | [1] | 45199.9249 | pe       | [1] | 49283.0313 | pe       | [3] | 54757.3214 | CCD      | [13] |
| 28434.6347 | pg       | [1] | 37225.6978 | pe       | [1] | 45199.9868 | pe       | [1] | 49283.0915 | pe       | [3] | 54757.3825 | CCD      | [13] |
| 28445.8052 | pg       | [1] | 37226.1231 | pe       | [1] | 45207.4944 | pe       | [1] | 49286.6322 | CCD      | [1] | 54761.2892 | CCD      | [13] |
| 28451.4802 | pg       | [1] | 37233.6340 | pe       | [1] | 45543.6319 | pe       | [1] | 49290.7218 | pe       | [1] | 54761.3503 | CCD      | [13] |
| 28501.2275 | pg       | [1] | 37233.6940 | pe       | [1] | 45544.6092 | pe       | [1] | 49328.9938 | pe       | [3] | 54781.2485 | CCD      | [13] |
| 28501.2878 | pg       | [1] | 37250.1112 | pe       | [1] | 45544.6698 | pe       | [1] | 49567.8366 | CCD      | [1] | 54781.3091 | CCD      | [13] |
| 28623.3071 | pg       | [1] | 37253.1013 | pe       | [1] | 45584.7726 | pe       | [1] | 49623.6258 | CCD      | [1] | 54796.2637 | CCD      | [13] |

Notes:  $T_{\text{max}}$  is in HJD–2400000. The references (column "Ref") are the following: [1] Powell et al. (1995); [2] Percy (1975); [3] Fu & Sterken (2003); [4] Ashbrook (1949); [5] Rolland et al. (1986); [6] Smak (1959); [7] Braune et al. (1977); [8] Braune et al. (1979); [9] Figer (1978); [10] Agerer & Hubscher (1996); [11] Agerer & Huebscher (1998a); [12] Agerer & Huebscher (1998b); [13] Tuvikene et al. (2010); [14] Agerer et al. (1999); [15] Agerer et al. (2001); [16] Agerer & Hubscher (2002); [17] Agerer & Hubscher (2003); [18] Hubscher et al. (2011); [19] Hubscher et al. (2009a); [20] Hubscher et al. (2009b); [21] Hubscher & Monninger (2011); [22] Wils et al. (2011); [23] Hubscher (2011); [24] Sterken et al. (2011); [25] Paschke (2010); [26] Hubscher & Lehmann (2012); [27] Sterken et al. (2012); [28] Wils et al. (2012); [29] Wils et al. (2013); [30] Wils et al. (2014); [31] Samolyk (2014); [32] Samolyk (2015).

 Table 1 — Continued

| $T_{\max}$ | Detector | Ref | $T_{\rm max}$ | Detector | Ref | $T_{\max}$ | Detector | Ref | $T_{\max}$ | Detector | Ref  | $T_{\max}$ | Detector | Ref  |
|------------|----------|-----|---------------|----------|-----|------------|----------|-----|------------|----------|------|------------|----------|------|
| 28782.5534 | pg       | [1] | 37255.1161    | pe       | [1] | 45587.7023 | pe       | [1] | 49623.6869 | CCD      | [1]  | 54796.3253 | CCD      | [13] |
| 28865.2605 | pg       | [2] | 37257.1307    | pe       | [1] | 45587.7636 | pe       | [1] | 49623.7481 | CCD      | [1]  | 54809.2041 | CCD      | [13] |
| 29079.8141 | vis      | [3] | 37524.5425    | pe       | [1] | 45587.8243 | pe       | [1] | 49625.6401 | CCD      | [1]  | 54809.2648 | CCD      | [13] |
| 29085.7353 | vis      | [3] | 37578.1311    | pe       | [1] | 45588.7399 | pe       | [1] | 49625.7012 | CCD      | [1]  | 54827.2105 | CCD      | [13] |
| 29085.7950 | vis      | [3] | 37578.1930    | pe       | [1] | 45588.8010 | pe       | [1] | 49625.7623 | CCD      | [1]  | 55063.4284 | CCD      | [21] |
| 29085.8545 | vis      | [3] | 37578.2539    | pe       | [1] | 45588.8621 | pe       | [1] | 50027.2749 | CCD      | [10] | 55063.4918 | CCD      | [21] |
| 29086.7710 | vis      | [3] | 37583.1360    | pe       | [1] | 45589.7167 | pe       | [1] | 50027.3360 | CCD      | [10] | 55085.4631 | CCD      | [13] |
| 29086.8314 | vis      | [3] | 37583.1980    | pe       | [1] | 45589.7779 | pe       | [1] | 50072.9916 | CCD      | [3]  | 55085.4633 | CCD      | [13] |
| 29088.7853 | vis      | [3] | 38643.4958    | pe       | [1] | 45589.8386 | pe       | [1] | 50401.0125 | CCD      | [3]  | 55085.4641 | CCD      | [13] |
| 29107.7670 | vis      | [3] | 38644.4117    | pe       | [1] | 45590.6934 | pe       | [1] | 50401.0735 | CCD      | [3]  | 55114.3956 | CCD      | [13] |
| 29108.7415 | vis      | [3] | 38645.3895    | pe       | [1] | 45590.7543 | pe       | [1] | 50401.1345 | CCD      | [3]  | 55114.3957 | CCD      | [13] |
| 29195.3568 | pg       | [1] | 38645.4508    | pe       | [1] | 45590.8154 | pe       | [1] | 50401.9888 | CCD      | [3]  | 55114.3964 | CCD      | [13] |
| 29198.1654 | pg       | [2] | 38652.4082    | pe       | [1] | 45590.8766 | pe       | [1] | 50439.2230 | CCD      | [11] | 55157.2436 | CCD      | [13] |
| 29201.3382 | pg       | [1] | 38652.4693    | pe       | [1] | 45592.7076 | pe       | [1] | 50683.4980 | pe       | [12] | 55157.2449 | CCD      | [13] |
| 29568.3020 | pg       | [1] | 38653.4454    | pe       | [1] | 45592.7682 | pe       | [3] | 50683.5610 | pe       | [12] | 55157.2452 | CCD      | [13] |
| 29578.8016 | pg       | [1] | 38654.4835    | pe       | [1] | 45592.8294 | pe       | [1] | 50683.6210 | pe       | [12] | 55434.3598 | CCD      | [22] |
| 29589.2989 | pg       | [1] | 38660.0051    | pe       | [5] | 45611.3853 | pe       | [1] | 50720.4871 | CCD      | [12] | 55434.4205 | CCD      | [22] |
| 29880.4529 | pg       | [1] | 38675.2981    | pe       | [1] | 45611.4465 | pe       | [1] | 50749.2362 | CCD      | [12] | 55434.4816 | CCD      | [22] |
| 29904.8686 | pg       | [2] | 38675.3592    | pe       | [1] | 45612.3625 | pe       | [1] | 50749.2974 | CCD      | [12] | 55446.3830 | CCD      | [23] |
| 31268.8978 | pg       | [1] | 38676.3344    | pe       | [1] | 45612.4244 | pe       | [1] | 50749.3581 | CCD      | [12] | 55460.3611 | CCD      | [24] |
| 31291.6650 | pg       | [2] | 38680.7300    | pe       | [1] | 45612.6671 | pe       | [1] | 51107.6543 | CCD      | [13] | 55460.4222 | CCD      | [24] |
| 31296.9139 | pg       | [1] | 38680.7910    | pe       | [1] | 45612.7268 | pe       | [1] | 51115.5893 | CCD      | [13] | 55469.3340 | CCD      | [24] |
| 31297.8304 | pg       | [1] | 38970.9063    | pe       | [1] | 45612.7883 | pe       | [1] | 51115.6503 | CCD      | [13] | 55469.3948 | CCD      | [24] |
| 31742.4357 | vis      | [2] | 38978.9024    | pe       | [1] | 45616.6963 | pe       | [1] | 51162.6502 | CCD      | [13] | 55481.2973 | CCD      | [24] |
| 31750.4951 | vis      | [3] | 38997.8219    | pe       | [1] | 45616.7563 | pe       | [1] | 51129.2612 | CCD      | [14] | 55481.3584 | CCD      | [22] |
| 31751.4676 | vis      | [3] | 38997.9459    | pe       | [1] | 45616.8174 | pe       | [1] | 51129.3222 | CCD      | [14] | 55484.2878 | CCD      | [24] |
| 31751.4716 | vis      | [3] | 39003.8678    | pe       | [1] | 45621.3351 | pe       | [1] | 51420.3560 | pe       | [15] | 55484.3493 | CCD      | [24] |
| 31751.5291 | vis      | [3] | 39003.9282    | pe       | [1] | 45629.3301 | pe       | [1] | 51432.5627 | CCD      | [3]  | 55484.4102 | CCD      | [24] |
| 31751.5302 | vis      | [3] | 39089.5647    | pe       | [1] | 45631.2843 | pe       | [1] | 51461.4940 | CCD      | [3]  | 55490.3309 | CCD      | [24] |
| 31758.3651 | vis      | [2] | 39350.6861    | pe       | [1] | 45631.3453 | pe       | [1] | 51462.4095 | CCD      | [3]  | 55496.3128 | CCD      | [24] |
| 31758.3671 | vis      | [3] | 39350.7490    | pe       | [1] | 45633.6641 | pe       | [1] | 51463.3864 | CCD      | [3]  | 55496.3744 | CCD      | [24] |
| 31759.5265 | vis      | [2] | 39350.8087    | pe       | [1] | 45633.7248 | pe       | [1] | 51463.4468 | CCD      | [3]  | 55498.2662 | CCD      | [24] |
| 31765.5099 | vis      | [3] | 39350.8692    | pe       | [1] | 45634.6408 | pe       | [1] | 51463.5085 | CCD      | [3]  | 55498.3270 | CCD      | [24] |
| 31765.5107 | vis      | [3] | 39351.7253    | pe       | [1] | 45634.7018 | pe       | [1] | 51483.3450 | CCD      | [15] | 55498.3883 | CCD      | [24] |
| 31765.5694 | vis      | [3] | 39351.8460    | pe       | [1] | 45634.7629 | pe       | [1] | 51518.3830 | pe       | [15] | 55505.2860 | CCD      | [25] |
| 32091.3914 | pg       | [1] | 39355.6920    | pe       | [1] | 45635.3122 | pe       | [1] | 51747.5215 | pe       | [16] | 55505.3470 | CCD      | [25] |
| 32091.4532 | pg       | [1] | 39355.7546    | pe       | [1] | 45635.3732 | pe       | [1] | 51806.7891 | CCD      | [13] | 55506.2618 | CCD      | [24] |
| 32092.3061 | pg       | [2] | 39355.8145    | pe       | [1] | 45641.2940 | pe       | 1   | 51806.7892 | CCD      | [13] | 55506.3225 | CCD      | [24] |
| 32092.3697 | vis      | [2] | 39355.8763    | pe       | [1] | 45641.3550 | pe       | [1] | 51855.3760 | CCD      | [16] | 55506.3837 | CCD      | [24] |
| 32093.4056 | pg       | [1] | 39356.7300    | pe       | [1] | 45645.2621 | pe       | [1] | 51873.3230 | CCD      | [16] | 55530.2500 | CCD      | [24] |
| 32422.7694 | vis      | [4] | 39356.7908    | pe       | [1] | 45645.3225 | pe       | [1] | 51873.3830 | CCD      | [16] | 55535.2553 | CCD      | [24] |
| 32422.8321 | vis      | [4] | 39356.8527    | pe       | [1] | 45651.3634 | pe       | [1] | 51887.2366 | CCD      | [16] | 55535.3163 | CCD      | [24] |
| 32436.6237 | vis      | [4] | 39374.6443    | pe       | [5] | 45661.2532 | pe       | [1] | 52199.4480 | CCD      | [16] | 55544.2280 | CCD      | [24] |
| 32436.6839 | vis      | [4] | 39384.6848    | pe       | [1] | 45662.2920 | pe       | [1] | 52253.2842 | CCD      | [16] | 55547.2188 | CCD      | [24] |
| 32438.7003 | vis      | [4] | 39384.7455    | pe       | [1] | 45904.2456 | pe       | [3] | 52534.6710 | CCD      | [3]  | 55547.2800 | CCD      | [24] |
| 32440.4700 | pg       | [1] | 39384.8072    | pe       | [1] | 45942.7622 | pe       | [1] | 52535.7086 | CCD      | [3]  | 55793.4464 | CCD      | [26] |
| 32443.5838 | vis      | [4] | 39384.8675    | pe       | [1] | 45942.8232 | pe       | [1] | 52538.6990 | CCD      | [3]  | 55793.5077 | CCD      | [26] |
| 32443.7033 | vis      | [4] | 39384.9279    | pe       | [1] | 45942.8843 | pe       | [1] | 52538.7600 | CCD      | [3]  | 55793.5685 | CCD      | [26] |
| 32445.7198 | vis      | [2] | 39385.7240    | pe       | [1] | 45942.9453 | pe       | [1] | 52539.5534 | CCD      | [3]  | 55800.2847 | CCD      | [27] |
| 32445.7817 | vis      | [4] | 39385.7823    | pe       | [1] | 45972.1828 | pe       | [3] | 52539.6152 | CCD      | [3]  | 55800.3452 | CCD      | [27] |
| 32464.5182 | vis      | [4] | 39385.8448    | pe       | [1] | 46055.5612 | pe       | [1] | 52539.6753 | CCD      | [3]  | 55800.4066 | CCD      | [27] |
| 32464.5804 | vis      | [4] | 39385.9057    | pe       | [1] | 46062.5806 | pe       | [1] | 52539.7366 | CCD      | [3]  | 55800.4667 | CCD      | [27] |
| 32465.5582 | vis      | [4] | 39401.5920    | pe       | [1] | 46063.5571 | pe       | [1] | 52540.6521 | CCD      | [3]  | 55801.2607 | CCD      | [27] |
| 32465.6168 | vis      | [4] | 39401.6527    | pe       | [1] | 46270.5393 | pe       | [1] | 52540.7134 | CCD      | [3]  | 55801.3220 | CCD      | [27] |
| 33099.8081 | vis      | [3] | 39401.7139    | pe       | [1] | 46271.4541 | pe       | [1] | 52540.7752 | CCD      | [3]  | 55801.3828 | CCD      | [27] |
| 33171.6528 | vis      | [3] | 39405.6204    | pe       | [1] | 46271.5154 | pe       | [1] | 52541.5683 | CCD      | [3]  | 55801.4439 | CCD      | [27] |
| 33171.7111 | vis      | [3] | 39405.6822    | pe       | [1] | 46297.3960 | pe       | [1] | 52541.6293 | CCD      | [3]  | 55801.5050 | CCD      | [27] |
| 33171.7737 | vis      | [3] | 39405.7428    | pe       | [1] | 46298.3726 | pe       | [1] | 52541.6900 | CCD      | [3]  | 55826.3469 | CCD      | [27] |
| 33172.7509 | vis      | [2] | 39406.5980    | pe       | [1] | 46298.4335 | pe       | [1] | 52541.7514 | CCD      | [3]  | 55826.4079 | CCD      | [27] |
| 33179.5285 | vis      | [3] | 39406.6578    | pe       | [1] | 46298.4949 | pe       | [1] | 52557.4373 | CCD      | [17] | 55831.3520 | CCD      | [27] |

| $T_{\max}$ | Detector | Ref | $T_{\rm max}$ | Detector | Ref | $T_{\max}$ | Detector | Ref | $T_{\max}$ | Detector | Ref  | $T_{\max}$ | Detector | Ref  |
|------------|----------|-----|---------------|----------|-----|------------|----------|-----|------------|----------|------|------------|----------|------|
| 33180.3789 | vis      | [2] | 39406.7196    | pe       | [1] | 46298.5557 | pe       | [1] | 52625.5569 | CCD      | [3]  | 55831.4132 | CCD      | [27] |
| 33180.6860 | vis      | [3] | 40779.7783    | pe       | [1] | 46648.4872 | pe       | [1] | 52626.5339 | CCD      | [3]  | 55833.3662 | CCD      | [28] |
| 33183.5557 | vis      | [3] | 40779.8390    | pe       | [1] | 46648.5479 | pe       | [1] | 52821.9182 | CCD      | [13] | 55838.3103 | CCD      | [27] |
| 33183.6161 | vis      | [3] | 40779.9005    | pe       | [1] | 46648.6095 | pe       | [1] | 52903.4032 | CCD      | [13] | 55838.3718 | CCD      | [27] |
| 33185.5702 | vis      | [3] | 40892.6364    | pe       | [1] | 46649.4631 | pe       | [1] | 52920.9223 | CCD      | [13] | 55848.3207 | CCD      | [28] |
| 33560.4638 | pe       | [1] | 40894.6507    | pe       | [1] | 46649.5242 | pe       | [1] | 52920.9827 | CCD      | [13] | 55849.2971 | CCD      | [27] |
| 33563.2728 | pe       | [1] | 41126.5960    | pe       | [1] | 46649.5856 | pe       | [1] | 52921.0439 | CCD      | [13] | 55849.3585 | CCD      | [27] |
| 33563.3350 | pe       | [1] | 41623.2647    | pe       | [1] | 46650.5617 | pe       | [1] | 52923.0587 | CCD      | [13] | 55853.3258 | CCD      | [27] |
| 33563.3947 | pe       | [1] | 41958.3639    | pe       | [1] | 46650.6231 | pe       | [1] | 52926.9643 | CCD      | [13] | 55853.3867 | CCD      | [27] |
| 33860.5310 | pg       | [1] | 41959.2799    | pe       | [1] | 46651.4176 | pe       | [1] | 52927.0258 | CCD      | [13] | 55865.3505 | CCD      | [27] |
| 33861.5070 | pg       | [1] | 41959.3405    | pe       | [1] | 46652.5156 | pe       | [1] | 52930.3215 | CCD      | [13] | 55865.4115 | CCD      | [27] |
| 33861.5679 | pg       | [1] | 41959.4018    | pe       | [1] | 46652.5765 | pe       | [1] | 52931.2981 | CCD      | [13] | 55868.2802 | CCD      | [27] |
| 33872.5565 | pg       | [1] | 41959.4634    | pe       | [1] | 46652.6375 | pe       | [1] | 52931.3595 | CCD      | [13] | 55868.3414 | CCD      | [27] |
| 34253.5575 | pg       | [1] | 41959.5234    | pe       | [1] | 46659.7789 | pe       | [1] | 53249.5522 | CCD      | [13] | 55875.2385 | CCD      | [27] |
| 34270.3440 | pg       | [1] | 42257.5150    | pe       | [7] | 46659.8406 | pe       | [1] | 53250.5287 | CCD      | [13] | 55875.2999 | CCD      | [27] |
| 34282.7946 | pe       | [1] | 42270.7584    | pe       | [1] | 46659.9627 | pe       | [1] | 53254.9840 | CCD      | [13] | 55878.2906 | CCD      | [26] |
| 34283.5887 | pe       | [1] | 42270.8199    | pe       | [1] | 47011.7872 | pe       | [1] | 53256.3278 | CCD      | [13] | 55879.3887 | CCD      | [26] |
| 34283.6496 | pe       | [1] | 42302.5015    | pe       | [1] | 47011.8482 | pe       | [1] | 53256.3883 | CCD      | [13] | 55882.2581 | CCD      | [27] |
| 34283.7102 | pe       | [1] | 42302.5607    | pe       | [1] | 47011.9092 | pe       | [1] | 53256.8758 | CCD      | [13] | 55882.3189 | CCD      | [27] |
| 34283.7716 | pe       | [1] | 42303.4778    | pe       | [1] | 47025.8872 | pe       | [1] | 53256.9374 | CCD      | [13] | 55886.3477 | CCD      | [26] |
| 34300.5572 | pe       | [1] | 42303.5371    | pe       | [1] | 47034.8596 | pe       | [1] | 53286.4191 | CCD      | [13] | 55886.5307 | CCD      | [27] |
| 34300.6180 | pe       | [1] | 42304.3927    | pe       | [1] | 47037.7284 | pe       | [1] | 53289.2884 | CCD      | [13] | 55886.5916 | CCD      | [27] |
| 34300.6792 | pe       | [1] | 42304.4533    | pe       | [1] | 47037.7892 | pe       | [1] | 53289.4099 | CCD      | [13] | 55887.2642 | CCD      | [26] |
| 34307.6373 | pe       | [1] | 42304.5126    | pe       | [1] | 47037.8504 | pe       | [1] | 53290.2660 | CCD      | [18] | 55887.3242 | CCD      | [26] |
| 34307.6983 | pe       | [1] | 42313.3640    | pe       | [7] | 47390.1634 | pe       | [1] | 53290.3260 | CCD      | [18] | 55887.5682 | CCD      | [27] |
| 34308.4310 | pe       | [5] | 42313.4250    | pe       | [7] | 47390.2246 | pe       | [1] | 53292.4012 | CCD      | [13] | 55889.2167 | CCD      | [27] |
| 34309.5295 | pe       | [1] | 42325.3910    | pe       | [7] | 47391.0177 | pe       | [1] | 53304.3034 | CCD      | [13] | 55889.2774 | CCD      | [27] |
| 34309.5905 | pe       | [1] | 42627.8323    | pe       | [1] | 47392.7890 | pe       | [1] | 53304.3649 | CCD      | [13] | 55889.3388 | CCD      | [27] |
| 34310.5065 | pe       | [1] | 42627.8938    | pe       | [1] | 47392.8487 | pe       | [1] | 53306.3184 | CCD      | [13] | 55889.5828 | CCD      | [27] |
| 34310.5671 | pe       | [1] | 42628.8093    | pe       | [1] | 47392.9099 | pe       | [1] | 53307.2334 | CCD      | [13] | 55893.2453 | CCD      | [26] |
| 34325.5219 | pe       | [1] | 42628.8706    | pe       | [1] | 47393.0932 | pe       | [1] | 53307.2936 | CCD      | [13] | 55893.3065 | CCD      | [26] |
| 34325.5830 | pe       | [1] | 42629.7855    | pe       | [1] | 47393.1543 | pe       | [1] | 53307.3556 | CCD      | [13] | 55894.2222 | CCD      | [26] |
| 34325.6435 | pe       | [1] | 42629.8473    | pe       | [1] | 47393.2155 | pe       | [1] | 53307.4163 | CCD      | [13] | 55894.2829 | CCD      | [26] |
| 34354.4544 | pe       | [1] | 42629.9076    | pe       | [1] | 47393.8255 | pe       | [1] | 53309.3698 | CCD      | [13] | 55895.1984 | CCD      | [26] |
| 34354.5149 | pe       | [1] | 42654.6894    | pe       | [1] | 47393.8867 | pe       | [1] | 53311.3842 | CCD      | [13] | 55895.2593 | CCD      | [26] |
| 35032.4075 | pe       | [1] | 42654.7498    | pe       | [1] | 47394.1306 | pe       | [1] | 53334.9453 | CCD      | [13] | 55895.3202 | CCD      | [26] |
| 35036.3750 | pe       | [1] | 42654.8120    | pe       | [1] | 47394.1917 | pe       | [1] | 53336.9592 | CCD      | [13] | 55896.2362 | CCD      | [26] |
| 35036.4353 | pe       | [1] | 42654.8722    | pe       | [1] | 47395.7181 | pe       | [1] | 53337.9357 | CCD      | [13] | 55905.2695 | CCD      | [28] |
| 35075.6218 | pe       | [1] | 42658.7175    | pe       | [1] | 47395.9011 | pe       | [1] | 53556.8802 | CCD      | [13] | 55915.2189 | CCD      | [27] |
| 35361.4653 | vis      | [6] | 42658.7784    | pe       | [1] | 47395.9619 | pe       | [1] | 53556.9409 | CCD      | [13] | 55915.2800 | CCD      | [27] |
| 35361.5278 | vis      | [6] | 42658.8398    | pe       | [1] | 47396.6947 | pe       | [1] | 53557.7959 | CCD      | [13] | 55923.2146 | CCD      | [27] |
| 35366.4087 | vis      | [6] | 42658.9005    | pe       | [1] | 47396.7553 | pe       | [1] | 53557.8567 | CCD      | [13] | 55923.2760 | CCD      | [27] |
| 35366.4701 | vis      | [6] | 42660.8539    | pe       | [1] | 47396.8163 | pe       | [1] | 53557.9178 | CCD      | [13] | 56134.4084 | CCD      | [29] |
| 35367.3256 | vis      | [6] | 42775.2430    | pe       | [8] | 47396.8777 | pe       | [1] | 53558.7723 | CCD      | [13] | 56134.4694 | CCD      | [29] |
| 35367.3847 | vis      | [6] | 43008.4110    | vis      | [9] | 47396.9387 | pe       | [1] | 53558.8336 | CCD      | [13] | 56168.5285 | CCD      | [29] |
| 35367.5072 | vis      | [6] | 43008.5308    | vis      | [9] | 47398.0373 | pe       | [1] | 53558.8945 | CCD      | [13] | 56168.5896 | CCD      | [29] |
| 35370.3752 | vis      | [6] | 43008.5915    | vis      | [9] | 47398.0984 | pe       | [1] | 53559.7489 | CCD      | [13] | 56233.3507 | CCD      | [29] |
| 35370.4361 | vis      | [6] | 43009.3870    | vis      | [9] | 47398.1592 | pe       | [1] | 53559.8101 | CCD      | [13] | 56559.4172 | CCD      | [30] |
| 35370.4992 | vis      | [6] | 43009.4461    | vis      | [9] | 47399.1358 | pe       | [1] | 53559.8709 | CCD      | [13] | 56579.5609 | CCD      | [31] |
| 35370.5597 | vis      | [6] | 43009.5065    | vis      | [9] | 47399.1970 | pe       | [1] | 53559.9320 | CCD      | [13] | 56579.6214 | CCD      | [31] |
| 35689.9121 | pe       | [1] | 43009.5679    | vis      | [9] | 47399.7463 | pe       | [1] | 53561.7632 | CCD      | [13] | 56579.6830 | CCD      | [31] |
| 36487.1936 | pe       | [1] | 43009.6309    | vis      | [9] | 47399.8080 | pe       | [1] | 53561.8244 | CCD      | [13] | 56579.7441 | CCD      | [31] |
| 36490.1231 | pe       | [1] | 43010.3616    | vis      | [9] | 47407.3763 | pe       | [1] | 53563.7774 | CCD      | [13] | 56579.8045 | CCD      | [31] |
| 36490.1837 | pe       | [1] | 43010.4233    | vis      | [9] | 47407.4985 | pe       | [1] | 53563.8387 | CCD      | [13] | 56593.5391 | CCD      | [31] |
| 36490.3068 | pe       | [1] | 43010.4838    | vis      | [9] | 47407.5588 | pe       | [1] | 53563.8997 | CCD      | [13] | 56593.5997 | CCD      | [31] |
| 36491.2216 | pe       | [1] | 43010.5440    | vis      | [9] | 47408.3530 | pe       | [1] | 53565.7310 | CCD      | [13] | 56593.6605 | CCD      | [31] |
| 36491.2831 | pe       | [1] | 43010.6047    | vis      | [9] | 47408.4140 | pe       | [1] | 53565.7919 | CCD      | [13] | 56603.6092 | CCD      | [31] |
| 36492.1979 | pe       | [1] | 43011.3971    | vis      | [9] | 47408.5365 | pe       | [1] | 53565.8526 | CCD      | [13] | 56603.6708 | CCD      | [31] |
| 36492.2595 | pe       | [1] | 43011.4578    | vis      | [9] | 47409.6962 | pe       | [1] | 53565.9138 | CCD      | [13] | 56930.4705 | CCD      | [32] |
| 36492.3201 | pe       | [1] | 43011.5208    | vis      | [9] | 47409.7573 | pe       | [1] | 53566.5233 | CCD      | [13] |            |          |      |



Fig. 1 The O - C diagram (top) computed with the ephemeris given in Equation (1). The bottom panel shows the residuals obtained by subtracting Equation (2) (top, solid line).



Fig. 2 The O - C diagram (top) computed with the ephemeris given in Equation (1). The bottom panel shows the residuals obtained by subtracting Equation (4) (top, solid line).

as  $M = 2.0 \ M_{\odot}$ . For the first companion star, the mass function can be derived based on the following formula

$$f(m_1) = 4\pi^2 (a'_1 \sin i_1)^3 / \text{G}P_1^2$$
  
=  $(m_1 \sin i_1)^3 / (M + m_1)^2$ , (5)

where G is the gravitational constant,  $P_1$  is the orbital period of the first companion star,  $i_1$  is the orbital inclination,  $m_1$  is the mass of the first companion and  $a'_1 \sin i$  can be

decided by,

$$a_1'\sin i_1 = c\sqrt{a_1^2 + b_1^2}.$$
 (6)

The orbital parameters can then be computed from the Fourier coefficients (Kopal 1978) as follows

$$e_1 = 2\sqrt{\frac{a_2^2 + b_2^2}{a_1^2 + b_1^2}},\tag{7}$$

Table 2 Parameters of the First Companion Star to CY Aqr

| Parameter              | Value                 | Unit        |
|------------------------|-----------------------|-------------|
| $P_1$                  | 54.2                  | yr          |
| $e_1$                  | 0.49                  |             |
| $a_1' \sin i_1$        | 0.42                  | AU          |
| $f(m_1)$               | $2.5462\times10^{-5}$ | $M_{\odot}$ |
| $m_1 (i_1 = 30^\circ)$ | 0.09                  | $M_{\odot}$ |
| $m_1 (i_1 = 60^\circ)$ | 0.05                  | $M_{\odot}$ |
| $m_1 (i_1 = 90^\circ)$ | 0.04                  | $M_{\odot}$ |
|                        |                       |             |

Table 3 Parameters of the Second Companion Star to CY Aqr

| Parameter              | Value                | Unit        |
|------------------------|----------------------|-------------|
| $P_2$                  | 47.3                 | yr          |
| $e_2$                  | 0.69                 |             |
| $a_2' \sin i_2$        | 0.21                 | AU          |
| $\overline{f(m_2)}$    | $4.349\times10^{-6}$ | $M_{\odot}$ |
| $m_2 (i_2 = 30^\circ)$ | 0.05                 | $M_{\odot}$ |
| $m_2 (i_2 = 60^\circ)$ | 0.03                 | $M_{\odot}$ |
| $m_2 (i_2 = 90^\circ)$ | 0.02                 | $M_{\odot}$ |
|                        |                      |             |

where  $e_1$  is the eccentricity of the long-period orbit for the first star and c is the speed of light. The orbital elements derived for the first star are listed in Table 2.

Using the same method, the orbital parameters of the second companion star can be obtained based on the following formulae:

$$f(m_2) = 4\pi^2 (a'_2 \sin i_2)^3 / \text{G}P_2^2$$
  
=  $(m_2 \sin i_2)^3 / (M + m_2)^2$ , (8)

$$a_2'\sin i_2 = c\sqrt{c_1^2 + d_1^2},\tag{9}$$

$$e_2 = 2\sqrt{\frac{c_2^2 + d_2^2}{c_1^2 + d_1^2}}.$$
 (10)

The orbital elements derived for the second star are listed in Table 3.

## 5 SUMMARY

According to the results above, the solution we used suggests that CY Aqr is very probably in a triple system orbited eccentrically by two low-mass companions. The orbital period of the first companion star is 54.2 yr and the eccentricity is 0.49. The orbital period of the second companion star is 47.3 yr and the eccentricity is 0.69. When the orbital inclination is 90°, the masses of the two companions are 0.04  $M_{\odot}$  and 0.02  $M_{\odot}$  respectively. The most plausible explanation is that the two companion stars are

brown dwarfs. In order to verify the existence of the hidden companions, further photometric and spectroscopic observations are needed in the future.

**Acknowledgements** This work is supported by the National Natural Science Foundation of China (Nos. U1331121, 11373037 and U1231202).

#### References

- Agerer, F., Dahm, M., & Hubscher, J. 1999, Information Bulletin on Variable Stars, 4712
- Agerer, F., Dahm, M., & Hubscher, J. 2001, Information Bulletin on Variable Stars, 5017
- Agerer, F., & Hubscher, J. 1996, Information Bulletin on Variable Stars, 4382
- Agerer, F., & Hubscher, J. 2002, Information Bulletin on Variable Stars, 5296
- Agerer, F., & Hubscher, J. 2003, Information Bulletin on Variable Stars, 5485
- Agerer, F., & Huebscher, J. 1998a, Information Bulletin on Variable Stars, 4562
- Agerer, F., & Huebscher, J. 1998b, Information Bulletin on Variable Stars, 4606
- Ashbrook, J. 1949, AJ, 54, 168
- Boonyarak, C., Fu, J.-N., Khokhuntod, P., & Jiang, S.-Y. 2011, Ap&SS, 333, 125
- Braune, W., Huebscher, J., & Mundry, E. 1977, Astronomische Nachrichten, 298, 121

- Braune, W., Huebscher, J., & Mundry, E. 1979, Astronomische Nachrichten, 300, 165
- Chang, S.-W., Protopapas, P., Kim, D.-W., & Byun, Y.-I. 2013, AJ, 145, 132
- Coates, D. W., Fernley, J. A., Sekiguchi, K., Barnes, T. G., & Frueh, M. L. 1994, MNRAS, 266, 1
- Derekas, A., Kiss, L. L., Bedding, T. R., et al. 2009, MNRAS, 394, 995
- Figer, A. 1978, Information Bulletin on Variable Stars, 1388
- Fu, J. N., & Sterken, C. 2003, A&A, 405, 685
- Hardie, R. H., & Tolbert, C. R. 1961, ApJ, 134, 581
- Hubscher, J., Steinbach, H.-M., & Walter, F. 2009a, Information Bulletin on Variable Stars, 5889
- Hubscher, J., Steinbach, H.-M., & Walter, F. 2009b, Information Bulletin on Variable Stars, 5874
- Hubscher, J. 2011, Information Bulletin on Variable Stars, 5984
- Hubscher, J., & Monninger, G. 2011, Information Bulletin on Variable Stars, 5959
- Hubscher, J., & Lehmann, P. B. 2012, Information Bulletin on Variable Stars, 6026
- Hubscher, J., Lehmann, P. B., & Walter, F. 2012, Information Bulletin on Variable Stars, 6010
- Jensch, A. 1934, Astronomische Nachrichten, 253, 443
- Kopal, Z., ed. 1978, Astrophysics and Space Science Library, 68, Dynamics of Close Binary Systems
- Mahdy, H. A., & Szeidl, B. 1980, Communications of the Konkoly Observatory Hungary, 74, 1
- Paschke, A. 2010, Open European Journal on Variable Stars, 130, 1

- Percy, J. R. 1975, A&A, 43, 469
- Powell, J. M., Joner, M. D., & McNamara, D. H. 1995, PASP, 107, 225
- Rolland, A., Pena, J. H., Lopez de Coca, P., Peniche, R., & Gonzalez, S. F. 1986, A&A, 168, 125
- Samolyk, G. 2014, Journal of the American Association of Variable Star Observers (JAAVSO), 42, 124
- Samolyk, G. 2015, Journal of the American Association of Variable Star Observers (JAAVSO), 43, 74
- Smak, J. 1959, Acta Astronomica, 9, 161
- Sterken, C. 2005, in Astronomical Society of the Pacific Conference Series, 335, The Light-Time Effect in Astrophysics: Causes and Cures of the O-C Diagram, ed. C. Sterken, 3
- Sterken, C., Wiedemair, C., Tuvikene, T., et al. 2011, Journal of Astronomical Data, 17
- Sterken, C., Wiedemair, C., Munaro, T., et al. 2012, VizieR Online Data Catalog (other), 350
- Tuvikene, T., Sterken, C., Brogt, E., et al. 2010, Journal of Astronomical Data, 16
- Wils, P., Hambsch, F.-J., Robertson, C. W., et al. 2011, Information Bulletin on Variable Stars, 5977
- Wils, P., Panagiotopoulos, K., van Wassenhove, J., et al. 2012, Information Bulletin on Variable Stars, 6015
- Wils, P., Ayiomamitis, A., Vanleenhove, M., et al. 2013, Information Bulletin on Variable Stars, 6049
- Wils, P., Ayiomamitis, A., Robertson, C. W., et al. 2014, Information Bulletin on Variable Stars, 6122
- Yang, X. H., Fu, J. N., & Zha, Q. 2012, AJ, 144, 92