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Abstract The massive photometric data collected from multiple large-scale sky surveys offer significant

opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic

failure is an unsolved problem with a long history and it still exists in the current photometric redshift

estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel

two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the

first stage, we apply the KNN algorithm to photometric data and estimate their corresponding zphot. Our

analysis has found two dense regions with catastrophic failure, one in the range of zphot ∈ [0.3, 1.2] and

the other in the range of zphot ∈ [1.2, 2.1]. In the second stage, we map the photometric input pattern of

points falling into the two ranges from their original attribute space into a high dimensional feature space

by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers

resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by

a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan

Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate

catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents

in different |∆z| ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%,

90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).

Key words: catalogs — galaxies: distances and redshifts — methods: statistical — quasars: general —
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1 INTRODUCTION

Photometric redshifts are obtained by images or photom-

etry. Compared to spectroscopic redshifts, they show the

advantages of high efficiency and low cost. Especially with

the operation of multiple ongoing multiband photometric

surveys, such as the Sloan Digital Sky Survey (SDSS),

the UKIRT Infrared Deep Sky Survey (UKIDSS) and the

Wide-Field Infrared Survey Explorer (WISE), a huge vol-

ume of photometric data is now being collected, which is

larger than the corresponding spectroscopic data by two or

three orders of magnitude. The massive photometric data

offer significant opportunities for measuring the distances

of celestial objects by photometric redshifts. However,

photometric redshifts show the disadvantages of low ac-

curacy compared to spectroscopic redshifts, and they re-

quire more sophisticated estimation algorithms to over-

come the problem. Many researchers worldwide have in-

vestigated photometric redshift estimation techniques in

recent years. Basically, these techniques are categorized

into two types: template-fitting models and data mining

approaches. The template-fitting model is the traditional

approach for estimating photometric redshifts in astron-

omy. It extracts features from celestial observational in-

formation, such as multiband values, and then matches

them with the designed templates constructed by theoreti-

cal models or real observations. With feature matching, re-

searchers can estimate photometric redshifts. For example,

Bolzonella et al. (2000) estimated photometric redshifts

through a standard spectral energy distribution (SED) fit-

ting procedure, where SEDs were obtained from broad-

band photometry. Wu et al. (2004) estimated the photo-

metric redshifts of a large sample of quasars with the χ2

minimization technique by using derived theoretical color-

redshift relation templates. Rowan-Robinson et al. (2008)

proposed an approach using fixed galaxy and quasar tem-

plates applied to data at 0.36–4.5 µm, and on a set of four

infrared emission templates fitted to infrared excess data at

3.6–170 µm. Ilbert et al. (2009) applied a template-fitting

method (Le PHARE) to calculate photometric redshifts in
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the 2-deg2 COSMOS field. The experimental results from

the above template-fitting methods have shown that their

estimation accuracy relied on templates constructed by ei-

ther simulation or real observational data.

Data mining approaches apply statistics and machine

learning algorithms to a set of training samples, and they

automatically learn complicated functional correlations

between multiband photometric observations and their cor-

responding high confidence redshift parameters. These al-

gorithms are data-driven approaches rather than template-

driven approaches. The experimental results have shown

that they have achieved much accurate photometric estima-

tions in many applications. For example, Ball et al. (2008)

applied a nearest neighbor algorithm to estimate photomet-

ric redshifts for galaxies and quasars using SDSS and the

Galaxy Evolution Explorer (GALEX) data sets. Abdalla

et al. (2008) estimated photometric redshifts by using a

neural network method. Freeman et al. (2009) proposed a

non-linear spectral connectivity analysis for transforming

photometric colors to a simpler, more natural coordinate

system wherein they applied regression to make redshift

estimations. Gerdes et al. (2010) developed a boosted de-

cision tree method, called ArborZ, to estimate photometric

redshifts for galaxies. Way & Klose (2012) proposed an ap-

proach based on a Self-Organizing Map (SOM) to estimate

photometric redshifts. Bovy et al. (2012) presented the ex-

treme deconvolution technique for simultaneous classifi-

cation and redshift estimation of quasars and demonstrated

that the addition of information from UV and NIR bands

was of great importance to photometric quasar-star separa-

tion and, essentially, the redshift degeneracies for quasars

were resolved. Carrasco Kind & Brunner (2013) presented

an algorithm using prediction trees and the random forest

techniques for estimating photometric redshifts, incorpo-

rating measurement errors into the calculation while also

efficiently dealing with missing values in the photometric

data. Brescia et al. (2013) applied a MultiLayer Perceptron

with Quasi Newton Algorithm (MLPQNA) to evaluate

photometric redshifts of quasars with the data set from four

different surveys (SDSS, GALEX, UKIDSS and WISE).

Although template-fitting approaches and data min-

ing approaches can roughly estimate photometric redshifts,

they both suffer from a problem of catastrophic failure

in estimating photometric redshifts of quasars when the

spectroscopic redshift is less than 3 (Richards et al. 2001;

Weinstein et al. 2004; Wu et al. 2004). Zhang et al. (2013)

practically demonstrated that with cross-matched multi-

band data from multiple surveys, such as SDSS, UKIDSS

and WISE, the k-nearest neighbor (KNN) algorithm can

largely solve the catastrophic failure problem and improve

photometric redshift estimation accuracy. The method be-

comes more important with the development of multiple

large photometric sky surveys and the coming age of as-

tronomical big data. However, during the data preparation

process, we need to cross-match multiband information of

quasars from multiple photometric surveys. The number of

matched quasar records is far less than the original num-

ber of quasars in a single survey. For example, there are

105 783 quasar samples available in SDSS DR7. However,

the number of cross-matched samples from SDSS, WISE

and UKIDSS is only 24 089. The number of cross-matched

samples is around one fourth of the SDSS quasar data.

This shortcoming greatly limits the scope of application for

this estimation approach to only a small portion of cross-

matched quasars observed by all surveys.

In this paper, we propose a novel two-stage photo-

metric redshift estimation approach, i.e. the integration of

KNN and support vector machine (SVM) approaches, to

mitigate catastrophic failure for quasars by using relatively

few band attributes from only a single survey. The rest of

this paper is organized as follows. Section 2 describes the

data used. Section 3 presents a brief overview of KNN,

SVM and KNN+SVM. Section 4 gives the experimental

results by KNN+SVM. The conclusions and discussions

are summarized in Section 5.

2 DATA

Our experiments are based on a data set generated from

SDSS (York et al. 2000), which labels highly reliable spec-

troscopic redshifts and has been widely used in photo-

metric redshift estimation. The data set was constructed

by Zhang et al. (2013) for estimating photometric red-

shifts of quasars. They used the samples of the Quasar

Catalog V (Schneider et al. 2010) from SDSS DR7, which

included 105 783 spectrally confirmed quasars. In each

quasar record, five band features of u, g, r, i, z were pro-

vided. Similar to Zhang et al. (2013), in our experiments,

we use these five attributes of u − g, g − r, r − i, i − z, r

(4C + r for short) as the input and the corresponding spec-

troscopic redshift as a regression output.

3 METHODOLOGY

First, we study the characteristics of catastrophic failure

for quasars and observe that the outliers by KNN are clus-

tered into two groups: one group’s spectroscopic redshift

zspec is between 0.2 and 1.1, while its photometric redshift

zphot is between 1.2 and 2.1, and the other group’s zspec is

between 1.4 and 2.3, while its zphot is between 0.3 and 1.2

(as shown in Figure 1). Some points with zphot falling into

Group 1 actually have zspec close to the range of Group 2,

but they are wrongly estimated by KNN and are mixed into

Group 1, and vice versa. The two groups look almost 180-

degree rotationally symmetric along the 45-degree diago-

nal line in the zphot vs. zspec diagram. The two outlier clus-

ters show that the KNN method cannot effectively distin-

guish outliers from points that have good estimation using

Euclidean distance in the two regions. Next, we propose a
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two-stage integrated approach by the fusion of KNN and

SVM methods. In the first stage, we apply the KNN algo-

rithm on photometric data and estimate their corresponding

zphot. In the second stage, we map the photometric multi-

band input pattern of points falling into the two ranges with

zphot ∈ [0.3, 1.2] and zphot ∈ [1.2, 2.1] from an original

attribute space into a high dimensional feature space by a

Gaussian kernel function in SVM. In the high dimensional

feature space, many outliers can be identified by a classi-

fication hyperplane in SVM and can be further corrected.

Since most points resulting from catastrophic failure have

been identified and corrected, our integrated approach can

improve the accuracy of photometric redshift estimation.

The KNN algorithm generally applies Euclidean dis-

tance of attributes (shown in Eq. (1)) to compute distance

between point m and point n,

dm,n =

[

(fm,1 − fn,1)
2 + (fm,2 − fn,2)

2 + ...

+(fm,k − fn,k)2
]1/2

, (1)

where fm,j(fn,j) denotes the jth attribute among the 4C +
r input pattern for the mth (nth) point and k represents

the total number of attributes. The points in Group 1 and

Group 2 show that those outlier quasars cannot be cor-

rectly identified in a Euclidean space. In other words, we

cannot have a simple plane as a useful separation crite-

rion between points in Group 1 and Group 2. Based on

the present data, the information provided is not enough to

give a good estimation of the outliers. Now there is a ques-

tion of whether those outliers can be linearly separable in

a high-dimensional non-Euclidean feature space? Thereby,

we explore the kernel function in SVM and map features

into a high dimensional space and test if we can correctly

classify outliers in Group 1 or Group 2. From the analysis

above, we propose a two-stage integrated approach by fu-

sion of estimation with KNN and classification with SVM.

3.1 Estimation with KNN

The KNN algorithm is a lazy predictor which requires a

training set for learning. It first finds the nearest neighbors

by comparing distances between a test sample and training

samples that are similar to it in a feature space. Next, it as-

signs the average value of the nearest neighbors to the test

sample as its prediction value. In general, the distance is

computed as Euclidean distance described in Equation (1).

In the era of big data, we have been collecting more data

than ever before and KNN achieves very accurate predic-

tions (Zhang et al. 2013). Thereby, we also use KNN in our

research. One disadvantage of KNN is the high computa-

tional cost. We apply KD-tree to efficiently implement the

KNN algorithm.

3.2 Classification with SVM

SVM is an effective classification algorithm based on

the principle of structural risk minimization proposed by

Vapnik (1995). Given a training data set with n records,

where each record has the pattern (xi, yi) for i =
1, 2, ..., n, we aim to build a linear classifier with the fol-

lowing Equation (2),

f(x) = w · x + b. (2)

Here, w and b are the weight vector and bias respectively.

Figure 2 illustrates that several lines can separate two

categories of points. In SVM, for minimizing the classifi-

cation error risk for other test data sets, we aim to find lines

(shown as the dot-dashed lines in Fig. 2) with the maxi-

mized margin that can separate the two classes of points.

In many classification tasks this principle gives SVM a bet-

ter classification accuracy than other competing machine

learning models.

Sometimes, a classification task is hard and not lin-

early solvable. The left panel in Figure 3 shows one such

case. In this case, by using Vapnik-Chervonenk dimen-

sion theory, SVM applies a kernel function that trans-

forms ordinary original flat space into inner products that

are more effective in this type of classification. By using

the theory of reproducing kernels, we can map the origi-

nal Euclidean feature space to the high-dimensional non-

Euclidean feature space with the SVM classification algo-

rithm. Thereby, some non-linear problems in the original

low-dimensional feature space ℜd become linearly solv-

able in high-dimensional space ℜD. The right panel in

Figure 3 illustrates how the mapping by a kernel function

solves the problem. Therefore, Equation (2) can be trans-

formed to the following form by a feature mapping func-

tion ∅,

f(x) = w · ∅(x) + b. (3)

In this way, we have the following objective function

and constraints for an SVM classifier, and minimize ,

|| w ||2 +C

n
∑

i=1

ǫi

subject to

yi · (< w, ∅(xi) > +b) ≥ 1 − ǫi, (4)

where C is a regularization parameter and ǫi is a slack vari-

able.

By using the represented theorem, we have,

f(x) =

n
∑

i=1

αiyi∅(xi)
T ∅(x) + b, (5)

where αi is a parameter with the constraint that αi ≥ 0. For

solving Equation (5), SVM introduces a kernel function

defined as,

K(xi, x) = ∅(xi)
T ∅(x). (6)
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Fig. 1 Photometric redshift estimation by KNN estimation. The points in Group 1 and Group 2 are outliers. µ is the parameter

representing the error tolerance interval. The slanted dashed lines show the corrected estimation range of photometric redshifts. The

horizontal dashed lines define the zones corresponding to Group 1 and Group 2.

In this paper, we practically apply a Gaussian kernel

(shown in Eq. (7)) to achieve the non-linear classification.

K(xi, x) = e−
||x1−x2||2

2σ
2 , (7)

where x1, x2 represent vectors of multiband attributes or

input patterns observed from a single survey, and σ is a

free parameter.

In this way, we aim to apply an SVM classifier to

distinguish the mixture of points in Group 1 from other

points around the minor diagonal with zphot ∈ [1.2, 2.1] in

the zphot vs. zspec diagram. Similarly, we can distinguish

points in Group 2 from other points with zphot ∈ [0.3, 1.2].

3.3 Integration of KNN and SVM for Photometric

Redshift Estimation

The photometric redshift estimation algorithm that inte-

grates KNN and SVM is presented in the following. To

obtain a robust accuracy measure for our integrated ap-

proach, we repeat the experiments for num trials. In each

trial, the initialization step, KNN step, SVM training step,

SVM test step, correction step and evaluation step will be

applied to the data sets. In the initialization step, we ran-

domly divide the SDSS data set into a separate training

set, validation set and test set. In the KNN step, we apply

the KNN algorithm (k = 17) to estimate zphot−validation

and zphot−test based on the training set and the union of

the training set and validation set respectively. In the SVM

training step, we aim to build two SVM classifiers: SVM1

and SVM2 to distinguish good estimations from outliers

with zphot−validation ∈ [1.2, 2.1] and zphot−validation ∈
[0.3, 1.2], respectively. The good identification of outliers

is defined by the following Equation (8),

{

| zspec − zphot | ≤ µ good
| zspec − zphot | > µ bad .

(8)

Here, µ is the parameter which means the error tolerance

interval derived from the validation set.

Visually, good estimation points will fall into an area

close to a 45-degree diagonal line in the diagram, while the

outliers will fall into Group 1 or Group 2 in Figure 1.

Specifically, we use those outliers with

zphot−validation ∈ [1.2, 2.1] and zphot−validation ∈
[0.3, 1.2] to construct data sets Group1 trainingdata and

Group2 trainingdata, respectively. In the two data sets,

inputs are patterns 4C + r and zphot directly from KNN,

and the output is zspec.

In the SVM test step, we apply classifiers SVM1 and

SVM2 to identify outliers.

In the correction step, we use the KNN algorithm

based on Group1 data to compute zphot for those outliers

distinguished by SVM1 in test data. Since Group1 data

and those outliers have a similar pattern but the output of

Group1 trainingdata is zspec, the KNN algorithm can im-

prove the zphot estimation. Similarly, we can use Group
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Fig. 2 Maximizing the classification margin is the aim in SVM. The points on the dot-dashed lines are called support vectors. The

distance between the two dot-dashed lines is called the margin. When the margin is maximized, the classification accuracy achieves its

best performance.

Â Âf ( x ) = 0
Fig. 3 Linearly indistinguishable points in a low dimensional space (ℜd) can be separated in a high dimensional space (ℜD) by the

application of a kernel function (∅) in SVM. f(x) = 0 represents the hyperplane that separates the two classes.

2 to train data and then correct outliers distinguished by

SVM2 in test data.

In the evaluation step, we apply the percents in differ-

ent |∆z| ranges and root mean square (rms) error of ∆z

to test our photometric redshift estimation approach. The

definition of ∆z is listed in Equation (9).

∆z =
zspec − zphot

1 + zspec

. (9)

The detailed steps of the two-stage method are as fol-

lows. Also to be clear, a flow chart of the whole process is

shown in Figure 4.

LoopId= 1;

Do while LoopId≤ num;

Initialization Step:

Randomly select a 1/3 sample from the SDSS

quasar sample as the training set, another 1/3 sample as

the validation set and the remaining 1/3 sample as the test

set.

KNN Step:

(1) Based on the training set, we apply the KNN (k = 17)

algorithm to estimate zphot−validation for each sample

in the validation set;
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I d = I d + 1

N oY e s

E v a l u a t e e s t i m a t i o n a c c u r a c y
Fig. 4 The flow chart of photometric redshift estimation by the integration of KNN and SVM.

(2) Based on the union of the training set and validation

set, we apply the KNN (k = 17) algorithm to estimate

zphot−test for each sample in the test set.

SVM Training Step:

(1) For those samples with zphot−validation ∈ [1.2, 2.1] in

the validation set, we train a classifier SVM1 with a

Gaussian kernel, which distinguishes good estimations

from outliers by Equation (8). With those outliers, we

build a data set Group1 trainingdata, which is com-

posed of 4C + r and zphot as the input and zspec as the

output;

(2) Similarly, for those samples with zphot−validation ∈
[0.3, 1.2] in the validation set, we train a classifier

SVM2 with a Gaussian kernel, which distinguishes

good estimations from outliers. With those outliers, we

build a data set Group2 trainingdata, which is com-

posed of 4C + r and zphot as the input and zspec as the

output.

SVM Test Step:
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(1) For those samples with zphot−test ∈ [1.2, 2.1] in the

test set, we apply the classifier SVM1 to distinguish a

good estimation from outliers;

(2) Similarly, for those samples with zphot−test ∈
[0.3, 1.2] in the test set, we apply the classifier SVM2

to distinguish a good estimation from outliers.

Correction Step:

(1) For those outliers with zphot−test ∈ [1.2, 2.1] in the

test set, we apply the KNN algorithm based on the data

set Group1 trainingdata;

(2) For those outliers with zphot−test ∈ [0.3, 1.2] in the

test set, we apply the KNN algorithm based on the data

set Group2 trainingdata.

Evaluation Step:

By comparing zphot−test and zspec for all of the

samples in the test set, we compute the popular measures

of accuracy for the redshift estimation and the associated

rms error of ∆z.

LoopId = LoopId+1;

End do.

Output the mean and standard error for the percents

in different |∆z| ranges and rms error of ∆z to evalu-

ate the accuracy of our proposed integrated approach of

KNN+SVM.

4 EXPERIMENTAL RESULTS

In the experiments, we adopt the input patterns 4C + r as

attributes, which are widely accepted by recent researches

on photometric redshift estimation. In our designed algo-

rithm, we practically set num = 10 and repeat the experi-

ments 10 times.

For classification, we apply the widely used tool

LIBSVM (Chang & Lin 2011). By using a Gaussian ker-

nel function, we train classifiers SVM1 and SVM2 with

the samples with zphot−validation ∈ [1.2, 2.1] and with

zphot−validation ∈ [0.3, 1.2] in the validation set, respec-

tively. To optimize the estimation accuracy, we adjust two

parameters controlling the Gaussian kernel in SVM, a cost

coefficient C that corrects for imbalance in the data and a

factor γ that takes the shape of the high dimensional fea-

ture space into account. Other parameters are set to their

default values in LIBSVM. In order to obtain the best

model parameters, a grid search is adopted. The grid search

in SVM1 and SVM2 is indicated in Figure 5.

For SVM1, the optimal model parameter C is 2 and

γ is 8, while the classification accuracy is 94.12%. For

SVM2, the best model parameter C is 128, γ is 0.5, and

the classification accuracy amounts to 90.04%.

With the optimized parameters and the union of the

training set and the validation set as a new training set,

we compare the estimation accuracy between the origi-

nal KNN (k = 17) algorithm and our integrated approach

of KNN+SVM. The parameter µ is a factor to determine

whether a point has a good estimation or not. We change

the value of µ to check its influence on the estimation ac-

curacy.

The results are listed in Table 1. For KNN, the pro-

portions of |∆z| < 0.1, 0.2, 0.3 and rms error of pre-

dicted photometric redshifts are 71.96%, 83.78%, 89.73%

and 0.204, respectively; for KNN+SVM, these optimal

measures are 83.47%, 89.83%, 90.90% and 0.192, re-

spectively, when µ = 0.3, which are shown as bold in

Table 1. Obviously, these criteria for photometric red-

shift estimation are all significantly improved with the new

method. This suggests that the integrated approach can ef-

fectively correct those outliers with zphot ∈ [1.2, 2.1] and

zphot ∈ [0.3, 1.2]. Thereby, it can significantly mitigate

catastrophic failure and improve the estimation accuracy

of photometric redshifts.

The experimental results also show that without cross-

matching multiband observations from multiple surveys,

we can effectively apply a Gaussian kernel function in

SVM to identify outliers in Group 1 and Group 2 to protect

from catastrophic failure by mapping attributes from a sin-

gle data source into a high dimensional feature space. The

identification helps us correct those outliers and thereby

improves estimation accuracy.

In order to compare the performance of photometric

redshift estimation by the KNN algorithm with that by the

KNN and SVM approach, the photometric redshift estima-

tion with these two methods is shown in Figures 6 and 7,

respectively. As indicated by Figures 6 and 7, we can see

clearly that the outliers in both Group 1 and Group 2 have

been significantly decreased by adopting the new method

of KNN+SVM. This intuitively demonstrates that our pro-

posed approach is effective.

5 CONCLUSIONS AND DISCUSSION

Catastrophic failure is an unsolved problem with a long

history and it exists in most photometric redshift estima-

tion approaches. In this paper, we first analyze the reasons

for catastrophic failure associated with quasars and point

out that the outliers result from being non-linearly separa-

ble in Euclidean feature space of an input pattern. Next,

we propose a new estimation approach by integration of

KNN and SVM methods together. By using a Gaussian

kernel function in SVM, we map a multiband input pat-

tern from an original Euclidean space into a high dimen-

sional feature space. In this way, many outliers can be

identified by a hyperplane and then corrected. The exper-

imental results based on SDSS data for quasars show that

the integrated approach can significantly mitigate catas-

trophic failure and improve the photometric redshift es-
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Fig. 5 Top: the best model parameter in SVM1 is obtained by grid search, i.e. C = 2, γ = 8 and the accuracy of classification

achieves 94.12%. Bottom: the best model parameter in SVM2 is obtained by grid search, i.e. C = 128, γ = 0.5 and the accuracy of

classification is 90.04%.

Fig. 6 Photometric redshift estimation by KNN.
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Table 1 Comparison of KNN and Our Integrated Approach

Method |∆z|< 0.1(%) |∆z|< 0.2(%) |∆z|< 0.3(%) rms error

KNN (k = 17) 71.96±0.20 83.78±0.18 89.73±0.16 0.204±0.004

SVM+KNN (µ = 0.1) 75.06±3.03 81.43±2.31 85.51±1.69 0.232±0.022

SVM+KNN (µ = 0.2) 80.86±1.19 85.56±1.95 86.57±1.81 0.224±0.013

SVM+KNN (µ = 0.3) 83.47±0.86 89.83±0.51 90.90±0.42 0.192±0.007

SVM+KNN (µ = 0.4) 81.63±0.64 89.53±0.32 91.54±0.33 0.193±0.005

SVM+KNN (µ = 0.5) 78.89±0.22 88.30±0.24 91.63±0.21 0.194±0.005

SVM+KNN (µ = 0.6) 75.84±0.14 86.60±0.13 90.58±0.11 0.199±0.003

Fig. 7 Photometric redshift estimation by KNN+SVM.

timation accuracy, e.g. the percentages in different |∆z|
ranges and rms error are 83.47%, 89.83%, 90.90% and

0.192, respectively. Although different previous research

has tried to mitigate catastrophic failure by cross-matching

the data from several surveys, our approach can achieve a

similar objective from only a single survey and it does not

need to cross-match among multiple surveys, thus avoid-

ing cross-match efforts especially for the growing amount

of large survey data. Moreover, not all sources have obser-

vations from different surveys. Therefore this method can

be widely applied for a single large photometric data set

from a sky survey. In addition, the integrated method with

data from more bands may further improve the accuracy of

estimating the photometric redshifts of quasars.
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