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Abstract All available mid-eclipse times of the eclipsing binary Z Draconis are analyzed, and three sets

of cyclic variations with periods of 20.1, 29.96 and 59.88 yr are found. The low-amplitude variations with

a period of 20.1 yr may be attributed to the unavoidable slight imperfection in the double-Keplerian model,

which gives periods of 29.96 and 59.88 yr. Interestingly, the Z Draconis system is close to a 2:1 mean-

motion resonance, or a 6:3:2 mean-motion resonance if the 20.1 yr period really exists. We also find that

the best solutions tend to give the minimum eccentricities. Based on Kepler’s third law, the outermost

companion has a minimum mass of ∼ 0.77 M⊙, whereas the middle companion is an M dwarf star with a

mass of ∼ 0.40 M⊙, suggesting that Z Draconis is a general N-body system.
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1 INTRODUCTION

The oscillations in the mid-eclipse times of eclipsing bi-

naries are usually explained as light-travel time (LTT) ef-

fect and magnetic activity cycles (Applegate 1992; Yuan

& Qian 2007). In the LTT model, a companion revolves

around the eclipsing pair. The line-of-sight distance be-

tween the eclipsing pair and the barycenter of the whole

system, d, varies with a strict period equal to the orbital pe-

riod of the companion. After dividing by the speed of light,

c, we obtain the O − C value, d/c. Obviously, the multi-

periodic variations in the eclipse times of an eclipsing bi-

nary provide us important constraints on the orbital charac-

teristics of this multi-companion system, which is usually

comprised of an eclipsing binary and multiple sub-stellar

objects or planets. In the magnetic activity mechanism, the

gravitational or magnetic forces change as the active com-

ponent goes through a magnetic activity cycle, producing

quasi-periodic variations in the eclipse times (Beuermann

et al. 2012).

Z Draconis (BD+73◦533 = HIP 57348, Vmax = 10.67
mag) was first found to be an Algol-type binary (here-

after Z Dra AB) by Ceraski (1903). Due to its high

declination and brightness, a large number of photomet-

ric data were obtained by small telescopes. The first ra-

dial velocity curve for the primary component was ob-

tained by Struve (1947). Based on the radial velocity

curve and the BV RI light curves obtained with a 0.25

Schmidt-Cassegrain telescope, Terrell (2006) carried out

a photometric-spectroscopic analysis. The solutions indi-

cated that Z Dra is a semi-detached binary with masses

of 1.47 M⊙ for the primary component and 0.43 M⊙ for

the secondary component. Terrell (2006) also pointed out

that the mass of the primary is significantly lower than ex-

pected for an A5V star, but consistent with the B−V color

of 0.45 mag. Dugan (1915) conducted a detailed period

study of the system and found that the mid-eclipse times

show two sinusoidal variations with periods of 10.7 and

26.8 yr, while Rafert (1982) found only one cyclic period

of 20.3 yr. However, many mid-eclipse times have been

obtained in the past 32 yr. Therefore, it is necessary to re-

analyze the behavior of the change in the observed period.

In this paper, the O−C data are derived from all avail-

able mid-eclipse times in Section 2, where we also present

several new data. In Section 3, we apply the fitting proce-

dures described in Yuan & Şenavci (2014, hereafter Paper

I). In Section 4, we test the Keplerian model, and find that

most of the best-fit elements are valid. Finally, we summa-

rize our results and give our conclusions in Section 5.

2 ECLIPSE-TIMING VARIATIONS

We carried out CCD observations of Z Dra in 2014 April

and 2015 February using the 40-cm Schmidt-Cassegrain

telescope at the Ankara University Kreiken Observatory

in Turkey (AUKR-T40), and the 60-cm Cassegrain tele-

scope at Yunnan Observatories (YNAO-60) in China. The

exposure times we adopted in 2014 April are 60 s, 30 s,

20 s, and 15 s in B, V , R and I bands, respectively.

The exposure times in 2015 February were 80 s in the

V band and 50 s in the R band. The comparison and
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check stars were BD+72◦545 (αJ2000.0 = 11h45m56.1s,

δJ2000.0 = 72◦05′44.5′′) and GSC 4395–201 (αJ2000.0 =

11h43m21.5s, δJ2000.0 = 72◦06′34.2′′), respectively. The

data reduction was performed by using the aperture pho-

tometry package IRAF
1 (bias subtraction, flat-field divi-

sion). Extinction corrections were ignored as the compari-

son star is very close to the variable. We fit the transit cen-

ter of the eclipse by using the technique of Kwee & van

Woerden (1956). In total, three new mid-eclipse times are

obtained and are listed in Table 1.

The Lichtenknecker Database of the BAV2 and the O-

C Gateway Database3 list all of the available mid-eclipse

times of Z Dra in the literature. In addition, 15 mid-

eclipse times between 1928 and 1949 were obtained by

Kreiner et al. (2001) and kindly sent to us (via private com-

munication). Three visual and photographic times (HJD

2415787.7856, 2451728.4900 and 2453209.4470) are dis-

carded due to their large deviation from the O − C curve.

In total, we have collected 820 mid-eclipse times, which

have a time span of 125 yr. All of the data are plotted in

Figure 1.

Most mid-eclipse times were published without un-

certainties. Therefore, a probable uncertainty of σ =
±0.0003 d is assumed for the photoelectric and CCD data,

and ±0.005 d for the photographic, plate and visual data.

Considering that the CCD times obtained simultaneously

in different filters may differ from each other by as much as

±0.0003 d, the uncertainty of ±0.0003 d is adopted if the

mid-eclipse time was obtained in a single filter with uncer-

tainty less than ±0.0003 d. Eventually, all high-precision

(i.e., σ < 0.001 d) data are spread over the last 16 yr, and

most low-precision (i.e., σ > 0.001 d) data over the re-

maining time.

Since the Heliocentric Julian Dates (HJDs) in the

Coordinated Universal Time (UTC) system are not uni-

form, all eclipse times after 1950 have been converted

to Barycentric Julian Dates (BJDs) in the Barycentric

Dynamical Time (TDB) system using the UTC2BJD3 pro-

cedure provided by Eastman et al. (2010). For the eclipse

times before 1950, the relation between Universal Time

(UT) and Terrestrial Time (TT) given by Duffett-Smith &

Zwart (2011) is adopted for for a visual conversion, pro-

ducing additional uncertainties of a few seconds, which are

much smaller than their assumed uncertainty of 0.005 d

(i.e., 432 s).

Based on the eclipse times between 2011 and 2014, a

new linear ephemeris

Min I = HJD2456775.4604+ 1d.35745406× E (1)

is obtained for future observations. In this paper, the

eclipse-timing residuals, O−C, are computed with respect

1 IRAF is developed by the National Optical Astronomy Observatory,

which are operated by the Association of Universities for Research in

Astronomy, Inc., under contract with the National Science Foundation.
2 http://www.bav-astro.de/index.php?sprache=en
3 http://var.astro.cz/ocgate/
3 http://astroutils.astronomy.ohio-state.edu/time/

Fig. 1 The O − C diagram of Z Dra based on the 820 original

data. Note that the error bars are smaller than the squares for the

high-precision data in the last 4000 cycles.

to the linear ephemeris given by Kreiner et al. (2001),

Min I = BJD2443499.7305+ 1d.35743190× E, (2)

where E denotes the cycle number. The O − C data are

displayed in Figure 1.

3 DATA ANALYSIS AND LTT MODELS

Usually, there is mass transfer between two components in

an Algol-type binary, and the observed period should in-

crease or decrease, suggesting that the O − C curve has a

parabolic trend. It is obvious that a single parabola cannot

describe the O−C curve very well, implying that an addi-

tional periodic model may be required. Since the data are

sampled unevenly with different uncertainties, it is inap-

propriate to use the parabolic model and the periodic model

in turn. If the residuals of a best fit are used for another

fit, then one would obtain a best-fit solution different from

that given by a combination of both models. Therefore, a

quadratic plus sinusoidal model

O − C = TO(E) − TC(E)

= C0 + C1 × E + C2 × E2

+A sin(2πt/P3) + B cos(2πt/P3) (3)

is used to calculate the generalized Lomb-Scargle

(GLS) periodogram, which is plotted in Figure 2(a). In

Equation (3), A, B and C0,1,2 are free coefficients. In

the GLS periodogram, the power peaks at 18.8, 20.5 and

56.0 yr. As pointed out by Zechmeister & Kürster (2009),

the GLS periodogram can give a good initial guess for the

best Keplerian period with only a slight frequency shift.

Then, we simultaneously use a second-order polyno-

mial and one LTT term to fit the O − C values

O−C = TO(E)−TC(E) = C0+C1×E+C2×E2+τ3,
(4)
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Table 1 Several New Mid-eclipse Times of Z Dra

HJD (UTC) BJD (TDB) Error Min. Filter Origin

2400000+ 2400000+ (d)

56775.4605 56775.46127 ±0.0002 I B AUKR-T40

56775.4605 56775.46127 ±0.0002 I V AUKR-T40

56775.4602 56775.46097 ±0.0002 I R AUKR-T40

56775.4603 56775.46107 ±0.0002 I I AUKR-T40

57063.2409 57063.24167 ±0.0002 I V YNAO-60

57063.2410 57063.24177 ±0.0002 I R YNAO-60

57071.3858 57071.38657 ±0.0002 I V YNAO-60

57071.3860 57071.38677 ±0.0002 I R YNAO-60

where the LTT term τ3 is derived from Keplerian orbits

(Irwin 1952), and can be expressed as

τ3 =
a3 sin i3

c

[ 1 − e3
2

1 + e3 cos ν3

sin(ν3 + ω3) + e3 sin ω3

]

.

(5)

In Equation (5), a3sini3 is the projected semimajor axis of

the eclipsing pair around the barycenter of the triple sys-

tem (i3 is the orbital inclination of the companion with

respect to the tangent plane of the sky). e3 is the eccen-

tricity and ω3 is the argument of the periastron measured

from the ascending node in the tangent plane of the sky. ν3

is the true anomaly, which is related to the mean anomaly

M = 2π(t − T3)/P3, where T3 and P3 are the time of the

periastron passage and orbital period, respectively.

For fixed e3, T3 and P3, ν3 can be computed for

all mid-eclipse times. Then, we fit the O − C data with

Equation (4), and get the goodness-of-fit statistic, χ2,

which is the weighted sum of the squared difference be-

tween the O − C values yi and the model values y(ti) at

eclipse times ti

χ2 =

N
∑

i=1

[

yi − y(ti)

σi

]2

= W

N
∑

i=1

wi

[

yi − y(ti)
]2

, (6)

where

wi =
1

W

1

σi
2
, (7)

and

W =
N

∑

j=1

1

σj
2
. (8)

In Equation (6), σi is the uncertainty associated with O−C
of the data point yi, and N is the number of data points.

Stepping through e3 and T3, we obtain the local χ2

minimum for a fixed P3, i.e., χ2(P3). Since
∑N

i=1 wi =

1,
√

χ2(P3)/W can be regarded as the weighted root

mean square (rms) scatter around the best fit for a fixed

P3 (Marsh et al. 2014). After searching P3, the global

chi-square minimum, χ2
global, can be found. Some lo-

cal χ2 minima at P3 > 100 yr give the companion

with a mass more than 200 M⊙, so these are ruled out

by us. Normalized by χ2
global, we obtain a power spec-

trum (Zechmeister & Kürster 2009; Cumming et al. 1999;

Cumming 2004),

p(P3) ≡
χ2

0 − χ2(P3)

χ2
global

, (9)

where the constant χ2
0 is the best-fit value of the χ2 statis-

tic for a fit of a parabola to the data. Figure 2(b) shows

the one-dimensional Keplerian periodogram as well as the

best-fit eccentricity e(P3). If the minimum rms scatter,
√

χ2
global/W , is taken as noise in the power spectrum and

√

(χ2
0 − χ2)/W as a signal, the

√

p(P3) would be the

signal-to-noise ratio.

Both one-dimensional periodograms show an ex-

tremely significant periodicity at ∼60 yr, suggesting a

companion with a period of ∼60 yr (hereafter, referred to

as Z Dra (AB)C). The power also peaks at P = ∼30 yr,

suggesting another companion with an orbital period of

∼30 yr (hereafter, referred to as Z Dra (AB)D). The com-

panion is in/around a 2:1 mean-motion resonance (MMR)

with Z Dra (AB)C. The ∼20 yr periodicity reported by

Rafert (1982) is obvious in Figure 2(a) and 2(b). If the

∼20 yr signal exists, the eclipsing binary has a third com-

panion (hereafter, Z Dra (AB)E). It is interesting that Z Dra

(AB)C, D and E are in 6:3:2 MMRs. Furthermore, the best-

fit eccentricity, e(P3), reaches local minimum values near

P3 =∼60, ∼30 and ∼20 yr.

We also note that, due to the short time coverage, the

power increases continuously from ∼ 80 yr, but always re-

mains below the ∼ 60 yr peak. Although the power at long

periods (P3 > 80 yr) is still large, the best-fit solutions

at long periods give an eccentricity larger than 0.70. Such

a large eccentricity is physically unlikely. A large eccen-

tricity often implies a large gravitational perturbation from

other companions. The statistic p(P3)(N − 8)/4 follows

Fisher’s F distribution with 4 and N − 8 degrees of free-

dom (Bevington & Robinson 1992). Integrating the distri-

bution function and multiplying it by the number of inde-

pendent frequencies gives a false alarm probability (FAP)

less than 10−30 for the three peaks (Cumming et al. 1999;

Cumming 2004). In fact, the FAP values should be derived

from a suitable model, but the one-companion model is not

suitable for the Z Dra system (see below).

The best fits corresponding to the 60 yr periodicity

are plotted in Figure 3(a), and listed in the second column
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(a)

(b)

Fig. 2 The GLS periodogram (a) and Keplerian periodogram (b) of Z Dra. The dashed vertical lines mark three peaks in the Keplerian

periodogram. The red line represents the best-fit eccentricity corresponding to χ2(P3).

(Solution 1) of Table 2. For safety, we also use a third-

order polynomial instead of the second-order polynomial

in Equation (4), and obtain Solution 2, which is shown in

Figure 3(b). As shown in the bottom panels of Figure 3(a)

and 3(b), the residuals at ∼BJD2446000 reach as large as

0.02 d, which are much larger than their uncertainties. It

seems that the residuals show cyclic variation with a pe-

riod of ∼30 yr.

To determine further whether there are two periodici-

ties in the O − C data, we also use a second-order poly-

nomial plus two-LTT ephemeris to fit the O − C data.

We search for the best period in 40–90 yr with one LTT

term, and the other LTT term in 10–40 yr. The linearized

Keplerian fitting method (Beuermann et al. 2012; Paper I),

which is very similar to the method of the one-dimensional

periodogram above, is used to calculate a two-dimensional

periodogram. The least-squares fit to the 820 data involves

thirteen free parameters, three for the second-order poly-

nomial in the ephemeris, and five orbital elements (Pk, ek,

ωk, Tk and aksinik/c) for each companion. If all the pa-

rameters are free, then the number of degrees of freedom

(DOF) is therefore 807. The constraints on the two orbital

periods are shown in Figure 4(a). The χ2 contour levels of

1.05, 1.2, 1.5, 2.0, 3.0, 4.0 and 5.0 have been normalized

by division of the global chi-square minimum, χ2
global. In

addition, the best-fit eccentricities of Z Dra (AB)C and D

are plotted in Figure 4(b) and Figure 4(c), respectively. In

the two-dimensional periodogram, the global χ2 minimum

at (P4 ≃ 60 yr, P3 ≃ 30 yr) confirms Z Dra (AB)C and

D, and the local χ2 minimum at (P4 ≃ 60 yr, P3 ≃ 20 yr)

reveals Z Dra (AB)C and E. Both χ2 minima lie close to

the points of the e3 minima and also the e4 minima.

Based on the best solution in the two-dimensional

periodogram, the Levenberg-Marquardt fitting algorithm

(Markwardt 2009) is adopted to search for improved so-

lutions. The improved fits are plotted in Figure 5(a) and

5(b). The corresponding parameters and χ2 are listed in the

fourth and fifth columns (i.e., Solutions 3 and 4) of Table 2.

After the parabolic trend is removed, the residuals are dis-

played in Figure 6, where two sets of periodic variations

can be seen more clearly. Compared to Solution 1, the re-

duced χ2
ν = 2.6 (χ2 = 2118.3 for 807 DOF) in Solution 3

is greatly improved, but is still unacceptable (Bradt 2004).

The large χ2
ν is due to the large uncertainties in the old

O − C data before BJD2415700 (i.e., E < −20500), and

perhaps a third set of cyclic variations in the residuals.
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(a)

(b)

Fig. 3 The one-companion fit to the eclipse-timing variations of Z Dra. (a) The overplotted solid line denotes the best fit with

Equation (3), and the dashed line only represents the second-order polynomial in the ephemeris. The residuals of the best fit are

displayed in the lower panel. (b) The same as figure (a) but a third-order polynomial is adopted.

Table 2 The Best-fit Parameters for the LTT Orbits of Z Dra

Parameter Solution 1 Solution 2 Solution 3 Solution 4

C0 (d) –0.0197±0.0001 –0.0211±0.0010 –0.0025±0.0007 –0.0146±0.0009

C1 (×10
−6 d) 4.80±0.01 4.44±0.03 4.49±0.02 4.88±0.07

C2 (×10
−10 d) 4.35±0.01 4.80±0.20 3.94±0.01 3.16 ± 0.03

C3 (×10
−15 d) –3.85±0.25 –5.06±0.30

P4 (yr) 29.81±0.08 29.05±0.08

T4 (BJD) 2400464±164 2403688±513

e4 0.43±0.01 0.11±0.03

a4 sin i4 (au) 2.14±0.03 1.92±0.09

ω4 (deg) 285.6±3.9 83.1±26.0

m4 (M⊙, i4 = 90
◦) 0.39±0.03 0.33±0.04

A4 (au, i4 = 90
◦) 12.74±0.3 12.3±0.2

P3 (yr) 57.49±0.27 59.11±0.15 59.41±0.12 58.07±0.12

T3 (BJD) 2411634±77 2410320±127 2401400±109 2412114±101

e3 0.42±0.01 0.41±0.01 0.62±0.02 0.56±0.01

a3 sin i3 (au) 5.52±0.06 5.79±0.07 6.05±0.07 5.61±0.06

ω3 (deg) 232.9±1.2 226.4±1.1 76.8±4.0 240.5±1.6

m3 (M⊙, i3 = 90◦) 0.70±0.01 0.73±0.01 0.77±0.02 0.77±0.03

A3 (au, i3 = 90◦) 20.5±0.3 20.9±0.4 22.3±0.3 21.9±0.2

χ2 6221.1 6110.6 2118.3 2005.8
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(a) (b)

(c)

Fig. 4 (a) Two-dimensional Keplerian periodogram derived from a second-order polynomial plus two-LTT model. The χ2 contours of

1.05, 1.2, 1.5, 2.0, 3.0, 4.0 and 5.0 have been normalized by division of the global χ2 minimum. (b) The best-fit eccentricity (e3) of

Z Dra (AB)C as a function of (P3, P4). The darker the color is, the smaller the eccentricity is. (c) The same as figure (b) but for e4.

As shown in Figure 5(a) and 5(b), the LTT signal of

Z Dra (AB)E can be seen in the residuals of the two-

companion fit. A further fit reveals that Z Dra (AB)E has an

orbital period of P5 =∼ 20.1 yr and a mass of ∼ 0.2 M⊙.

Z Dra (AB)E produces a cyclic O − C variation with a

semi-amplitude of a5 sin i5 =∼ 0.8 au, which is much

smaller than a3 sin i3. In such a case, it is also possible

that such a small signal arises from an unavoidable slight

imperfection in the double-Keplerian model (see below).

4 TESTS OF THE SO-CALLED KEPLERIAN

MODEL

Based on an assumed inclination for one companion, its

mass (mk) can be estimated from the following mass func-

tions

(m4sini4)
3

(mb + m4)2
=

4π2

GP4
2
× (a4 sin i4)

3, (10)

(m3sini3)
3

(mb + m4 + m3)2
=

4π2

GP3
2
× (a3 sin i3)

3, (11)

where G is the Newtonian gravitational constant. For sim-

plicity, the central eclipsing binary is treated as a single

object (mb) with a mass equal to the sum of the masses of

both components. In the case of Z Dra, mb = 1.90 M⊙

(Terrell 2006). It is important to keep in mind that the m4

and m3 derived in this way are just approximate masses

since the mass functions are derived from Kepler’s third

law. If the orbital inclinations of both companions are

90.0◦, then the outer companion Z Dra (AB)C has a min-

imum mass of ∼ 0.8 M⊙, whereas the inner companion

Z Dra (AB)D is an M dwarf with a mass of ∼ 0.4 M⊙.

It is obvious that Z Dra is a general N-body system. Given

m4 and m3, we can calculate the semimajor axes of the two

companions by the equations, A4 = a4 · (mb + m4)/m4

and A3 = a3 · (mb + m3 + m4)/m3. The minimum A4 is

about 420 times larger than the separation between Z Dra

A and B (6.38R⊙ = 0.030 au), suggesting that the central

eclipsing pair can be treated as a single object.

Assuming that Z Dra (AB)C and D revolve around

Z Dra AB in coplanar Keplerian orbits with i3 = i4 =
90.0◦, the centripetal force (Fc) of Z Dra (AB)D from the

eclipsing pair is comparable with the gravitational pertur-

bation (Fp) from the outer companion, Z Dra (AB)C. The

“relative perturbation,” Fp/Fc, is calculated on a 130 yr

timescale (BJD 2410000 – 2457482). In the process of
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(a)

(b)

Fig. 5 The two-companion fit to the eclipse-timing variations of Z Dra when a second-order polynomial trend (a) or a third-order

polynomial trend (b) is considered. The residuals of the best fit are displayed in the lower panel of each figure. The overplotted solid

line denotes the best fit with a polynomial plus two-LTT ephemeris and the dashed line only represents the polynomial in the ephemeris.

Fig. 6 The same as Fig. 1 but subtracted by the parabolic trend given by Solution 3.

calculation, we track the coordinates of the three objects.

Then, the forces of gravity are derived from their separa-

tions and masses.

For Solution 3 or 4, the result reveals that Fp/Fc peaks

at ∼ 0.25 with a mean value of ∼ 0.09 (see Fig. 7).

The gravitational perturbation can decrease if the errors

of the orbital parameters, especially ω3,4 and T3,4, are

considered. Although mutually tilted orbits can also re-

duce the gravitational perturbation, the mutual perturba-

tion between the two companions cannot be neglected. The

Keplerian formula serves only as a convenient mathemati-

cal description of the O − C data.
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Fig. 7 The ratio of the gravitational perturbations from the outer companion (Z Dra (AB)C) to centripetal forces from the central

eclipsing pair (Z Dra A and B), both of which act on Z Dra (AB)D in opposition to each other. The solid line is derived from Solution

3, and the dashed line is from Solution 4.

Generally, the Newtonian LTT signals derived from

N-body simulations differ more or less from those given

by the double-Keplerian model (Marsh et al. 2014;

Goździewski et al. 2012, 2015). If we are only interested

in the orbital periods of two companions, the LTT value

caused by the outer companion, (O−C)3, can still be fitted

by the LTT model given by Equation (4). In this case, the

best-fit parameters have no physical meaning except for the

orbital period and the projected semimajor axis. (Strictly,

a3sini3 is half of the width of the orbit in the line-of-sight

direction.) Comparing with a sinusoidal model with three

free parameters (i.e., Asin(Bt + C)), the LTT model has

five free parameters, and can be used to generate a larger

variety of more complex O − C curves (see Fig. 8). There

must be a Keplerian O − C curve whose shape is the most

similar to the true (O − C)3. The best-fit Keplerian curve

may differ slightly from the true (O − C)3. Note that the

true O−C value is equal to (O−C)3 plus (O−C)4 if the

parabolic trend is neglected. Such slight deviations would

have some influence on a second fit to (O − C)4, which

is caused by the inner companion. In Solutions 3 and 4,

a4 sin i4 is about one third of a3 sin i3, suggesting that the

influence on the second fit is also at a low level. Therefore,

the result of the 2:1 MMR is valid, and the masses of Z Dra

(AB)C and D are approximate. As for the low-amplitude

(a5 sin i5 =∼ 0.8 au) variation, it may arise from a slight

imperfection in the double-Keplerian model.

Finally, we would like to remind the reader that the

best-fit eccentricities are not exactly equal to the orbital

eccentricities. Actually, the observed eccentricity results

from the true orbital eccentricity and the deviation of the

angular velocity from that predicted by Keplerian motion.

The deviation of the angular velocity arises from the gravi-

tational perturbation from other companions, and therefore

should be small since the gravitational perturbation should

be small in a stable system. On the other hand, the true or-

bital eccentricity should also be small since a companion

with small orbital eccentricity often experiences a weak

gravitational perturbation from other companions. These

may be the reason why the χ2 minima lie close to points

of e3,4 minima.

5 DISCUSSION AND CONCLUSIONS

Detailed O − C analyses of Z Dra are performed by us-

ing all of the available mid-eclipse times in the literature

as well as three new mid-eclipse times obtained in this

paper. The O − C diagram shows a quadratic or cubic

trend. A companion with orbital period more than twice

as long as the time window of observation can produce a

quadratic/cubic O−C curve, which is actually a section of

a cyclic O−C curve. However, the quadratic/cubic trend is

often explained by mass transfer between two components.

The quadratic trend in Solution 3 represents an observed

period increase with a rate of dP/dt = 2.1× 10−7d yr−1,

which is a typical value for many contact binary stars (see

e.g., Qian 2001, 2003; Qian et al. 2008). The cubic trend

in Solution 4 suggests that the observed period increases

at a decreasing rate. The mass transfer from the secondary

component to the primary will cease in 197 years. Then,

the mass will be transferred from the primary component

to the secondary one. Compared with binary evolutionary

timescales, a timescale of a few hundred years is negli-

gibly short. The mass transfer rate in the eclipsing pair

should change little or remain constant over a few hun-

dred years, suggesting a quadratic trend rather than a cubic

trend. Furthermore, the cubic model does not have a sig-

nificant advantage over the quadratic model. The best-fit

cubic trend in Figure 5(b) is close to the quadratic trend

in Figure 5(a). Similar periodicities and χ2 are obtained in

Solutions 3 and 4.

We have searched the O − C data for periodicities.

The O − C data show two or more sets of cyclic varia-

tions with periods of 59.4 and 29.8, and possible ∼ 20.1
and > 80 yr, suggesting there are two or more companions

around the eclipsing binary. Although we cannot ascertain

the exact number of companions, there must be more than

one companion. If only one companion revolves around
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Fig. 8 All kinds of O − C curves derived from by the Keplerian model given by Equation (5). Different colors refer to different

eccentricities, and different line styles and thicknesses denote the O − C curves with different ω values. The semi-amplitudes of all

O −C curves are normalized to unity. The orbital phase is proportional to time, and has been shifted so that phase zero corresponds to

the BJD time of the O − C maximum.

Fig. 9 Schematic positions of the eclipsing binary (mb) and its two companions (m3,4) with respect to the tangent plane of the sky

(Paper I). i3,4 denote the orbital inclinations of m3,4, respectively. r3,4 refer to Jacobian coordinates of m3,4. Note that the subscripts

‘3’ and ‘4’ are assigned to the outer and inner companions, respectively.

the eclipsing binary, and therefore moves in a Keplerian

orbit, then the single-Keplerian model would fit the O−C
data very well. However, Figure 3(a) and (b) shows that

the single-Keplerian model fails. The two-dimensional pe-

riodogram reveals that the companions Z Dra (AB)C and

D with periods of 59.4 and 29.8 yr are the most likely com-

bination. As for the long period (> 80 yr), Figure 4(b) and

(c) shows any long-period companion has large e3 and e4,

which lie far from the points representing the e3 and e4

minima, respectively. Such large eccentricities are physi-

cally unlikely.

Although magnetic activity can explain the cyclic vari-

ations in the O − C diagram (Applegate 1992; Yuan &

Qian 2007), they are unlikely to produce two/three sets of

variations with commensurate periods. The more plausible

reason for such variations is the reflex motion of the eclips-

ing pair induced by two/three companions in a 2:1 or 6:3:2

MMR. In Paper I, two companions were found to be in

near 3:1 MMR orbits around the eclipsing binary SW Lac

with periods of 27.0 and 82.6 yr. Both Z Dra and SW Lac

have the most numerous mid-eclipsing times, which show

complex variations. Perhaps, MMRs are common in such

N-body systems.

More than 160 planetary systems have been confirmed

so far. About 30% of them are close to MMRs, partic-

ularly near the first order MMRs of 2:1 and 3:2 (Zhang

et al. 2014). Furthermore, Beuermann et al. (2013) found

that two planetary companions are in near 2:1 MMR orbits

around the eclipsing binary NN Ser. However, in contrast

to these planetary systems, Z Dra and SW Lac are general

three-body systems if the central eclipsing binary is treated

as a single object. Our discoveries will help us understand

the orbital properties of such three-body systems.
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In this paper, we have checked the mutual perturba-

tions between Z Dra (AB)C and D, but are unable to test

the dynamical stability for three reasons: (1) The so-called

double-Keplerian model only gives a convenient approx-

imation to the O − C curve, but it cannot provide exact

orbits and correct initial conditions (such as coordinates,

velocities and masses) for the N-body system. (2) The er-

rors of the orbital parameters should be considered in our

dynamic simulations. (3) The inclinations (i3 and i4) and

the angle between their ascending nodes in the sky plane

(θ) are unknown. The orbital angular configuration of the

outer companion relative to the inner one is determined by

i3, i4 and θ (see Fig. 9). It seems extremely difficult to

test the dynamical stability since stable configurations are

likely to be confined to tiny regions of parameter space

for the general three-body system and all initial conditions

must be very accurate in the dynamical analyses.

We note that the N-body model was used to fit the

LTT data of HU Aqr (Goździewski et al. 2012, 2015) and

NN Ser (Marsh et al. 2014), both of which host two cir-

cumbinary planets. In this model, synthetic LTT signals

at all epoches are determined through numerical N-body

integration, and then compared to the true LTT signals.

Based on the reduced χ2
ν and dynamical stability, one can

find the best solution. In the case of Z Dra, the masses of

Z Dra (AB)C and D are relatively large. We have to fit

the LTT data with the masses, velocities and coordinates

as free parameters, by integrating the equations of motion

(K. Goádziewski, private communication). For a general

three-body system, seven free parameters are needed for

each companion, giving 17 free parameters in the model.

Besides the computational challenges, a possible drawback

of this model is that an undiscovered companion can make

the N-body integration meaningless. If the orbital period

of the companion is more than twice as long as the time

window of observation, then the LTT signals caused by

the companion would show a parabolic/cubic trend in the

time window rather than periodic variation. In this case,

one would miss the third companion, and therefore its dy-

namical perturbation. The long-period companion, how-

ever, has little influence on any analytic model including a

second-order or third-order polynomial, such as the third-

order polynomial plus double-Keplerian ephemeris.

As shown in Figures 2 and 4, none of the periodograms

can provide tight constraints on the periodicity of > 70 yr.

This is mainly attributed to the low precision of the old data

and the short time coverage of the O − C data. Therefore,

we encourage follow-up observations of this system to ob-

tain more mid-eclipse times covering as long a baseline as

possible.
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