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Abstract Based on the theory of relativistic superstrong magnetic fields (SMFs), by using the method

of Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening (SES) in

SMFs and the influence of SES on the nuclear reaction of 23Mg (p, γ)24Al. Our calculations show that the

nuclear reaction will be markedly effected by the SES in SMFs in the surface of magnetars. Our calculated

screening rates can increase two orders of magnitude due to SES in SMFs.
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1 INTRODUCTION

According to stellar evolution theory, for sufficiently high

temperature in the Ne-Na cycle, the timescale of the proton

capture reaction of 23Mg is shorter than that of β+-decay.

Therefore, some 23Mg will kindle and escape from the Ne-

Na cycle by proton capture. The 23Mg leaks from the Ne-

Na cycle into the Mg-Al cycle and results in the synthesis

of a large amount of heavy nuclei. Thus the reaction rate

of 23Mg (p, γ) 24Al in the stellar environment is of great

importance to nucleosynthesis of heavy nuclei. Due to its

significance in astrophysical surroundings, the nuclear re-

action rate of 23Mg (p, γ) 24Al has been extensively stud-

ied. For instance, by considering the contribution of a sin-

gle resonance energy state, Wallace & Woosley (1981) first

discussed the reaction rate of 23Mg (p, γ) 24Al. Based on

the three resonances and a contribution from the direct cap-

ture process, Iliadis et al. (2001) investigated these nuclear

reaction rates. Taking into account four resonances and the

structure of 24Al, Kubono et al. (1995) reconsidered the

rate. Other authors (e.g., Herndl et al. 1998; Visser et al.

2007; Lotay et al. 2008) also carried out estimations for the

rate based on some new experimental information on 24Al

excitation energies. However, these authors seem to have

overlooked one important influence of electron screening

on the nuclear reaction in a superstrong magnetic field

(SMF).

Strong electron screening (SES) has always been a

challenging problem in stellar weak-interaction rates and

thermonuclear reaction rates in pre-supernova stellar evo-

lution and nucleosynthesis. Some works (e.g., Bahcall

et al. 2002; Liu 2013a,b,c, 2014a,b, 2015) have been done

on stellar weak-interaction rates and thermonuclear reac-

tion rates. In a high-density plasma environment, the SES

has been widely investigated by various screened Coulomb

models, such as Salpeter’s model (Salpeter 1954; Salpeter

& van Horn 1969), Graboske’s model (Graboske et al.

1973), and Dewitt’s model (Dewitt 1976). Related discus-

sions were provided by Liolios (2000), Liolios (2001) and

Liu (2013c). Very recently, Spitaleri et al. (2015) also dis-

cussed electron screening and the nuclear clustering puz-

zle. Their results show that large values of screening po-

tential are in fact due to clusterization effects in nuclear

reactions, especially in reactions involving light nuclei.

However, they neglected the effects of SES on the ther-

monuclear reaction rate in SMFs. How does the SES influ-

ence the nucleosynthesis and thermonuclear reactions in

an SMF before a supernova explosion occurs? It is very in-

teresting and challenging for us to understand the physical

mechanism of SES in dense stars, especially magnetars.

Magnetars have been proposed to be peculiar neutron

stars which could power their X-ray radiation by SMFs as

high as B ∼ 1014 − 1015 G (e.g., Peng & Tong 2007; Gao

et al. 2011a,b, 2012; Guo et al. 2015; Xu & Huang 2015;

Xiong et al. 2016). Some extensive researches about the

characteristics, emission properties, and the latest observa-

tions of magnetars have been done. These researches on

the thermal and magnetic evolution of magnetars are very

interesting and challenging tasks in astronomy and the as-

trophysical environment. For instance, Tong (2015) inves-
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tigated the Galactic center magnetar SGR J1745−2900 and

noted a puzzling spin-down behavior. Olausen & Kaspi

(2014) presented a catalog of the 28 known magnetars and

candidates. They investigated their observed thermal radia-

tive properties in detail, and the quiescent X-ray emission.

Szary et al. (2015) discussed some characteristics of radio

emission from magnetars. Based on the estimated ages of

potentially associated supernova remnants (SNRs) of mag-

netars, Gao et al. (2016) discussed the values of the mean

braking indices of eight magnetars with SNRs. If the mea-

surements of the SNR ages are reliable, Gao et al. (2016)

may provide an effective way to constrain the magnetars’

braking indices.

Recently, Li et al. (2016) numerically simulated the

electron fraction and electron Fermi energy in the interior

of a common neutron star. The electron Fermi energy and

nuclear reaction rates inside a magnetar will be substan-

tially affected by SMFs (e.g., Gao et al. 2011c,d, 2013,

2015). In an extremely strong magnetic field (B ≫ Bcr,

Bcr =
m2

e
c3

eh̄ = 4.414×103 G is the quantum critical mag-

netic field), the Landau column becomes a very long and

very narrow cylinder along the magnetic field. How does

the quantization of Landau levels truly change with SMFs?

This is a very interesting issue for us to discuss. Gao et al.

(2013, 2015) investigated the electron degeneracy pres-

sure from relativistic electrons in detail, and discussed the

quantization of Landau levels for electrons, and the equa-

tions of states (EoSs) due to the quantum electrodynamic

(QED) effects for different matter systems by introducing

the Dirac δ-function in SMFs. Their results showed that the

stronger the magnetic field strength is, the higher the elec-

tron degeneracy pressure becomes, and magnetars could be

more compact and massive manifestations of neutron stars

due to the contribution of magnetic field energy.

In this paper, based on the SES theory in SMFs (Fushiki et al. 1989), we will estimate the influence on the electron

Fermi energy, the SES and change in electron energy due to SMFs, and discuss the influence on the thermonuclear reaction

by SES in the surface of magnetars. Our work differs from previous works (e.g., Peng & Tong 2007; Gao et al. 2013,

2015) that discuss the electron Fermi energy in SMFs. Their works are based on the Pauli exclusion principle and Dirac δ-

function in SMFs and investigate the influence of SMFs on the electron Fermi energy and electron pressure. Although they

discussed the magnetic effects in detail, they seemed to lose sight of the influence of SMFs on SES. Following the works

of Fushiki et al. (1989), we will reinvestigate the electron Fermi energy in SMFs, and derive new results for SES theory

and screening rates for a nuclear reaction in SMFs, based on the Thomas-Fermi-Dirac (TFD) approximations. Secondly,

our discussions also differ from those of Spitaleri et al. (2015), who analyzed the influence of the SES only in the case

without SMFs. Finally, Potekhin & Chabrier (2013) also discussed the electron screening effect on stellar thermonuclear

fusion. However, they just studied the impact of plasma correlation effects on nonresonant thermonuclear reactions in the

liquid envelopes of neutron stars, and neglected the influence of SES on resonant nuclear rates in SMFs.

The article is organized as follows. In the next section, we will discuss the properties of the free electron gas including

the electron Fermi energy and electron pressure in SMFs. Some expressions for the SES in an SMF will be given in

Section 3. In Section 4, we will investigate the resonant reaction process and rates in the case with and without SES and

SMFs. In Section 5, we will provide our main results and some discussions. Section 6 gives brief concluding remarks.

2 THE PROPERTIES OF THE FREE ELECTRON GAS IN AN SMF

Theoretical studies of matter in high magnetic fields have been carried out using a variety of methods, among which the

Thomas-Fermi (TF) and TFD approximations are the most used methods, due to their simplicity but adequacy for many

purposes. The TF method is the oldest and simplest case of a density functional theory. The total energy of a system of

electrons and nuclei is written as a function of electron density. Detailed descriptions about the methods of TF and TFD

approximations can be referenced in Fushiki et al. (1991, 1992).

The positive electron energy levels, including the contributions of spin while neglecting radiative corrections in SMFs,

are given by (Landau & Lifshitz 1977)

En = nh̄ωc +
p2

z

2me
, (1)

where n = 0, 1, 2, ...., h̄ωc = eBh̄/mec
.
= 11.5B12 keV is the electron cyclotron energy, B12 is the magnetic field in

units of 1012G, pz is the electron momentum along the z-direction, and me is the electron mass. The electron chemical

potential Ue is determined by inverting the expression for electron number density

ne =
(eB

hc

) 2

h

[

pF(0) + 2

∞
∑

n=0

pF(n)H(Ue − nh̄ωc)

]

, (2)
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where pF(n) = [2me(Ue − nh̄ωc)]
1/2 is the maximum momentum along the z-direction for the n− th Landau orbit and

H(x) is the Heaviside function, which is unity when x is positive and is zero otherwise. By integrating Equation (2) with

respect to Ue, and employing the Gibbs-Duhem equation, the pressure of electrons is written as

P =
(eB

hc

) 2

h

[

p3
F(0)

3me
+ 2

∞
∑

n=1

p3
F(n)

3me
H(Ue − nh̄ωc)

]

. (3)

By summing over n, and integrating Equation (1), the total kinetic energy density, including contributions from the

Landau orbital motion perpendicular to the field, the motion along the field and the coupling of the electron spin to the

field, is

Ekin =
(eB

hc

) 2

h

{

p3
F(0)

6me
+ 2

∞
∑

n=1

[

p3
F(n)

6me
+ nh̄ωcpF(n)

]

H(Ue − nh̄ωc)

}

. (4)

According to the TFD approximations, the electron energy density will include the contribution of electron exchange

energy, and is given by (Danz & Glasser 1971)

Eex =
e2

2

(eB

hc

)

−1

n2
eF

(ne

n∗

)

=
rcyc

2πa0
h̄ωcn∗n

2F (n), (5)

where a0 = 5.29 × 109 cm is the Bohr radius, n∗ = 2/π1/2(eB/hc)3/2 = 4.24 × 1027B
3/2
12 cm−3, B12 is the magnetic

field in units of 1012 G, and rcyc = (2h̄c/eB)1/2 .
= 3.63 × 1010 cm is the electron cyclotron radius in the lowest Landau

level.

From the TFD approximations, when only a single Landau level is occupied, the electron chemical potential, which

includes the contribution of electron exchange energy, is determined by

Ue =
∂Eex

∂ne
= e2

(eB

hc

)

−1

neI
(ne

n∗

)

=
rcyc

πa0
h̄ωcn∗nI(n), (6)

where the expression of function F (n) can be referenced in Fushiki et al. (1989).

According to Equation (1), the electron interaction energy with the magnetic field is proportional to the quantum

number n, and cannot exceed the electron chemical potential. Thus the maximum number of Landau levels nmax will

be related to the highest value of interaction energy allowed between electrons and the external magnetic field. When

E(nmax, pz = 0) = Ue in Equation (1), the maximum number of Landau levels nmax will be given by

nmax =
Ue

h̄ωc
. (7)

In the general case, when 0 ≤ n ≤ nmax, the electron momentum is less than its Fermi momentum pF(e), which is

determined by

pF(e) = Ue/c, (8)

when n = 0 for an SMF (e.g., Gao et al. 2013, 2015).

3 THE SES IN AN SMF

According to Fushiki et al. (1989), the nuclear reaction rate in high-density matter is affected because the clouds of

electrons around nuclei alter the interactions among nuclei. Due to the electron clouds, the reaction rate is increased by

a factor of eUsc/kBT , where Usc is a negative quantity, called “the screening potential,” and T is the temperature. The

electron Coulomb energy is described by the Wigner-Seitz approximation in an SMF as

Usc = Eatm(z12) − Eatm(z1) − Eatm(z2), (9)

where Eatm(z) is the total energy of the Wigner-Seitz cell and z12 = z1 + z2. If the electron distribution is rigid, the

contribution to Eatm(z) from the bulk electron energy cancels and the electron screening potential (ESP) at high density

can be expressed as

Usc = Elatt(z12) − Elatt(z1) − Elatt(z2) =
−0.9e2

re

[

z
5/3
12 − z

5/3
1 − z

5/3
2

]

, (10)
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where Elatt(z) is the electrostatic energy of the Wigner-Seitz cell, Eatm(zj) =
−0.9z

5/3

j
e2

re

, and re is the radius of the

Wigner-Seitz cell for a single electron. Due to the influence of the compressibility of electron gas, the change in screening

potential is written as

δUs = −
54

175

(e2

re

) 1

ne

∂ne

∂Ue
×

[

(z12)
7/3 − (z1)

7/3 − (z2)
7/3

]

= −
54

175

(

e2

re

)

1

ne
D ×

[

(z12)
7/3 − (z1)

7/3 − (z2)
7/3

]

, (11)

where

D = 823.1481
rene

e2

(A

z

)4/3

ρ−4/3B2
12. (12)

The TF screening wavenumber will be given by

(KTF)2 = 1.0344× 104rene

(A

z

)4/3

ρ−4/3B2
12. (13)

According to Fushiki et al. (1989), the corresponding change of screening potential in an SMF is

δUs = −0.254
(A

z

)4/3

ρ−4/3B2
12 ×

[

(z12)
7/3 − (z1)

7/3 − (z2)
7/3

]

= −494.668
(A

z

)4/3

ρ−4/3b2 ×

[

(z12)
7/3 − (z1)

7/3 − (z2)
7/3

]

MeV , (14)

where
(

A
z

)

is the average A
z ratio, corresponding to the mean molecular weight per electron, and b = B/Bcr =

0.02266B12. Thus, the ESP in SMFs of the FGP model is given by

Us = Usc + δUs. (15)

4 THE RESONANT REACTION PROCESS AND RATES

4.1 The Calculation of Resonant Reaction Rates with and without SES

The reaction rates are contributed from the resonant and non-resonant reactions. In the case of a narrow resonance, the

resonant cross section σr is approximated by a Breit-Wigner expression (Fowler et al. 1967)

σr(E) =
πω

κ2

Λi(E)Λf (E)

(E − E2
r ) +

Λ2

tot
(E)

4

, (16)

where κ is the wave number, and the entrance and exit channel partial widths are Λi(E) and Λf (E), respectively, Λtot(E)
is the total width and ω is a statistical factor which is given by

ω = (1 + δ12)
2J + 1

(2J1 + 1)(2J2 + 1)
, (17)

where the spins of the interacting nuclei and resonance are J1 and J2, respectively, and δ12 is the Kronecker delta function.

The partial widths depend on the energy and can be expressed as (Lane & Thomas 1958)

Λi,f = 2ϑ2
i,fψl(E, a) = Λi,f

ψl(E, a)

ψl(Ef , a)
. (18)

The penetration factor ψl is associated with l and a, which are the relative angular momentum and the channel radius,

respectively; a is written as a = 1.4(A
1/3
1 + A

1/3
2 ) fm. Λi,f is the partial energy width at the resonance process. ϑ2

i,f is

the reduced width and given by

ϑ2
i,f = 0.01ϑ2

w =
0.03h̄2

2Aa2
. (19)

Based on the above, in the phases of explosive stellar burning, the narrow resonance reaction rates without SES are

determined by (Schatz et al. 1998; Herndl et al. 1998)

λ0
r = NA〈σv〉r = 1.54 × 1011(AT9)

−3/2
∑

i

ωγi exp(−11.605Eri/T9) cm3 mol−1 s−1, (20)
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where NA is Avogadro’s constant, A is the reduced mass of the two collision partners, Eri is the resonance energies and

T9 is the temperature in units of 109 K. ωγi is the resonance strength in units of MeV and is determined by

ωγi = (1 + δ12)
2J + 1

(2J1 + 1)(2J2 + 1)

ΛiΛf

Λtotal
. (21)

On the other hand, due to SES, the reaction rates of a narrow resonance are given by

λs
r = FrNA〈σv〉r′ = 1.54 × 1011(AT9)

−3/2
∑

i

ωγi exp(−11.605E′

ri
/T9)

= 1.54 × 1011Fr(AT9)
−3/2

∑

i

ωγi exp(−11.605Eri/T9) cm3 mol−1 s−1, (22)

where Fr is the screening enhancement factor (hereafter SEF). The values of E′

ri should be measured by experiments,

but it is too hard to provide sufficient data. In a general and approximate analysis, we have E′

ri = Eri −U0 = Eri −Us.

4.2 The Screening Model of Resonant Reaction Rates

in the Case with SMFs

It is widely known that nuclear reaction rates at low ener-

gies play a key role in energy generation in stars and stel-

lar nucleosynthesis. The bare reaction rates are modified

in stars by the screening effects of free and bound elec-

trons. Knowledge about the bare nuclear reaction rates at

low energies is important not only for understanding vari-

ous astrophysical nuclear problems, but also for assessing

the effects of host material in low energy nuclear fusion

reactions in stellar matter.

As mentioned in Section 1, most magnetars possess

superstrong surface dipole magnetic fields, and the inter-

nal magnetic field may be higher than the surface magnetic

field (e.g., Peng & Tong 2007). Since the Fermi energy of

the electron gas may go up to 10 MeV, the quantum ef-

fects of electron gas will be very obvious and sensitive to

SMFs. The electron phase space will be strongly modi-

fied by SMFs. Electron screening will play a key role in

this process. It can strongly effect the electron transfor-

mation and nuclear reaction rates. In this subsection, we

will discuss the screening potential in the strong screening

limit. The dimensionless parameter (Γ), which determines

whether or not correlations between two species of nuclei

(z1, z2) are important, is given by

Γ =
z1z2e

2

(z
1/3
1 + z

1/3
2 )rekT

. (23)

Under the condition of Γ ≫ 1, the nuclear reaction

rates will be influenced appreciably by SES. The SEF for

the resonant reaction process in SMFs can be expressed as

FB
r = exp

(

11.605Us

T9

)

. (24)

5 RESULTS AND DISCUSSIONS

According to the electron screening model of Fushiki et al.

(1989) in SMFs, we have calculated the electron screen-

ing potential at different temperatures from Equations (10),

(14) and (15), based on the TFD approximations.

Figure 1 shows that the ESP is a function of B12. We

found that the SMFs have a slight influence on the ESP

in the high-density surroundings (e.g., ρ7 ≥ 1.3), but the

influence on ESP is very remarkable for relatively low den-

sities (e.g., ρ7 = 0.1, 0.3, 0.5) in SMFs. Due to the fact that

the higher the density is, the larger the electron energy be-

comes, it will definitely blunt the impact of SMFs on ESP.

For example, the ESP increases greatly when B12 < 103,

and will reach the maximum value of 0.0188 MeV when

B12 = 580.7 and ρ7 = 0.1. However, the ESP decreases

about two orders of magnitude when 103 < B12 < 2×103

and ρ7 = 0.1.

The influence of SES in SMFs on a nuclear reaction

is mainly reflected by the factor of SEF. According to

Equations (22), (24) and some parameters of Table 1, we

have calculated and analyzed the factor of SEF in detail.

Figure 2 demonstrates that the SEF is a function of

magnetic field strengthB for different temperature-density

surroundings. We find that the influences of SES on SEF

are very remarkable in SMFs. The lower the temperature

is, the greater the influence on SEF becomes. This is be-

cause the electron kinetic energy is relatively low at lower

temperatures. With the increase of magnetic field strength

B, the SEF decreases. On the contrary, the SEF greatly in-

creases with increasing B at relatively high densities (e.g.,

ρ7 = 1.0).

Table 2 shows some important information about the

SEF at certain astronomical conditions. We find that the

lower the temperature, the greater the influence on the SEF.

With increasing temperature at the same density, the maxi-

mum value of SEF decreases. The maximum value of SEF

will be 3289 when B12 = 103, ρ7 = 10 and T9 = 0.1.

This is due to the fact that the higher the temperature in-

creases, the larger the electron energy becomes. According

to Equations (20) and (22), we can see that the nuclear re-

action rates will increase as temperature increases.

It is well known that, in stellar environments where

explosive hydrogen burning occurs, the nuclear reaction
23Mg(p, γ)24Al plays a key role in breaking out of the Ne-

Na cycle to heavier nuclear species (e.g., the Mg-Al cy-

cle). Therefore, it is very important to accurately determine

the rates for the reaction 23Mg(p, γ)24Al. However, the
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Fig. 1 The ESP as a function of B under certain astronomical conditions.
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Fig. 2 The SEF as a function of B for ρ7 = 0.1 (left) and 1.0 (right) under certain astronomical conditions.

Table 1 Resonance Parameters for the Reaction 23Mg (p, γ) 24 Al

Ex (MeV) 1 Ex (MeV)2 Jπ Eri (MeV) 3 Γp Γγ ωγi (MeV) 4 ωγi (MeV) 5 ωγi (MeV) 6

2.349±0.020 2.346±0.000 3+ 0.478 185 33 25 27 26

2.534±0.013 2.524±0.002 4+ 0.663 2.5e3 53 58 130 94

2.810±0.020 2.792±0.004 2+ 0.939 9.5e5 83 52 11 31.5

2.900±0.020 2.874±0.002 3+ 1.029 3.4e4 14 12 16 14

Notes: 1 is adopted from Endt (1998); 2 from Visser et al. (2007); 3 from Audi & Wapstra (1995); 4 from Herndl et al. (1998);
5 from Wiescher et al. (1986); 6 is adopted in this paper.

Table 2 Maximum Value of the Strong SEF for Some Typical Astronomical Conditions

ρ7 = 0.01 ρ7 = 0.1 ρ7 = 1.0 ρ7 = 10

T9 B12 SEFmax B12 SEFmax B12 SEFmax B12 SEFmax

0.1 90.19 2.755 590.7 8.881 4074 110.5 1000 3289

0.3 90.19 1.402 610.7 2.071 3954 4.797 1000 1487

0.5 100.2 1.223 650.7 1.546 4074 2.563 1000 5.046

0.7 110.2 1.152 690.8 1.362 4204 1.985 1000 3.179

0.9 120.2 1.113 630.7 1.274 3914 1.686 1000 2.450

resonance energy has a large uncertainty due to inconsis-

tent 24Mg(3He,t)24Al measurements, as mentioned above.

Since different evaluation methods may result in different

orders for the reaction, the evenness method is adopted to

increase the accuracy of the comprehensive evaluation of

Table 1.

According to Equations (22), (24) and some parame-

ters of Table 1, the resonant rates for four resonance states

in the case with and without SES are functions of T9, as

shown in Figure 3. The results show that the contribu-

tions of four resonant states to the total reaction rate have

an obvious difference at the stellar temperature range of

T9 = 0.1 − 5. With an increase of temperature, the rates

increase quickly. One can find that the contribution of the

resonance state of Er = 478 keV dominates the total reac-

tion rates when T9 = 0.2 − 1.681, but the Er = 663 keV

resonance is the most important at high temperatures of

T9 > 1.681. On the contrary, the Er = 939 keV as well as

Er = 1029 keV resonance states are negligible compared

to the former two lower resonance states over the whole

temperature range.
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Fig. 3 The nuclear reaction rates in the case with and without SES as a function of T9 for ρ7 = 1.0, 5.0 and 103 G ≤ B ≤ 1016 G in

different energy states.

Table 3 Maximum Value of Strong Screening Enhancement Rates for Some Typical Astronomical Conditions

ρ7 = 1.0 ρ7 = 5.0 ρ7 = 10 ρ7 = 100

E (MeV) λ0
max λs

max λ0
max λs

max λ0
max λs

max λ0
max λs

max

E1 = 0.478 131.9 149.9 590.7 8.881 133.7 163.8 133.9 164.7

E2 = 0.663 296.2 307.9 610.7 2.071 296.2 350.2 296.2 350.5

E3 = 0.939 51.50 53.16 650.7 1.546 52.31 61.50 52.24 61.90

E4 = 1.929 18.45 19.08 690.8 1.362 18.59 22.18 18.56 22.27

Table 3 gives a brief description of the resonant rates

for four resonance states due to SES in SMFs. One can

find that the maximum value of strong screening rates will

reach 350.5 when E2 = 0.663 MeV and ρ7 = 100.

In summary, by analyzing the influence of SES on the

resonant rates in SMFs, we find that the SES has different

effects on the rates for different resonance states because of

different forms of energy and reaction orbits in the process

of reaction in SMFs. We show that this effect by SES is

remarkable and can increase reaction rates by more than

two orders of magnitude.

6 CONCLUDING REMARKS

The properties of matter in magnetars have always been in-

teresting and challenging topics for astronomers and physi-

cists. The investigation of SES is obviously an important

component of magnetar research. In particular, improv-

ing the interpretation of nuclear reaction data by SES in

magnetars requires a detailed theoretical understanding of

physical properties for highly-magnetized nuclear matter.

In this paper, by employing the method of TFD ap-

proximations in SMFs, we have investigated the problem

of SES, and the effects of SMFs on the nuclear reaction

of 23Mg (p, γ)24Al. Our calculations showed that the nu-

clear reaction will be markedly affected by SES in SMFs

of magnetars. The calculated reaction rates can increase by

more than two orders of magnitude. The considerable in-

crease of reaction rates for 23Mg (p, γ) 24Al implies that

more 23Mg will escape the Ne-Na cycle due to SES, which

will make the next reaction convert more 24Al (β+, ν)
24Mg to participate in the Mg-Al cycle. It may lead to

synthesizing a large amount of heavy elements (e.g., 26Al)

within the outer crust of magnetars.

Acknowledgements We thank the anonymous referee

for carefully reading the manuscript and providing valu-

able comments that improved this paper substantially.

This work is supported in part by the National Natural

Science Foundation of China through grant No. 11565020,

the Natural Science Foundation of Hainan province un-

der grant No. 114012, and the Undergraduate Innovation

Program of Hainan province under grant No. 20130139.



83–8 J.-J. Liu

References

Audi, G., & Wapstra, A. H. 1995, Nuclear Physics A, 595, 409

Bahcall, J. N., Brown, L. S., Gruzinov, A., & Sawyer, R. F. 2002,

A&A, 383, 291

Danz, R. W., & Glasser, M. L. 1971, Phys. Rev. B, 4, 94

Dewitt, H. E. 1976, Phys. Rev. A, 14, 1290

Endt, P. M. 1998, Nuclear Physics A, 633, 1

Fowler, W. A., Caughlan, G. R., & Zimmerman, B. A. 1967,

ARA&A, 5, 525

Fushiki, I., Gudmundsson, E. H., & Pethick, C. J. 1989, ApJ,

342, 958

Fushiki, I., Gudmundsson, E. H., Pethick, C. J., & Yngvason, J.

1991, Physics Letters A, 152, 96

Fushiki, I., Gudmundsson, E. H., Pethick, C. J., & Yngvason, J.

1992, Annals of Physics, 216, 29

Gao, Z. F., Peng, Q. H., Wang, N., Chou, C. K., & Huo, W. S.

2011a, Ap&SS, 336, 427

Gao, Z. F., Wang, N., Song, D. L., Yuan, J. P., & Chou, C.-K.

2011b, Ap&SS, 334, 281

Gao, Z. F., Wang, N., Yuan, J. P., et al. 2011c, Ap&SS, 333, 427

Gao, Z. F., Wang, N., Yuan, J. P., Jiang, L., & Song, D. L. 2011d,

Ap&SS, 332, 129

Gao, Z. F., Peng, Q. H., Wang, N., & Yuan, J. P. 2012, Ap&SS,

342, 55

Gao, Z. F., Wang, N., Peng, Q. H., Li, X. D., & Du, Y. J. 2013,

Modern Physics Letters A, 28, 1350138

Gao, Z. F., Wang, N., Xu, Y., Shan, H., & Li, X.-D. 2015,

Astronomische Nachrichten, 336, 866

Gao, Z. F., Li, X.-D., Wang, N., et al. 2016, MNRAS, 456, 55

Graboske, H. C., Dewitt, H. E., Grossman, A. S., & Cooper,

M. S. 1973, ApJ, 181, 457

Guo, Y.-J., Dai, S., Li, Z.-S., et al. 2015, RAA (Research in

Astronomy and Astrophysics), 15, 525

Herndl, H., Fantini, M., Iliadis, C., Endt, P. M., & Oberhummer,

H. 1998, Phys. Rev. C, 58, 1798

Iliadis, C., D’Auria, J. M., Starrfield, S., Thompson, W. J., &

Wiescher, M. 2001, ApJS, 134, 151

Kubono, S., Kajino, T., & Kato, S. 1995, Nuclear Physics A, 588,

521

Landau, L. D., & Lifshitz, E. M. 1977, Quantum mechanics (3rd

ed., Oxford: Pergamon Press)

Lane, A. M., & Thomas, R. G. 1958, Rev. Mod. Phys., 73, 629

Li, X. H., Gao, Z. F., Li, X. D., et al. 2016, International Journal

of Modern Physics D, 25, 1650002

Liolios, T. E. 2000, European Physical Journal A, 9, 287

Liolios, T. E. 2001, Phys. Rev. C, 64, 018801

Liu, J.-J. 2013a, RAA (Research in Astronomy and

Astrophysics), 13, 99

Liu, J.-J. 2013b, RAA (Research in Astronomy and

Astrophysics), 13, 945

Liu, J.-J. 2013c, MNRAS, 433, 1108

Liu, J.-J. 2014a, RAA (Research in Astronomy and

Astrophysics), 14, 971

Liu, J.-J. 2014b, MNRAS, 438, 930

Liu, J.-J. 2015, Ap&SS, 357, 93

Lotay, G., Woods, P. J., Seweryniak, D., et al. 2008, Phys. Rev. C,

77, 042802

Olausen, S. A., & Kaspi, V. M. 2014, ApJS, 212, 6

Peng, Q.-H., & Tong, H. 2007, MNRAS, 378, 159

Potekhin, A. Y., & Chabrier, G. 2013, Contributions to Plasma

Physics, 53, 397

Salpeter, E. E. 1954, Australian Journal of Physics, 7, 373

Salpeter, E. E., & van Horn, H. M. 1969, ApJ, 155, 183

Schatz, H., Aprahamian, A., Goerres, J., et al. 1998, Phys. Rep.,

294

Spitaleri, C., Bertulani, C. A., Fortunato, L., & Vitturi, A. 2015,

arXiv:1503.05266

Szary, A., Melikidze, G. I., & Gil, J. 2015, ApJ, 800, 76

Tong, H. 2015, RAA (Research in Astronomy and Astrophysics),

15, 1467

Visser, D. W., Wrede, C., Caggiano, J. A., et al. 2007,

Phys. Rev. C, 76, 065803

Wallace, R. K., & Woosley, S. E. 1981, ApJS, 45, 389

Wiescher, M., Gorres, J., Thielemann, F.-K., & Ritter, H. 1986,

A&A, 160, 56

Xiong, X.-Y., Gao, C.-Y., & Xu, R.-X. 2016, RAA (Research in

Astronomy and Astrophysics), 16, 009

Xu, M., & Huang, Y.-F. 2015, RAA (Research in Astronomy and

Astrophysics), 15, 986


