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Abstract The validity of the cosmic distance-duality (DD) relation is investigated by using 91 measure-

ments of the gas mass fraction of galaxy clusters recently reported by the Atacama Cosmology Telescope

(ACT) and the luminosity distance from the Union2.1 type Ia supernova (SNIa) sample independent of any

cosmological models and the value of the Hubble constant. We consider four different approaches to derive

the gas mass function and two different parameterizations of the DD relation, and find that they have very

slight influences on the DD relation test and the relation is valid at the 1σ confidence level. We also discuss

the constraints on α and β, which represent the effects of the shapes and colors of the light curves of SNIa,

respectively. Our results on α and β are different from those obtained from the ΛCDM model and the galaxy

cluster plus SNIa data.
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1 INTRODUCTION

About eighty years ago, Etherington (1933) proved, with

two basic assumptions that photons travel along a null

geodesic and the photon number is conserved, the famous

distance reciprocity law

DL

DA
(1 + z)−2 = 1 , (1)

which relates the luminosity distance (LD) DL to the an-

gular diameter distance (ADD) DA, and is thus also called

the distance duality (DD) relation. This reciprocity law is

valid for all cosmological models based on Riemannian ge-

ometry and is a fundamental keystone for the interpretation

of observational data in cosmology.

However, it is plausible that one of the conditions un-

derlying the DD relation may be violated (Csáki et al.

2002; Brax et al. 2013; Avgoustidis et al. 2010, 2012;

Bassett & Kunz 2004; Uzan et al. 2004). Therefore, it is

necessary and important to check the validity of the DD

relation directly from astronomical observations. Based on

the ΛCDM model, Uzan et al. (2004) first used the 18 ADD

galaxy cluster samples (Reese et al. 2002) to perform this

check and found that the DD relation is consistent with

observations at the 1σ confidence level (CL). This result

was further confirmed by de Bernardis et al. (2006) with

a bigger galaxy cluster sample (Bonamente et al. 2006).

Meanwhile, if the galaxy cluster data from different mod-

els used to describe the galaxy clusters, such as the ellip-

tical and spherical β models (Bonamente et al. 2006; De

Filippis et al. 2005), are considered, then it has been found

that the consistency between the validity of the DD rela-

tion and the elliptical and spherical β models occurs at the

1σ and 3σ CLs, respectively (Holanda et al. 2011). In ad-

dition, the DD relation was found to be valid at the 2σ CL

from the type Ia supernova (SNIa) standard candles and

the standard rulers from the cosmic microwave background

(CMB) and baryon acoustic oscillation (BAO) measure-

ments (Lazkoz et al. 2008). Once current CMB observa-

tional data were used, Ellis et al. (2013) discovered that

the DD relation cannot be violated by more than 0.01%
between decoupling and today. However, all of these re-

sults are model-dependent since they are usually obtained

by comparing the observed values with the corresponding

theoretical ones in an assumed cosmological model.

For a model-independent check on the DD relation,

Equation (1) shows that the observed LD and ADD of

some objects at the same redshift are needed. Current ob-

servations indicate that the LD can be estimated by means

of a standard candle, such as an SNIa, and the values

of ADD can be obtained from the X-ray plus Sunyaev-

Zel’dovich (SZ) effect exhibited by galaxy clusters, the

gas mass fraction measurement in galaxy clusters, or BAO
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observations. However, the redshifts of the observed LD

and ADD do not usually match. Recently, Holanda et al.

(2010) proposed a method to circumvent this problem,

in which for a given galaxy cluster data point, one SNIa

whose redshift is the closest to the cluster’s within the

range ∆z = |z−zSNIa| < 0.005 is selected, and found that

the DD relation is valid at the 2σ CL for the Constitution

SNIa (Hicken et al. 2009) and the elliptical galaxy clus-

ter sample (Bonamente et al. 2006), but is violated for the

Constitution SNIa and the spherical galaxy cluster sam-

ple (De Filippis et al. 2005) beyond the 3σ CL. Replacing

the Constitution SNIa data set with the Union2 data set

(Amanullah et al. 2010), the consistency between the DD

relation and observations was improved to be 1σ CL for

the elliptical model, and 3σ CL for the spherical model

(Li et al. 2011). Similar results have also been obtained in

(Holanda et al. 2012b; Nair et al. 2011; Fu et al. 2011; Cao

& Liang 2011; Holanda 2012; Holanda et al. 2012a; Lima

et al. 2011; Cardone et al. 2012; Li et al. 2013; Holanda &

Busti 2014; Jhingan et al. 2014; Meng et al. 2012; Liang

et al. 2013; Gonçalves et al. 2015a, 2012) with different

methods to match the redshifts of the observed LD and

ADD data. In addition, the Gaussian process has been used

to test the DD relation (Hees et al. 2014; Zhang 2014).

When testing the DD relation, the observed LD is pro-

vided by the SNIa data released with the distance modulus

µ, which depends on four nuisance parameters: H0, M , α
and β, where H0 is the Hubble constant, M is the SNIa’s

peak absolute magnitude, and α and β represent the effects

of the shapes and colors respectively of the light curve of

SNIa. Usually, H0 = 70 km s−1 Mpc−1 is taken, and M ,

α and β are determined in a given cosmological model.

Using the BAOs to provide the ADD and the Union2.1

SNeIa (Suzuki et al. 2012), Wu et al. (2015) analyzed the

effect of the uncertainty of H0 on the DD relation test by

letting H0 be a free parameter, and found that the value of

H0 significantly affects the result. In addition, Yang et al.

(2013) proposed an improved method to overcome the de-

fect that the distance moduli of SNeIa are dependent on a

given cosmological model and Hubble constant, and found

that the DD relation is consistent with galaxy clusters and

SNeIa at the 1σ CL.

Recently, the Atacama Cosmology Telescope (ACT)

survey reported the latest cluster mass data sample from

91 galaxy clusters (Hasselfield et al. 2013), and proposed

four models to estimate the corresponding cluster mass

M500, which determines the value of fgas by a semi-

empirical relation (Vikhlinin et al. 2009). Here, M500 is

defined as the mass measured within the radius R500, at

which the enclosed mean density is 500 times the critical

density at the cluster redshift. By combining the 91 mea-

surements of the gas mass fraction of the galaxy clusters

from ACT and the Union2.1 SNIa compilation, Gonçalves

et al. (2015b) tested the validity of the DD relation and

found that it can be verified within the 1σ CL. However,

the distance moduli of Union2.1 data that are used to de-

rive the LD in Gonçalves et al. (2015b) are given with

H0 = 70 km s−1 Mpc−1 and M , α and β are determined

in a flat ΛCDM model, which indicates that the result re-

mains model-dependent. In this paper, we plan to reanalyze

the validity of the DD relation from the 91 data points re-

lated to gas mass function of the galaxy clusters from ACT

and the SNIa data with the method in which M , α and β
are allowed to be free parameters. For the SNIa data, we

also use the Union2.1 complication (Suzuki et al. 2012).

2 OBSERVATIONAL DATA

We use two observational data sets to check the validity

of the DD relation. One is the gas mass fraction (fgas), ob-

tained from the M500 data sets provided by the ACT galaxy

cluster survey. The other is the LD (DL) derived from the

Union2.1 SNIa sample.

2.1 The Gas Mass Fraction fgas

The gas mass fraction is defined as f = Mgas/Mtot

(Sasaki 1996), where Mgas is the gas mass and Mtot is the

total mass (including baryonic mass and dark matter) of a

galaxy cluster. The ratio fgas is constant over cosmic his-

tory since Mgas depends on the gravitational potential of a

galaxy cluster. The gas mass Mgas(< R) within a radius R
can be derived by X-ray observations and is related to the

distance through Mgas(< R) ∝ DLD
3/2

A (Sasaki 1996).

However, the total mass Mtot within a given radius R can

be written as Mtot(< R) ∝ DA. Thus, from the definition

of the gas mass fraction, we have that

f = Mgas/Mtot ∝ DLD
1/2

A . (2)

If the DD relation is valid, the usual expression in the liter-

ature fgas ∝ D
3/2

A can be obtained.

Following Gonçalves et al. (2012), we assume that the

general expression of the gas mass function has the form

fgas(z) = N
D

∗1/2

A D∗
L

D
1/2

A DL

. (3)

Here, the symbol * denotes the corresponding quantities in

the fiducial model, which is the ΛCDM with ΩM0 = 0.3
in our analysis. N is a normalization factor, which contains

all the information involved in the astrophysical modeling

of the cluster. Since it is a nuisance quantity in our analysis,

we marginalize over it.

The observed value of fobs
gas can be obtained from the

total mass by using the following semi-empirical relation

(Vikhlinin et al. 2009)

fobs
gas ≡ (0.7/h)−1.5f̃obs

gas

= (0.7/h)−1.5[0.130 + 0.039 log10 M15] , (4)

where M15 is the total mass of the cluster M500 in the

units of 1015h−1M⊙. Apparently, the key point is to ob-

tain a reliable and precise value of the total mass of the

cluster M500. The ACT team (Hasselfield et al. 2013) used
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four different approaches to estimate M500 from the clus-

ter SZ signal strength. The first method proposed by the

ACT team adopts a one-parameter family of possible so-

lutions for the Universal Pressure Profile (UPP) with asso-

ciated scaling laws, derived from X-ray measurements of

nearby clusters, as a baseline model. The cluster mass ob-

tained using this method is termed MUPP
500 . The second one

is based on the structure formation simulations of Bode

et al. (2012), where the density and temperature of the in-

tracluster medium are modeled as a virialized ideal gas

(MB12
500 ). The third one considers non-thermal pressure and

an adiabatic model described in Trac et al. (2011) (Mnon
500 ).

The last method uses the galaxy velocity dispersions to

estimate dynamically the cluster mass (Sifón et al. 2013)

(Mdyn
500 ).

2.2 SNIa

The SNIa is regarded as a standard candle in our universe, which provides a direct measurement of the cosmic expansion

history. Usually, SNIa data are released in the form of the distance modulus µ, which is relative to the LD through the

expression

µ = 5 log10

DL

Mpc
+ 25 . (5)

In astronomy, the peak absolute magnitudes M of SNeIa are nearly identical. If the rest-frame peak magnitude mmax

is known, then the distance modulus (µ) can be obtained by the formula µ = mmax −M . However, the peak luminosities

of different SNeIa are not exactly the same and are related to the shapes and colors of the light curves of the SNeIa (Guy

et al. 2005). So, the formula for the distance modulus needs to be corrected, which depends on the light curve fitting

method, such as MLCSC2K2 (Jha et al. 2007) or SALT2 (Guy et al. 2007), proposed to parameterize the light curves

of SNIa. For the SALT2 light curve fitter, which has been used in the Union2 and Union2.1 SNIa samples, the modified

distance modulus formula has the form

µB(α, β, MB) = mmax
B − MB + αx − βc ≡ µ̃B(α, β) − MB , (6)

where MB and mmax
B correspond to the absolute and observed peak magnitudes in the rest frame B band, respectively. x

is the stretch factor, which describes the effects of shapes of light curves on µ, and c is the color parameter, which denotes

the influences of the intrinsic color and reddening by dust.

In our analysis, the data set used for SNeIa is the Union2.1 compilation (Suzuki et al. 2012) which contains 580

data points distributed in the redshift range (0.01 < z < 1.41). In obtaining the observed µ, α, β and MB are fitted by

minimizing the residuals in the Hubble diagram in the framework of the ΛCDM model with H0 = 70 km s−1 Mpc−1.

Here, we allow MB , α and β to be free parameters and treat them as nuisance ones.

3 THE METHOD AND RESULTS

To check the validity of the DD relation from observations, we parametrize it as

DL

DA
(1 + z)−2 = η(z) , (7)

and consider two different parameterizations

η(z) = 1 + η1z , η(z) = 1 + η2

z

1 + z
, (8)

with η1 and η2 being two constants that need to be constrained. If the observational data allow η1 = 0 and η2 = 0, the

DD relation is valid. Clearly, the observed DL and DA at the same redshift are needed. However, the observed LD from

SNeIa and ADD from the gas mass function of galaxy clusters usually do not share the same redshift. Here, we use the

following method to match them. For a data point representing a given galaxy cluster, we select the corresponding SNIa

point with its redshift being the closest to the cluster’s within the range ∆z = |zSNIa − zcluster| ≤ ∆.

In order to reduce the systematic error from the difference in redshift between the SNIa and the gas mass function

of a galaxy cluster, a very small value of ∆ (∆ = 0.001) is considered. Only 55 galaxy cluster data satisfy this selection

criterion (∆z ≤ 0.001). Thus, to keep almost all data from the gas mass function of galaxy, we consider another larger

value of ∆ (∆ = 0.01) to select the SNIa. In this case there are 90 galaxy cluster data satisfying the selection criterion

except for the cluster ACT@CCL J0342.0+0105 (Hasselfield et al. 2013), which gives ∆z = 0.013.
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Combining Equations (3), (5) and (7), one can obtain

µcluster(η, Nh, z) =
5

3
log10

N2(1 + z)6D∗3
A η(z)

f2
gas

+ 25

=
5

3
log10

(1 + z)6D∗3
A η(z)

f̃2
gas

+
10

3
log10(Nh) + 25

≡ µ̃cluster(z, η) +
10

3
log10(Nh) , (9)

which is the distance modulus of a galaxy cluster data point built from the measurement of f̃gas and the DD relation. Here,

Nh = N(h/0.7)3/2.

Now, we use the χ2 statistic to constrain η1 and η2,

χ2(α, β, MBN , η) =
∑

i

[

µB(α, β, MB ; zi) − µcluster(η, Nh; zi)
]2

σ2
total(zi)

=
∑

i

[

µ̃B(α, β; zi) − µ̃cluster(η; zi) − MBN

]2

σ2
total(zi)

, (10)

where

MBN = MB +
10

3
log10 (Nh) (11)

and the uncertainty σ2
total(zi) is given by

σ2
total(z) = σ2

m(z) + α2σ2
x(z) + β2σ2

c (z) +

[

10σf̃gas
(z)

3 ln 10f̃gas(z)

]2

. (12)

Here σm, σx, σc and σfgas
are the errors of mmax

B , x, c and fgas respectively.

The joint probability density of these parameters can be obtained from Equation (10),

P (α, β, MBN , η) = A exp

(

−
1

2
χ2(α, β, MBN , η)

)

, (13)

where A is a normalization coefficient, which makes
∫

P dαdβdMBNdη = 1. Since α, β and MBN are nuisance param-

eters, we integrate over them to obtain the probability distribution of η

P (η) =

∫ +∞

−∞

P (α, β, MBN , η) dαdβdMBN . (14)

Actually, it is unnecessary to integrate α, β and MBN from −∞ to +∞. For instance, the value of A for these parameters

in a 4σ interval is the same as that in a 6σ interval when the result is accurate to 10−6. Thus we just calculate the values

of χ2(α, β, MBN , η) for these parameters in a suitable interval instead of an infinite interval. The last step is to calculate

1σ and 2σ CLs of the parameter, which satisfy χ2 − χ2
min ≤ 1 and χ2 − χ2

min ≤ 4, respectively (Press et al. 1992).

Using the above procedure, the best-fitting values of

η, α, β and MBN are obtained when χ2 take its minimum

value. The probability distributions of η1 and η2 are de-

rived from Equation (14), which are shown in Figures 1–4.

Figures 1 and 2 present the results of η1 with ∆z ≤
0.01 and ∆z ≤ 0.001, respectively. Figures 3 and 4 are

the results of η2 with ∆z ≤ 0.01 and ∆z ≤ 0.001, re-

spectively. We can see that the DD relation is consistent

with the observations at the 1σ CL except for the case of

the constraint on η2 from the gas mass function obtained

by the UPP method which supports this relation at the

2σ CL. The same as what was obtained by Yang et al.

(2013), the best-fitting values of η1 and η2 are positive

when α, β and MBN are allowed to be free parameters.

However, this is different from what is given in Gonçalves

et al. (2015b) where the best-fitting values of η1 and η2

are negative, which are determined with MB = −19.321,

α = 0.121 and β = 2.47 obtained from the ΛCDM model

with H0 = 70 km s−1 Mpc−1. Thus, different values of α,

β and MB have apparent effects on the DD relation test,

which is similar to what was obtained by Wu et al. (2015)

where it was found that the validity of the DD relation sen-

sitively depends on the value of H0.

In Tables 1–4, the best-fitting values of α, β and MBN

and their 1σ CLs are shown. Figures 5–10 show the al-

lowed regions in planes (ηi, α), (ηi, β) and (ηi, MBN ) with
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Fig. 1 Likelihood distribution of η1 when ∆z ≤ 0.01.
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Fig. 2 Same as Fig. 1, but for ∆z ≤ 0.001.

Table 1 Constraints on η1, α, β and MBN with ∆z ≤ 0.01

data set η1 α β MBN

the best-fitting values 0.111 0.161 2.756 –22.462

fUPP
gas + SNIa 1σ 0.111+0.129

−0.115 0.163+0.026
−0.025 2.784+0.220

−0.205 −22.466+0.038
−0.040

the best-fitting values 0.027 0.161 2.776 –22.345

fnon
gas + SNIa 1σ 0.027+0.119

−0.105 0.162+0.026
−0.025 2.804+0.220

−0.205 −22.349+0.037
−0.038

the best-fitting values 0.019 0.155 2.777 –22.378

f
dyn
gas + SNIa 1σ 0.020+0.128

−0.092
0.157+0.027

−0.026
2.810+0.241

−0.225
−22.382+0.040

−0.044

the best-fitting values 0.079 0.159 2.752 –22.392

fB12
gas + SNIa 1σ 0.079+0.125

−0.111
0.161+0.026

−0.024
2.780+0.220

−0.205
−22.396+0.038

−0.040

i = 1 or 2. One can see that the constraints on MBN are in-

dependent of the parameterizations and the values of ∆(z),
but they are affected by different methods used to derive

the gas mass function, and tension appears at the 1σ CL

between the UPP model (Hasselfield et al. 2013) and the

one given in (Trac et al. 2011). Different parameterizations

and different methods used to obtain the gas mass function

have slight effects on the values of α and β, but they are

strongly affected by the values of ∆(z). ∆z ≤ 0.01 favors

large values of α and β. It is just opposite for ∆z ≤ 0.001.

In the Union2.1 SNIa sample (Suzuki et al. 2012), the

distance modulus is given with α = 0.121 ± 0.007 and

β = 2.47±0.06 at the 1σ CL obtained from the flat ΛCDM

model. The value of α is less than our result. The value of

β is also less than ours from ∆z ≤ 0.01, but it is larger

when ∆z ≤ 0.001. In addition, Yang et al. (2013) found

that at the 1σ CL α = 0.34+0.08
−0.06 and β = 4.19+0.58

−0.62 for

the galaxy cluster data from the spherical model, and α =
−0.04+0.10

−0.09 and β = 4.35+1.20
−1.73 in the case of the elliptical

model, which are apparently different from our results.
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Fig. 3 Likelihood distribution of η2 when ∆z ≤ 0.01.
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Fig. 4 Same as Fig. 3, but for ∆z ≤ 0.001.
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Fig. 5 Confidence regions at the 1σ and 2σ levels in the plane (η1, α).
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Fig. 6 Same as Fig. 5, but for the plane (η1, β).
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Fig. 7 Same as Fig. 5, but for the plane (η1, MBN ).

Table 2 Constraints on η1, α, β and MBN with ∆z ≤ 0.001

data set η1 α β MBN

the best-fitting values 0.155 0.137 2.392 –22.484

fUPP
gas +SNIa 1σ 0.155+0.194

−0.166 0.140+0.027
−0.027 2.431+0.252

−0.231 −22.491+0.054
−0.059

the best-fitting values 0.061 0.138 2.422 –22.365

fnon
gas +SNIa 1σ 0.061+0.181

−0.155 0.140+0.028
−0.026 2.461+0.254

−0.233 −22.372+0.054
−0.058

the best-fitting values 0.0537 0.128 2.328 –22.399

f
dyn
gas +SNIa 1σ 0.057+0.201

−0.169 0.131+0.029
−0.026 2.375+0.277

−0.253 −22.409+0.061
−0.066

the best-fitting values 0.118 0.136 2.392 –22.414

fB12
gas +SNIa 1σ 0.118+0.188

−0.162
0.139+0.028

−0.026
2.431+0.252

−0.231
−22.421+0.084

−0.058

4 DISCUSSIONS AND CONCLUSIONS

The distance reciprocity law is a relation between the

LD and ADD, and plays a very important role in astro-

physics and cosmology. To check the validity of the DD

relation, the observed DL and DA at the same redshift

are needed. The observed DL can be provided by the

SNIa sample, and the observed DA can come from the

galaxy clusters or BAO observations. Recently, the ACT

survey reported the largest gas mass function data set of

galaxy clusters. Combining this sample with the Union2.1

SNIa data, Gonçalves et al. (2015b) tested the DD rela-

tion and found that it is accommodated at the 1σ CL.

However, in Gonçalves et al. (2015b), the observed lumi-

nosity distance is determined in the ΛCDM model with

H0 = 70 km s−1 Mpc−1, and it has been found that the
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Fig. 8 Confidence regions at the 1σ and 2σ levels in the plane (η2, α).
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Fig. 9 Same as Fig. 8, but for the plane (η2, β).
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Fig. 10 Same as Fig. 8, but for the plane (η2, MBN ).

test of the DD relation is sensitively dependent on the value

of H0 (Wu et al. 2015).

In this paper, we generalize the Gonçalves et al.

(2015b) work by using the observed DL from the Union2.1

SNIa sample independent of any cosmological models and

the value of H0. We consider four different approaches to

obtain the gas mass function and two different parameter-

izations of the DD relation given in Equation (8). We find

that the DD relation is valid at the 1σ CL except for the

case of the constraint on η2 from the gas mass function ob-
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Table 3 Constraints on η2, α, β and MBN with ∆z ≤ 0.01

data set η2 α β MBN

the best-fitting values 0.284 0.159 2.751 –22.484

fUPP
gas +SNIa 1σ 0.281+0.289

−0.252
0.160+0.026

−0.024
2.778+0.219

−0.204
−22.488+0.050

−0.055

the best-fitting values 0.102 0.160 2.778 –22.356

fnon
gas +SNIa 1σ 0.100+0.263

−0.230 0.161+0.026
−0.025 2.806+0.218

−0.205 −22.361+0.048
−0.052

the best-fitting values 0.081 0.154 2.780 –22.388

f
dyn
gas +SNIa 1σ 0.081+0.287

−0.246 0.156+0.027
−0.025 2.812+0.240

−0.224 −22.394+0.054
−0.059

the best-fitting values 0.209 0.158 2.750 –22.409

fB12
gas +SNIa 1σ 0.207+0.279

−0.243 0.159+0.026
−0.024 2.777+0.218

−0.204 −22.413+0.049
−0.054

Table 4 Constraints on η2, α, β and MBN with ∆z ≤ 0.001

data set η2 α β MBN

the best-fitting values 0.395 0.135 2.389 –22.515

fUPP
gas +SNIa 1σ 0.392+0.427

−0.353
0.138+0.027

−0.026
2.426+0.252

−0.229
−22.524+0.071

−0.080

the best-fitting values 0.197 0.137 2.423 –22.386

fnon
gas +SNIa 1σ 0.195+0.390

−0.324
0.140+0.027

−0.027
2.462+0.252

−0.232
−22.396+0.071

−0.076

the best-fitting values 0.193 0.128 2.333 –22.422

f
dyn
gas +SNIa 1σ 0.198+0.454

−0.362
0.131+0.029

−0.026
2.380+0.277

−0.253
−22.422+0.068

−0.106

the best-fitting values 0.313 0.135 2.391 –22.440

fB12
gas +SNIa 1σ 0.310+0.412

−0.342 0.138+0.027
−0.026 2.429+0.250

−0.230 −22.450+0.071
−0.078

tained by the UPP method which supports this relation at

the 2σ CL. We also discuss the constraints on MBN , α and

β. The constraints on MBN are mainly affected by differ-

ent methods used to derive the gas mass function, and dis-

agreement appears at the 1σ CL between the UPP model

(Hasselfield et al. 2013) and the one given in Trac et al.

(2011). However, these different methods have slight ef-

fects on the values of α and β, which are apparently in-

fluenced by the values of ∆(z). Our results on α and β
are different from those obtained from the ΛCDM model

(Suzuki et al. 2012) and the galaxy cluster plus SNIa data

(Yang et al. 2013).
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