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Abstract The anisotropies of the B-mode polarization in the cosmic microwave background radiation play

a crucial role in the study of the very early Universe. However, in real observations, a mixture of the E-

mode and B-mode can be caused by partial sky surveys, which must be separated before being applied to

a cosmological explanation. The separation method developed by Smith (2006) has been widely adopted,

where the edge of the top-hat mask should be smoothed to avoid numerical errors. In this paper, we compare

three different smoothing methods and investigate leakage residuals of the E-B mixture. We find that, if

less information loss is needed and a smaller region is smoothed in the analysis, the sin- and cos-smoothing

methods are better. However, if we need a cleanly constructed B-mode map, the larger region around the

mask edge should be smoothed. In this case, the Gaussian-smoothing method becomes much better. In

addition, we find that the leakage caused by numerical errors in the Gaussian-smoothing method is mostly

concentrated in two bands, which is quite easy to reduce for further E-B separations.
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1 INTRODUCTION

Cosmic microwave background (CMB) radiation encoded

fruitful information related to modern cosmology, which

plays a crucial role for the determination of cosmolog-

ical parameters (Planck Collaboration et al. 2015). The

fluctuations of CMB include three parts: the temperature

anisotropies, the E-mode polarization and the B-mode po-

larization. By precise observations with the WMAP and

Planck satellites, CMB temperature anisotropies, E-mode

polarization and their correlation power spectra have been

well observed (Planck Collaboration et al. 2015). However,

the detection of B-mode is still quite poor (BICEP2/Keck

and Planck Collaborations et al. 2015; Ade et al. 2014;

Naess et al. 2014; Hanson et al. 2013), therefore improv-

ing this is the main goal of the next generation of ex-

periments (Bock et al. 2006). In the standard model, the

CMB B-mode can only be generated by primordial gravi-

tational waves and cosmic weak lensing (second order ef-

fect). So, it provides a unique opportunity to directly probe

the physics of the very early Universe through primordial

gravitational waves (Kamionkowski et al. 1997a; Seljak &

Zaldarriaga 1997).

Compared to the CMB temperature anisotropies and

the E-mode polarization, the amplitude of the B-mode po-

larization is much smaller. Its detection is limited by var-

ious contaminations, including foreground radiation, in-

strumental noise, instrumental systematics and the E-B
mixtures due to partial sky surveys (Bock et al. 2006). In

this paper, we shall focus on the problem of E-B mix-

tures. Numerous numerical methods have been developed

to separate E- and B-mode polarization from observable

Q and U polarization maps. Among them, the methods

developed by Smith & Zaldarriaga (SZ method) (Smith

2006; Smith & Zaldarriaga 2007), Zhao & Baskaran (ZB

method) (Zhao & Baskaran 2010), and Kim & Naselsky

(KN method) (Kim & Naselsky 2010) have used the so-

called χ-field framework, and can be effectively applied to

potential data analysis or numerical simulations. In each

method, in order to reduce numerical errors, the usual top-

hat CMB masks should be replaced by smoothed masks,

where the edges of the masks are smoothly joined. In this

work, we will compare three different smoothing methods

adopted in different literature, and investigate the residu-

als of the E-B mixtures in those three methods. By this

comparison, we will search for the best smoothing method,

which induces the smallest leakage in E-B separation.

2 STANDARD PROCEDURE FOR E- AND

B-MODE SEPARATION AND PURE PSEUDO-Cl

METHOD

First we present a brief review of two related defini-

tions of E- and B-mode. Since CMB polarization does

not contain a circular polarization component, it can be

completely characterized by Stokes parameters Q and U

(Kamionkowski et al. 1997b). We can introduce the com-

plex conjugate polarization fields P± defined as follows

P± (n̂) ≡ Q (n̂) ± iU (n̂) , (1)

where n̂ denotes the direction of a 2-dimensional sphere.

It can be proved that the fields P± have spin of ±2, which
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means that when we rotate the coordinate system by an

arbitrary angle α in the plane perpendicular to direction n̂,

the polarization fields would change as

P
′

± (n̂) = P± (n̂) e∓2iα. (2)

It is easier to study a scalar field rather than a spin-

weighted field. One can construct such electric type and

magnetic type scalar fields through Fourier expansion

of P± and a recombination of expansion coefficients.

Expanding P± over a basis of spin-weighted spherical har-

monic functions gives (Zaldarriaga & Seljak 1997)

P± (n̂) =
∑

lm

a±2,lm ±2Ylm (n̂) , (3)

where ±2Ylm are ±2 spin-weighted spherical harmonic

functions. One can also calculate multipole coefficients

a±2,lm as

a±2,lm =

∫

dn̂P± (n̂) ±2Y
∗
lm (n̂) . (4)

The coefficients of scalar E and B fields are defined as a

recombination of a±2,lm

Elm ≡ −1

2
[a2,lm + a−2,lm],

Blm ≡ − 1

2i
[a2,lm − a−2,lm]. (5)

Then the E- and B-mode of the polarization field are de-

fined as,

E(n̂) ≡
∑

lm

ElmYlm(n̂), B(n̂) ≡
∑

lm

BlmYlm(n̂),

(6)

and their associated power spectra are defined as,

CEE
l ≡ 1

2l + 1

∑

m

〈ElmE∗
lm〉 ,

CBB
l ≡ 1

2l + 1

∑

m

〈BlmB∗
lm〉 , (7)

where the brackets denote the ensemble average. Since

the E and B fields are Gaussian random fields, the power

spectra defined above encode all the statistical information

about the fields.

Another related definition is to use spin lowering and

raising operators to construct electric type and magnetic

type scalar fields (Zaldarriaga & Seljak 1997)

E(n̂) ≡ −1

2
[ð̄ð̄P+(n̂) + ððP−(n̂)], (8)

B(n̂) ≡ − 1

2i
[ð̄ð̄P+(n̂) − ððP−(n̂)]. (9)

ð̄ and ð are the spin lowering and raising operators respec-

tively, which are defined as follows

ð̄f ≡ − sin−s θ

(

∂

∂θ
− i

sin θ

∂

∂φ

)

(f sins θ), (10)

ðf ≡ − sins θ

(

∂

∂θ
+

i

sin θ

∂

∂φ

)

(f sin−s θ), (11)

where f is an arbitrary function with spin s.

We can decompose the E and B fields over the basis of scalar spherical harmonics

E(n̂) ≡
∑

lm

ElmYlm(n̂), B(n̂) ≡
∑

lm

BlmYlm(n̂), (12)

where the decomposition coefficients are calculated as

Elm =

∫

dn̂E(n̂)Y ∗
lm(n̂), Blm =

∫

dn̂B(n̂)Y ∗
lm(n̂). (13)

We can construct the power spectra in the same manner as the former method

CEE
l ≡ 1

2l + 1

∑

m

〈ElmE∗
lm〉 ,

CBB
l ≡ 1

2l + 1

∑

m

〈BlmB∗
lm〉 . (14)

Thanks to a property of spin lowering and raising operators

ð̄ sYlm(n̂) = −
√

(l + s)(l − s + 1) s−1Ylm(n̂),

ð sYlm(n̂) =
√

(l − s)(l + s + 1) s+1Ylm(n̂), (15)

the relationships of the multipoles and power spectra between these two definitions are

Elm = Nl,2Elm, Blm = Nl,2Blm, (16)
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CEE
l = N2

l,2C
EE
l , CBB

l = N2
l,2C

BB
l , (17)

where Nl,s =
√

(l + s)!/(l − s)! .

In the actual observation, we must mask out a fractional portion of sky due to foreground contamination. The observed

values of Stokes parameters Q̃ and Ũ are related to the real values Q and U by introducing a window function W (n̂)

Q̃ = QW, Ũ = UW. (18)

The value of W is only non-zero in the observed re-

gion of sky.

However, if one applies P̃± = Q̃ ± iŨ directly to the

above two definitions of the E- and B-mode, it will lead

to the so-called E-B mixture problem arising from the

cut-sky effect (Lewis et al. 2002; Bunn et al. 2003), dra-

matically restricting the detectability of the B-mode sig-

nal. Several methods were proposed to solve this problem

(Lewis 2003; Lewis et al. 2002; Bunn et al. 2003; Bunn

2008; Grain et al. 2009; Smith 2006; Smith & Zaldarriaga

2007; Geller et al. 2008; Cao & Fang 2009; Zhao &

Baskaran 2010; Kim & Naselsky 2010). We notice that

the article Ferté et al. (2013) has compared three different

methods which are numerically fast enough (Smith 2006;

Smith & Zaldarriaga 2007; Zhao & Baskaran 2010; Kim

& Naselsky 2010) and drew the conclusion that the SZ

method (Smith 2006; Smith & Zaldarriaga 2007) is the best

from the perspective of significantly reducing E to B leak-

age and ensuring the smallest error bars at the same time.

Therefore we choose to apply this best method to the E-

and B-mode separating operation in the following descrip-

tion.

We briefly review how the SZ method separates the E- and B-mode on an incomplete sky. First the concept of pure

pseudo-multipoles is put forward and defined as

Epure
lm ≡ −1

2

∫

dn̂
{

P+(n̂)
[

ð̄ð̄ (W (n̂)Ylm(n̂))
]∗

+ P−(n̂)
[

ðð

(

W (n̂)Ylm(n̂)
)]∗}

,

Bpure
lm ≡ − 1

2i

∫

dn̂
{

P+(n̂)
[

ð̄ð̄

(

W (n̂)Ylm(n̂)
)]∗

− P−(n̂)
[

ðð

(

W (n̂)Ylm(n̂)
)]∗}

. (19)

Recall the definition of pseudo-multipoles which are concentrated in the pseudo-Cl estimator technique (Efstathiou 2004)

Ẽlm ≡
∫

dn̂E(n̂)W (n̂)Y ∗
lm(n̂) , B̃lm ≡

∫

dn̂B(n̂)W (n̂)Y ∗
lm(n̂) . (20)

It can be proved (Smith & Zaldarriaga 2007) that the expressions of Equation (19) and Equation (20) are equivalent. This

shows that, in principle, the pure pseudo-multipole method can successfully extract the pure E- and B-mode signal and

avoid the E-B mixing part. To calculate the expression of Equation (19), one needs to use the property of spin raising and

lowering operators

ð̄ (fg) =
(

ð̄f
)

g + f
(

ð̄g
)

, ð (fg) = (ðf) g + f (ðg) , (21)

where f and g are arbitrary spin-weighted functions with spin s1 and s2, and fg is a spin s1 +s2 weighted function,

together with the complex conjugate relationship ð
∗ = ð̄.

Using Equations (15) and (21), and substituting them into Equation (19), one finally obtains (only focusing on the

B-mode)

Bpure
lm = − 1

2i

∫

dn̂

[

P+

(

(ð̄ð̄W )Y ∗
lm + 2Nl,1(ð̄W )( 1Y

∗
lm) + Nl,2W ( 2Y

∗
lm)

)

(22)

−P−

(

(ððW )Y ∗
lm − 2Nl,1(ðW )(−1Y

∗
lm) + Nl,2W (−2Y

∗
lm)

)]

,

where

ðW = −∂W

∂θ
− i

sin θ

∂W

∂φ
, (23)

ððW = − cot θ
∂W

∂θ
+

∂2W

∂θ2
− 1

sin2 θ

∂2W

∂φ2
− 2i cot θ

sin θ

∂W

∂φ
+

2i

sin θ

∂2W

∂θ∂φ
. (24)

Equation (22) is the basis for all following E- and B-mode separating operations.
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Fig. 1 A window function for CMB polarization published by the Planck Collaboration.
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Fig. 2 The plot of cos-smoothing, sin-smoothing and Gaussian-smoothing in real space.

Fig. 3 A smoothed window function using the Gauss-smoothing method with parameters δc = 1◦ and β = 10−4.

3 SMOOTHING METHODS COMPARISON

In this section we shall discuss the effect on E- and B-

mode separation caused by a different choice of win-

dow function W (n̂). The simplest case is W (n̂) = 1 in

the observed region of sky and W (n̂) = 0 outside (re-

ferred to as a “top-hat window function”) as shown in

Figure 1 published by the Planck Collaboration. However,

in Equation (22), the calculation of the derivative of W (n̂)

is inevitable, so we must smooth the edge of W (n̂) (also

called “apodization”). The notable point is that the zero-

value pixels of the original window function should be zero

after being smoothed. Another restriction on the smoothing

method of W (n̂) given by the SZ method (Smith 2006) is

that both W and its gradient should vanish at the boundary

of the observed sky. We compare three different smoothing

methods for the window functions, which have appeared in

the literature and satisfy the above conditions. The first two
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Fig. 4 The power spectrum of smoothing window function W (n̂) with different smoothing methods and different parameters. (a)

δc = 0.2◦; (b) δc = 0.5◦; (c) δc = 1.0◦; (d) δc = 1.5◦.

methods use a trigonometric function to smooth the edge of

the top-hat window function, referred to as cos-smoothing

and sin-smoothing (Grain et al. 2009) respectively. Their

expressions are

Wi =







1

2
− 1

2
cos(

δi

δc

π) δi < δc ,

1 δi > δc ,

(25)

and

Wi =







− 1

2π
sin

(

2π
δi

δc

)

+
δi

δc

δi < δc ,

1 δi > δc ,

(26)

where δi is the distance from each 1-valued pixel to the closest 0-valued pixel in the top-hat window function, and δc is a

constant set in advance representing the smoothing range.

The third smoothing method is put forward by Kim (2011). This article theoretically analyzed the generation of

numerical error in E- and B-mode separation by introducing the Gibbs phenomenon, which says the partial sum of a

Fourier series of a function with jump discontinuities has large oscillations near the jump. Therefore one can reduce the

Gibbs phenomenon by choosing a window function whose multipoles higher than the truncation point are suppressed.

The author uses a Gaussian smoothing kernel to smooth the edge of the window function whose expression is

Wi =































∫ δi− δc

2

−∞

1√
2πσ2

exp

(

− x2

2σ2

)

dx =
1

2
+

1

2
erf

(

δi − δc

2√
2σ

)

δi < δc ,

1 δi > δc ,

(27)
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Fig. 5 The pure B-mode field constructed by the SZ method and cos-, sin- and Gaussian-smoothing window functions, from top to

bottom, respectively, where δc = 1◦ and β = 10−4. The panels on the right side have the scaling magnified in order to show the

residual leakage.

Fig. 6 The pure B-mode field constructed by the SZ method with a Gaussian-smoothed window function. The contamination bands

have been masked out in the right panel, but in the left one they have not been masked out. These are plotted on the same scale.

where σ = FWHM√
8 ln 2

and FWHM denotes the full width at

half maximum of the smoothing kernel. Let β denote the

jump range at δi = δc and δi = 0, then

β =
1

2
− 1

2
erf

( δc

2√
2σ

)

. (28)

The β is a small and adjustable parameter. Set δc = 1◦ and

let β = 10−4 and 10−6. Separate plots of the values of

Equations (25), (26) and (27) are given in Figure 2.

Inspired by the explanation of the Gibbs phenomenon,

we also analyze the smoothed window functions in har-

monic space. We apply cos-smoothing, sin-smoothing and

Gaussian-smoothing to the top-hat window function, then

decompose the smoothed window function W (n̂) (shown

in Fig. 2) on the spherical harmonic basis and define the

power spectrum Wl as follows

Wl =
1

2l + 1

∑

m

wlmw∗
lm, (29)

where

wlm =

∫

dn̂W (n̂)Y ∗
lm(n̂). (30)

The power spectrum of the smoothed window function

using cos, sin and Gaussian methods with different pa-

rameters is shown as Figure 4. We can see from the figure

that the Gaussian-smoothed window function has a lower

power spectrum on a small scale.
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Fig. 7 The pseudo power spectrum of Bpure(n̂) obtained using different smoothed window functions. (a) δc = 0.2◦; (b) δc = 0.5◦; (c)

δc = 1.0◦; (d) δc = 1.5◦. We also plot the power spectrum with signal, using the smoothed mask with δc = 1.0◦ and β = 10−4, which

are the theoretical power spectrum with r = 0.1 (black dashed line) and r = 0 (red dashed line), and the average power spectrum of

1000 simulations with r = 0.1 (black solid line) and r = 0 (red solid line). All of the four extra lines include the contribution of cosmic

lensing.

We shall investigate the numerical error due to finite

pixelization in E- and B-mode separation through simu-

lated polarization maps. We first use the synfast subrou-

tine in the HEALPix software package to generate the full

sky Q(n̂) and U(n̂) maps with the best-fit cosmological

parameters published by Planck 2013:

Ωbh
2 = 0.022068, Ωch

2 = 0.12029,
ΩΛ = 0.6825, τreion = 0.0925,
As = 2.215 × 10−9, ns = 0.9624.

(31)

We set the resolution of simulated maps to be Nside =
1024 and a Gaussian beam with θF = 30′. Assuming there

is neither contribution from gravitational waves nor cosmic

lensing, i.e. CBB
l = 0 in the input model, we use the SZ

method and a specific smoothed window function to con-

struct the pure B-mode field as

Bpure(n̂) =
∑

lm

Bpure
lm Ylm(n̂), (32)

where the expression of Bpure
lm is shown in Equation (22).

The Bpure(n̂) is related to B(n̂) in Equation (9) by

Bpure(n̂) = B(n̂)W (n̂). (33)

Figure 5 is a visualization of Bpure(n̂). Since we assume

CBB
l = 0, all the non-zero value pixels in Figure 5 are

attributed to numerical error.

Interestingly enough, the third panel in Figure 5 shows

that the numerical errors are mostly concentrated in two

bands, due to the design of the HEALPix software pack-

age. The HEALPix package divides the sky into three

parts, and reassembles them after applying the operation,

so there will be some residuals on the resulting joint.

Besides, due to this kind of residual located in two nar-

row bands, we can mask them out to remove most of the

contamination with little information being lost.

In Figure 6, we mask out two bands centered at 48◦

and 132◦ and the width of each band is 6◦, then the map

looks much cleaner. How to quantify this further reduction

of numerical errors in the constructed pure B-mode map is

another important topic in this area, so we leave it as future

work.

In order to quantify the numerical errors of a pure B-

mode map in harmonic space, we define the pseudo power

spectrum as

Dpure
l =

1

2l + 1

∑

m

Bpure
lm Bpure∗

lm . (34)

We use the Monte Carlo method to investigate the effect on

numerical errors using different smoothed window func-

tions. The result is shown in Figure 7. Each line is an av-

erage over 500 realizations with the same cosmological

initial conditions but different random seeds. To compare

the magnitude of the signal with numerical error, we also

plot the theoretical pseudo power spectrum (see eq. (38) in
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Zhao & Baskaran 2010) and the average power spectrum of

1000 simulations with initial condition r = 0 and r = 0.1
(r is the primordial tensor-to-scalar ratio) respectively and

all with the contribution of cosmic lensing.

In Figure 7, for Bpure(n̂) with initial conditions

CBB
l = 0, all the non-zero values of pseudo power spec-

tra are due to numerical error. Therefore, it can be used

to quantitatively measure the intensity of contamination.

We can recognize that the tendency of the pseudo power

spectrum brought by different smoothed window func-

tions in Figure 7 is almost the same as Figure 4, which

means the smoothed window function with smaller multi-

pole values in harmonic space will yield smaller numeri-

cal error in E- and B-mode separation. We obtain the re-

sults: If δc is small, i.e. there is less information loss, sin-

and cos-smoothing methods are better than the Gaussian-

smoothing method. On the other hand, if we need a cleaner

map, where δc should be larger (such as δc = 1◦ or 1.5◦),

Gaussian-smoothing method is better. These can be un-

derstood in the following way: comparing with the sin-

or cos-smoothing functions, the Gaussian-smoothing func-

tion is much steeper. So when δc is smaller, the Gaussian

function becomes close to a top-hat function, which will

yield a larger numerical error. However, when δc is larger

(i.e. δc > 1◦), all these three smoothing functions be-

come relatively flat. However, the Gaussian-smoothing

function is continuous for any order derivatives around the

boundaries, so the numerical errors can be dramatically re-

duced in the numerical calculations. This can also explain

why the leakage residuals in the constructed B-mode map

are quite small when the Gaussian-smoothing function is

adopted (see Fig. 5).

4 CONCLUSIONS

Detection of B-mode polarization is the main aim of fu-

ture CMB observations. During the real analysis, an in-

complete sky survey induces a mixture of the E-mode

and B-mode. In order to separate the E- and B-mode of

CMB on an incomplete sky, we need to smooth the edge of

the window function. In this article we present a compar-

ison of the effects on numerical errors brought by differ-

ent smoothing methods of the window function. We found

that the Gaussian-smoothing method with large δc results

in a cleaner map, but also more information loss, while sin-

and cos-smoothing methods do better when δc is small, i.e.

there is less information loss.
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