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Abstract On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it

is found that most of these universes contain a dark energy like fluid which confirms the present scenario of

the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe

with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology

when the cosmological constant is not in the picture. In one particular model it is found that the universe

may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.
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1 INTRODUCTION

Brans and Dicke (B-D) formulated a theory of gravita-

tion (Brans & Dicke 1961), in which besides a gravita-

tional part, a dynamical scalar field is introduced to incor-

porate a variable gravitational constant and Mach’s prin-

ciple in Einstein’s theory. It can be considered as a natu-

ral extension of Einstein’s general theory of relativity. The

simplest case of the scalar tensor theory (Brans 1997) is

defined by a constant coupling parameter ω and a scalar

field φ. In B-D theory, the gravitational constant becomes

time-dependent, varying as the inverse of a time-dependent

scalar field which couples to gravity with a coupling pa-

rameter ω. One important property of this theory is that it

gives expanding solutions (Mathiazhagan & Johri 1984; La

et al. 1989) for scalar field φ(t) and scale factor R(t) which

are compatible with solar system observations (Perlmutter

et al. 1999; Riess et al. 1998; Garnavich et al. 1998). The

solar system observations (Bertotti et al. 2003) also im-

pose lower bounds on ω. General relativity is recovered

when ω goes to infinity (Weinberg 1972) and from tim-

ing experiments using the Viking space probe (Reasenberg

et al. 1979), ω must exceed 500. This constraint ruled out

many of the extended inflation theories (Weinberg 1989a;

La & Steinhardt 1989) and provides a succession of im-

proved models on extended inflation (Holman et al. 1990,

1991; Barrow & Maeda 1990; Steinhardt & Accetta 1990).

Furthermore, all important features of the evolution of the

universe such as: inflation (Mathiazhagan & Johri 1984),

early and late time behavior of the universe (Shogin &

Hervik 2014), cosmic acceleration and structure formation

(Banerjee & Pavón 2001), quintessence and the coinci-

dence problem (Sen & Seshadri 2003), self-interacting po-

tential and cosmic acceleration (Errahmani & Ouali 2006),

and a high energy description of dark energy in an approx-

imate B-D context (Weinberg 1989b) could be explained

successfully in the B-D formalism. For a large value of the

ω− parameter, B-D theory gives the correct amount of in-

flation and early and late time behaviors, while small and

negative values explain cosmic acceleration, structure for-

mation and the coincidence problem. Dark energy, iden-

tified as being responsible for cosmic acceleration, deter-

mines the features related to future evolution of the uni-

verse. The nature of this kind of energy may lead to an

improvement in our picture of particle physics and grav-

itation. Investigations into the nature of dark energy have

lead to various candidates. Among them, the most popu-

lar ones are the cosmological constant Λ (Padmanabhan

2003; Mak et al. 2002; Caldwell et al. 2003a), a dynam-

ical scalar field like quintessence (Bertolami & Martins

2000; Caldwell & Linder 2005; Caldwell 2002; Tsujikawa

& Sami 2004; Caldwell et al. 2003b) or a similar phantom

field (Cline et al. 2004; Nesseris & Perivolaropoulos 2007;

Huang et al. 2007; Bento et al. 1991).

Astronomical observations indicate that the observable

universe is undergoing a phase of accelerated expansion.

The present day accelerated expansion of the universe is

naturally addressed within the B-D theory with evolution

described by the inverse of the Hubble scale and power law

temporal behavior of a scale factor. The B-D scalar-tensor
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theory of gravitation is quite important in view of the fact

that scalar fields play a vital role in inflationary cosmology.

Many cosmological problems (Kolitch & Eardley 1995;

Barrow et al. 1993; Bento et al. 1992; Sahoo & Singh 2002,

2003; Lukács 1976 ) can be successfully explained by us-

ing the B-D theory and its extended versions. The solutions

of B-D field equations with the Robertson-Walker line ele-

ment have been obtained by Luke & Szamosi (1972) us-

ing a self consistent numerical method. They derived a

lower bound on Ġ
G

by taking P = 0 in the field equations

of B-D (Dicke 1964) and concluded the presently avail-

able data cannot discriminate between different theories.

Morganstern (1971) obtained a similar conclusion on the

basis of the observed values of matter density, Hubble’s

constant, the deceleration parameter and the ages of differ-

ent objects in the universe.

Since many forms of dark energy are always accompa-

nied and interrelated with a scalar field, we are motivated to

see whether the B-D scalar field can manifest some form

of dark energy and what roles it can play in causing the

accelerated expansion of the universe. We are also moti-

vated to investigate different interesting forms of model

universes containing a B-D field interacting with a grav-

itational field, and especially their interrelation with dark

energy in the evolution of our universe. From our study, we

find evidence for the existence of dark energy, in one form

or another, in almost all model universes obtained by us

under different conditions, during the periods of their evo-

lution, which verifies the present accelerated expansion of

the universe. One peculiarity of some of the models we ob-

tain is the existence of two forms of dark energy simultane-

ously in such models, one from the cosmological constant

and the other due to the B-D scalar field. In one case there

is the possibility of our model universe collapsing and be-

coming a black hole. Interestingly enough, in yet another

case, one of our models is facing the fate of a Big Rip, and

one of the model universes we obtain seems to behave like

a cyclic model of the universe.

2 SOLUTIONS OF FIELD EQUATIONS

Here, we consider the spherically symmetric Robertson-Walker metric

ds2 = dt2 − R2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]

, (1)

where k is the curvature index which can take values −1, 0, 1.

The B-D theory of gravity is described by the action

S =

∫

d4x
√

|g|
[

1

16π

(

φR − ω

φ
gslφ,lφ,s

)

+ Lm

]

, (2)

where R represents the curvature scalar associated with the 4D metric gij ; g is the determinant of gij ; φ is a scalar field;

ω is a dimensionless coupling constant; Lm is the Lagrangian of the ordinary matter component.

The Einstein field equations in their most general form are given by

Gij ≡ Rij −
1

2
Rgij + Λgij = −κ

φ
Tij −

ω

φ2

[

φ,iφ,j −
1

2
gijφ

,sφ,s

]

− 1

φ
(φ,ij − gijφ

,s
;s), (3)

(3 + 2ω)φ,s
;s = κT, (4)

where κ = 8π, Λ is the cosmological constant, Rij is the Ricci-tensor, gij is a metric tensor, �φ = φ,s
;s, � is the

Laplace-Beltrami operator and φ,i is partial differentiation with respect to the xi coordinate.

The energy-momentum tensor for the perfect fluid distribution is

Tij = (P + ρ)UiUj − Pgij , (5)

with Ui being a four velocity vector, P the proper pressure and ρ the proper rest mass density. Considering a comoving

system, we get U1 = U2 = U3 = 0; U4 = 1 and gijUiUj = 1.

A comma (, ) or semicolon (; ) followed by a subscript denotes partial differentiation or a covariant differentiation

respectively. The velocity of light is taken to be unity.

Now using the metric (1), the surviving field equations are

G11 ≡ k

R2
+

Ṙ2

R2
+

2R̈

R
− Λ

= −κP

φ
− ω

2φ2

[

(1 − kr2)

R2
φ′2 + φ̇2

]

− 1

φ

[

−2(1 − kr2)

R2r
φ′ +

2Ṙφ̇

R
+ φ̈

]

,

(6)
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G22 ≡ k

R2
+

Ṙ2

R2
+

2R̈

R
− Λ

= −κP

φ
− ω

2φ2

[

− (1 − kr2)

R2
φ′2 + φ̇2

]

− 1

φ

[

− (1 − kr2)

R2
φ′′ +

(2kr2 − 1)

R2r
φ′ +

2Ṙφ̇

R
+ φ̈

]

,

(7)

G33 = G22, (8)

G44 ≡ 3(
k

R2
+

Ṙ2

R2
) − Λ

=
κρ

φ
+

ω

2φ2

[

φ̇2 +
(1 − kr2)

R2
φ′2

]

+
1

φ

[

(1 − kr2)

R2
φ′′ − (3kr2 − 2)

R2r
φ′ − 3Ṙφ̇

R

]

,

(9)

G14 ≡ ω

φ2
φ′φ̇ +

φ̇
′

φ
−

˙Rφ′

Rφ
= 0. (10)

From Equation (4), we get

(3 + 2ω)

[

− (1 − kr2)

R2
φ′′ +

(3kr2 − 2)

R2r
φ′ +

3Ṙφ̇

R
+ φ̈

]

= κ(ρ − 3P ), (11)

where a dot and dash denote differentiation with respect to time t and r respectively.

Subtracting Equation (6) from Equation (7), we get

0 =
φ′

φ

[

1

r
+

kr

1 − kr2
− φ′′

φ′
− ω

φ′

φ

]

. (12)

From Equation (12), we get
φ′′

φ′ + ω
φ′

φ
=

1

r
+

kr

1 − kr2
. (13)

Integrating Equation (13), we get

1

ω + 1
φω+1 = −A

√
1 − kr2

k
+ B, (14)

where A and B are functions of time.

Integrating Equation (10), we get
1

ω + 1
φω+1 = R(t)g(r) + Q(t). (15)

From Equation (12), we get
φ′

φ

d

dr

[

Inφ′φωr−1(1 − kr2)
1
2

]

= 0. (16)

Using Equation (15) in Equation (16), we get

φ′

φ

d

dr

[

Inr−1(1 − kr2)
1
2 + Ing′(r)

]

= 0, (17)

from which it is obvious that φ is a function of r only, i.e. Q(t) = 0 in Equation (15) gives

1

ω + 1
φω+1 = R(t)g(r). (18)

Comparing Equations (14) and (15), we get Q(t) = B = 0. From Equation (14), we get

1

ω + 1
φω+1 = −A

√
1 − kr2

k
. (19)

From Equations (17) and (18), we get

Ṙ

R
=

Ȧ

A
. (20)

Integrating, we get

R = NA, (21)
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where N is a constant of integration.

Using Equations (19) and (20) in Equations (6), (7), (9) and (11), we get

κP

φ
= − k

R2
− 2k

R2(ω + 1)
− ω + 3

ω + 1

Ṙ2

R2
− 2ω + 3

ω + 1

R̈

R
+ Λ − ω

2

[

k2r2

R2(ω + 1)2(1 − kr2)
− Ṙ2

(ω + 1)2R2

]

, (22)

κρ

φ
=

3k

R2
+

3k

R2(ω + 1)
+

3ω + 6

ω + 1

Ṙ2

R2
− Λ − ω

2

[

Ṙ2

(ω + 1)2R2
− k2r2

R2(ω + 1)2(1 − kr2)2

]

, (23)

and

κ

φ
(ρ − 3P ) = (3 + 2ω)

[

3k

R2(ω + 1)
+

ωk2r2

R2(ω + 1)2(1 − kr2)
+

3Ṙ2

(ω + 1)R2
+

R̈

(ω + 1)R
− ω

(ω + 1)2
Ṙ2

R2

]

. (24)

From Equations (22) and (23), we get

κ

φ
(ρ − 3P ) =

6k

R2
+

ρk

R2(ω + 1)
+

6ω + 15

ω + 1

Ṙ2

R2
+

6ω + 9

ω + 1

R̈

R

−4Λ − ω

2

[

4Ṙ2

(ω + 1)2R2
− 4k2r2

R2(ω + 1)2(1 − kr2)

]

. (25)

From Equations (24) and (25), we get

ρk

R2(ω + 1)
+

6Ṙ2

R2(ω + 1)
+

4ω + 6

ω + 1

R̈

R
+

(2ω + 1)ω

(ω + 1)2
Ṙ2

R2
− (2ω + 1)k2r2ω

R2(ω + 1)2(1 − kr2)
− 4Λ = 0. (26)

2.1 Case I: When ω = 0

In this case, Equations (22), (23) and (26) reduce to

κP

φ
= − 3k

R2
− 3Ṙ2

R2
− 3R̈

R
+ Λ, (27)

κρ

φ
=

6k

R2
+

6Ṙ2

R2
− Λ, (28)

6k

R2
+

6Ṙ2

R2
+

6R̈

R
− 4Λ = 0. (29)

Integrating Equation (29), we get

R =

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

, when k = 1, (30)

R =

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

, when k = −1, (31)

R = e
√

Λ
3 (t+D), when k = 0, (32)

where D is an arbitrary constant of integration.

Case I(a): When k = 1, we get

R =

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

. (33)

From Equation (21), we get

A =
1

N

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

. (34)
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From Equation (19), we get

φ = −
√

1 − r2

N

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

. (35)

The gravitational variable is given by

G = −
√

Λ

3

4N

3
√

1 − r2

1

cosh
{
√

Λ
3 (t + D)

} . (36)

From Equations (27) and (28), we get

P = −

√

3Λ(1 − r2) cosh
{
√

Λ
3 (t + D)

}

κN
, (37)

and

ρ = −

√

3Λ(1 − r2) cosh
{
√

Λ
3 (t + D)

}

κN
. (38)

Hubble’s parameter is given by

H =

√

Λ

3
tanh

{

√

Λ

3
(t + D)

}

. (39)

Scalar expansion is given by

Θ =
√

3Λ tanh

{

√

Λ

3
(t + D)

}

. (40)

In this model universe, it is seen that the gravitational variable G has a tendency to increase the pressure and decrease the

density of the fluid whereas the B-D scalar field has a tendency to decrease the pressure and increase the density of this

universe. This model has a singularity at r = 1.

Case I(b): When k = −1, we get

R =

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

. (41)

From Equation (21), we get

A =
1

N

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

. (42)

From Equation (19), we get

φ =

√
1 + r2

N

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

, (43)

which is a function of both r and t. When t → ∞, both R and A tend to ∞, and when r → ∞ and t → ∞, the B-D scalar

φ tends to ∞. Therefore, we conclude that for k = −1 the B-D scalar φ is an increasing function of both r and t.

The gravitational variable is given by

G =

√

Λ

3

4N

3
√

1 + r2

1

sinh
{
√

Λ
3 (t + D)

} , (44)

which shows that gravitational variable G decreases as r and t increase and tends to zero when either r → ∞ or t → ∞.

From Equations (27) and (28), we get

P = −
√

3A(1 + r2)

κN
sinh

{

√

Λ

3
(t + D)

}

, (45)

and

ρ =

√

3Λ(1 + r2)

κN
sinh

{

√

Λ

3
(t + D)

}

. (46)
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Hubble’s parameter is given by

H =

√

Λ

3
coth

{

√

Λ

3
(t + D)

}

. (47)

Scalar expansion is given by

Θ =
√

3Λcoth

{

√

Λ

3
(t + D)

}

. (48)

For this model universe, the scalar field helps in the ex-

pansion of the universe. Also, the expansion factor R in-

creases with time thus accurately describing the expansion

of the universe. Here in this type of model universe it is

seen that pressure is negative and the equation of state

ω1 = P
ρ

= −1. Thus this universe seems to be a uni-

verse containing dark energy due to cosmological constant

Λ. Again, here the scalar field φ also contributes to the ex-

pansion of this universe. Thus some part of the dark energy

contained may be interpreted as quintessence in the form

of dark energy which is in agreement with present obser-

vations, using equation of state ω1 ≃ −1.

Case I(c): When k = 0, we get

R = e
√

Λ
3 (t+D), (49)

and

A =
1

N
e
√

Λ
3 (t+D). (50)

From Equation (13), we get

φ =
1

2N
r2e

√
Λ
3 (t+D), (51)

which is a function of both r and t. When t → ∞, R → ∞,

and either r → ∞ or t → ∞, the B-D scalar φ tends to

infinity.

The gravitational variable is given by

G =
8N

3r2e
√

Λ
3 (t+D)

, (52)

which shows that gravitational variable G decreases as r

and t increase and tends to zero as r → ∞ or t → ∞.

From Equations (27) and (28), we get

P = − Λr2

2κN
e
√

Λ
3 (t+D), (53)

and

ρ =
Λr2

2κN
e
√

Λ
3 (t+D). (54)

Hubble’s parameter is given by

H =

√

Λ

3
. (55)

Scalar expansion is given by

Θ =
√

3Λ. (56)

Again for the solution in this case, it is found that the B-

D scalar field φ is singular at the origin. However, on the

other hand, at the origin, the gravitational force is very

strong. As time t increases, the pressure decreases whereas

the density increases. Thus there is the possibility that the

model universe in this case contracts gradually and at some

stage the density will be very high, thereby making it pos-

sible for the universe to become a black hole in the course

of time. Or, in a different situation, the equation of state

is ω1 = P
ρ

= −1 whereas the pressure is negative. This

implies that our model universe is expanding and con-

tains dark energy due to the cosmological constant which

is in agreement with present observational data, namely,
p
ρ
≃ −1.

2.2 Case II: When ω = 0 and Λ = 0

From Equation (29), we get

6k

R2
+

6Ṙ2

R2
+

6R̈

R
= 0. (57)

Integrating, we get

R =
√

−kt2 + 2at + 2b, (58)

where a and b are constants of integration. From

Equation (21), we get

A =
1

N

√

−kt2 + 2at + 2b. (59)

Case II(a): When k = 1.

From Equations (58) and (59), we get

R =
√

−t2 + 2at + 2b, (60)

and

A =
1

N

√

−t2 + 2at + 2b. (61)

From Equation (19), we get

φ = − 1

N

√

−t2 + 2at + 2b
√

1 − r2, (62)

which is a function of both r and t. The gravitational vari-

able is given by

G = − 4N

3
√
−t2 + 2at + 2b

√
1 − r2

, (63)

when N < 0. From Equations (60), (61), (62) and (63),

we see that the reality condition for R, A, φ and k is (a2 +
2b) > (t − a)2 and r2 < 1.

From Equations (27) and (28), we get

P = 0, (64)

and

ρ = − 6(a2 + 2b)
√

(1 − r2)

κN(−t2 + 2at + 2b)
3
2

, (65)
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which is a function of both r and t. The reality condition is

the same as above. Hubble’s parameter is given by

H =
t − a

t2 − 2at − 2b
. (66)

Scalar expansion is given by

Θ =
3(t − a)

t2 − 2at − 2b
. (67)

For this model universe, it is seen that at time t given

by t2−2at−2b = 0 there may be a gravitational collapse.

Since, in this case, the energy density is negative, there is

the possibility that this universe contains a phantom form

of dark energy. But there is doubt in this case as here the

pressure is zero and this universe is closed, since dark en-

ergy is assumed to help in the accelerated expansion of the

universe. Thus, when k = 1, ω = 0 and Λ = 0, the prob-

lem reduces to the case of dust distribution.

Case II(b): When k = −1.

From Equations (58) and (59), we get

R =
√

t2 + 2at + 2b, (68)

and

A =
1

N

√

t2 + 2at + 2b. (69)

From Equation (19), we get

φ =
1

N

√

t2 + 2at + 2b
√

1 − r2, (70)

which is a function of both r and t. When t → ∞, the ra-

dius of the universe R tends to infinity, and the B-D scalar

φ tends to infinity either when r → ∞ or t → ∞. The

gravitational variable is given by

G =
4N

3
√

t2 + 2at + 2b
√

1 − r2
. (71)

From Equation (71), we see that the gravitational vari-

able G decreases when t and r increase and tends to zero

when r → ∞ or t → ∞. From Equations (27) and (28),

we get

P = 0, (72)

and

ρ =
6(a2 − 2b)

√

(1 + r2)

κN(t2 + 2at + 2b)
3
2

, (73)

which is real where a2 − 2b > 0. Hubble’s parameter is

given by

H =
t + a

t2 + 2at + 2b
. (74)

Scalar expansion is given by

Θ =
3(t + a)

t2 + 2at + 2b
. (75)

In the solution for this case, it is obtained that as time

t increases, the radius of our (model) universe increases,

that is our universe is expanding which is the sign of be-

ing a realistic model. But here it is seen that this universe

expands initially at a high rate and gradually the expan-

sion slows down until it stops at infinitely large time when

preparing for contraction. In this model universe, the B-D

field influences the area given by r = 1, and is inversely

proportional to the gravitational potential due to G. Thus,

when k = −1, ω = 0 and Λ = 0, the problem reduces to

the case of dust distribution.

Case II(c): When k = 0.

From Equations (58) and (59), we get

R =
√

2at + 2b, (76)

and

A =
1

N

√
2at + 2b. (77)

From Equation (76), we know that radius of the uni-

verse R tends to infinity when t tends to infinity. From

Equation (13), we get

φ =
r2
√

2at + 2b

2N
, (78)

which is a function of both r and t. When either r → ∞ or

t → ∞, the B-D scalar φ tends to infinity. The gravitational

variable is given by

G =
8N

3r2
√

2at + 2b
, (79)

which shows that the gravitational variable G decreases

when r and t increase and tends to zero when either r →
∞ or t → ∞.

From Equations (27) and (28), we get

P = 0, (80)

and

ρ =
3a2r2

κN(2at + 2b)
3
2

. (81)

Hubble’s parameter is given by

H =
t

2(at + b)
. (82)

Scalar expansion is given by

Θ =
3t

2(at + b)
. (83)

From Equation (81), we see that ρ decreases when r is

fixed and t increases and ρ increases when r increases and

t decreases.

Regarding our model universe in this case, we have

seen, from the expressions of R and φ, that the scalar

field has a tendency to increase the radius of the universe,
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thereby helping in the expansion of the universe. The den-

sity of this universe is also seen to decrease with time

which is a sign of a realistic universe. The expansion factor

here is found to increase with time, thereby implying that

our universe is expanding, which accurately describes the

present universe. Thus, when k = 0, ω = 0 and Λ = 0, the

problem reduces to the case of dust distribution.

2.3 Case III: When ω 6= 0 and Λ = 0

Since R is a function of t, we only consider the case k = 0.

Then, Equation (26) reduces to

6Ṙ2

R2(ω + 1)
+

4ω + 6

ω + 1

R̈

R
+

(2ω + 1)ω

(ω + 1)2
Ṙ2

R2
= 0. (84)

Integrating, we get

R =

[

(4 + 3ω)(at + b)

(2 + 2ω)

]
2+2ω

4+3ω

, (85)

where a and b are arbitrary constants of integration. From

Equation (21), we get

A =
1

N

[

(4 + 3ω)(at + b)

(2 + 2ω)

]
2+2ω

4+3ω

. (86)

If ω > 0, the radius of the universe increases as t in-

creases and tends to infinity as t tends to infinity. From

Equation (13), we get

φ =

{

(ω + 1)r2

2N

}
1

ω+1
{

(4 + 3ω)(at + b)

2 + 2ω

}
2

4+3ω

, (87)

which is a function of both r and t. If ω > 0, the B-D

scalar φ tends to infinity either when r → ∞ or t → ∞.

The gravitational variable is given by

G =
4 + 2ω

3 + 2ω

{

2N

(ω + 1)r2

}
1

ω+1
{

2 + 2ω

(4 + 3ω)(at + b)

}
2

4+2ω

.

(88)

If ω > 0, G decreases as r and t increase and tends to zero when either r → ∞ or t → ∞. From Equations (22) and

(23), we get

P = − 4a2(2ω + 3)2

κ(4 + 3ω)2(at + b)2

{

(ω + 1)r2

2N

}

1
ω+1

{

(4 + 3ω)(at + b)

2 + 2ω

}
2

4+3ω

, (89)

and

ρ =
2a2(2ω + 3)

κ(3ω + 4)(at + b)2

{

(ω + 1)r2

2N

}
1

ω+1
{

(4 + 3ω)(at + b)

2 + 2ω

}
2

4+3ω

. (90)

Hubble’s parameter is given by

H =
2a(ω + 1)

(4 + 3ω)(at + b)
. (91)

Scalar expansion is given by

Θ =
6a(ω + 1)

(4 + 3ω)(at + b)
. (92)

Considering the solution obtained in this case, the gravitational variable G is found to vary inversely with the scalar field

φ. Thus in this case, the B-D scalar field has a tendency to decrease the gravitational potential. For this universe it is seen

that the equation of state ω1 < −1, namely, ω1 = P
ρ

= − 2(2ω+3)
4+3ω

= −1 − ω+2
4+3ω

< −1. Thus the dark energy contained

in this universe may be taken as the k-essence form of energy. Here we see that for the k-essence energy, with ω1 < −1,

the scalar field grows in the future. Since the k-essence fields are similarly uniform on a small scale, the abundance of k-

essence energy within a bound object actually grows with time, thereby increasing its influence on the internal dynamics.

Ultimately, there is the possibility that the repulsive k-essence energy will overcome the forces holding this model together

and pulls this universe apart in a Big Rip. Thus, when k = 0, ω 6= 0 and Λ = 0, the problem reduces to the case of dust

distribution.

2.4 Case IV: When ω 6= 0 and Λ 6= 0

Since R is only a function of t, we just consider the case k = 0.

Then, Equation (26) reduces to

6Ṙ2

R2(ω + 1)
+

4ω + 6

ω + 1

R̈

R
+

(2ω + 1)ω

(ω + 1)2
Ṙ2

R2
− 4Λ = 0. (93)



Interaction of Gravitational field and Brans-Dicke field in R/W universe 64–9

Integrating, we get

R = e
2(ω+1)

√
Λ√

(2ω+3)(3ω+4)
t
, (94)

and

A =
1

N
e

2(ω+1)
√

Λ√
(2ω+3)(3ω+4)

t
. (95)

If ω > 0, the radius of the universe R tends to infinity as t tends to infinity.

From Equation (13), we get

φ =

{

(ω + 1)r2

2N

}

1
ω+1

e
2
√

Λ√
(2ω+3)(3ω+4)

t
, (96)

which is a function of both r and t. When either r → ∞ or t → ∞, the B-D scalar φ tends to infinity. The gravitational

variable is given by

G =
4 + 2ω

3 + 2ω

{

2N

(ω + 1)r2

}
1

ω+1

e
− 2

√
Λ√

(2ω+3)(3ω+4)
t
, (97)

which is a function of both r and t. From Equation (97), we see that the gravitational variable G decreases when r and t

increase and tends to zero when either r → ∞ or t → ∞. From Equations (22) and (23), we get

P =
Λ

κ(4 + 3ω)
(98)

and

ρ =
Λ

κ

{

(ω + 1)r2

2N

}
1

ω+1

e
2
√

Λ√
(2ω+3)(3ω+4)

t
. (99)

Hubble’s parameter is given by

H =
2(ω + 1)

√
Λ

√

(2ω + 3)(3ω + 4)
. (100)

Scalar expansion is given by

Θ =
6(ω + 1)

√
Λ

√

(2ω + 3)(3ω + 4)
. (101)

In this model universe, the scalar field is seen to have a

tendency to increase the expansion of the universe, thereby

flattening the universe. Here, also the B-D field has a ten-

dency to decrease the gravitational potential, and the gravi-

tational variable G tends to decrease the pressure and den-

sity of the universe. Since here, as t → ∞, it is found

that R → ∞ as well as ρ → ∞, there is the possibil-

ity of a bounce at some point in time, thereby indicat-

ing that this universe shows cyclic behavior. If 8
√

Λ >
ω
√

(2ω+3)(3ω+4)

(ω+1)2 , then this model universe will have an

accelerated expansion instigated by the negative pressure.

Also, in this model the vacuum energy due to the cosmo-

logical constant may be taken as the dark energy part caus-

ing the accelerated expansion of the universe.

3 CONCLUSIONS

The universes we have investigated are found to behave in

different ways and to show different manifestations under

different conditions. Some of them show signs of contain-

ing a cosmological constant form and quintessence form

of dark energy, whereas others seem to contain fluids be-

having like phantom and k-essence forms of dark energy,

which can explain the present accelerated expansion of

the universe. Thus the model universes we obtain in these

cases may be taken as realistic models of our universe, and

many more unknown properties of the universe and of dark

energy may be realized and known from further studies

of these models, which we will perform and report else-

where afterwards. Furthermore, one model of ours seems

to undergo a gravitational collapse leading to a black hole;

whereas another model surprisingly seems to face the fate

of a Big Rip. Another new finding in some of our models

is that they simultaneously contain two forms of dark en-

ergy, one due to a cosmological constant and another due

to a B-D scalar field. Also, interestingly enough, one of our

models seems to behave like a universe obeying the newly

proposed cyclic theory of the universe.
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