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Abstract An action of general form is proposed for a Universe containing matter, radiation and dark

energy. The latter is interpreted as a tachyon field non-minimally coupled to the scalar curvature. The

Palatini approach is used when varying the action so the connection is given by a more generic form. Both

the self-interaction potential and the non-minimally coupling function are obtained by constraining the

system to present invariability under global point transformation of the fields (Noether Symmetry). The

only possible solution is shown to be that of minimal coupling and constant potential (Chaplygin gas). The

behavior of the dynamical properties of the system is compared to recent observational data, which infers

that the tachyon field must indeed be dynamical.
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1 INTRODUCTION

Tachyons have been extensively studied in M/String the-

ories. Since the realization of their condensation propri-

eties, researchers have gained interest in their applications

in cosmology. At first, there was the problem of describ-

ing the string theory tachyon by an effective field the-

ory that would lead to the correct Lagrangian in classical

gravity. The first classical description of the tachyon field

(Sen 2002a,b) addressed the Lagrangian problem, making

way for building the first model within tachyon cosmology

(Gibbons 2002).

Being a special kind of a scalar field, it presents neg-

ative pressure, making the tachyon a natural candidate to

explain dark energy (Padmanabhan 2002; Hao & Li 2002;

Bagla et al. 2003; Jassal 2004). The inflationary period

could also be explained if one considers the inflaton to

behave as a tachyon field. Many different attempts were

made under this assumption, testing a wide variety of self-

interacting potentials such as power-laws, exponentials and

hyperbolic functions of the field (Abramo & Finelli 2003;

Liu & Li 2004; Kremer & Alves 2004; Steer & Vernizzi

2004; Campuzano et al. 2006; Herrera et al. 2006; Xiong

& Zhu 2007; Balart et al. 2007). The possible scenario

where the tachyon plays both roles, inflaton and dark en-

ergy, has also been studied in related works (Sami et al.

2002; Cárdenas 2006), where the first constraints on the

potential were established so the radiation era could com-

mence.

The studies above introduced a tachyon field which

is minimally coupled through the metric, hence providing

just another source for the gravitational field. Nevertheless,

such fields might also be considered to be non-minimally

coupled to the scalar curvature, becoming part of the space-

time geometry by generating a new degree of freedom for

gravity. In this scenario, the gravitational constant G be-

comes a variable function of spacetime.

Tachyon fields in the non-minimal coupling context

were analyzed for both the inflationary period (Piao et al.

2003) and the current era (Srivastava 2004). In those cases,

the coupling functions and the self-interacting potentials

were given in an ad-hoc manner, as exponentials and

power-law forms.

Every time we choose a different coupling or poten-

tial function, we create a new cosmological model, or even

a new theory of gravity in the non-minimal case. This

is a very difficult task since the lack of experiments and

observations obligates one to find heuristic arguments to

support the choice made. The advantages of searching for

symmetries in systems where the Lagrangian is known is

widely entertained. This approach not only helps us find

exact solutions but might also give us physically mean-

ingful constants of motion. What is less appreciated is

the fact that one can constrain a system (one that lacks a

closed form of the functional) to present symmetry. In what

concerns non-minimally coupled tachyon fields, Noether

symmetries were used to establish the coupling and self-

interaction functions in the papers (de Souza & Kremer

2009; Collodel & Kremer 2015). The latter makes use

of the Palatini approach, in a way to generalize the the-

ory, since the non-minimal coupling can provide a metric-

independent connection.
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The Chaplygin gas was first introduced by Chaplygin

in 1902 (Chaplygin 1902) in the context of aerodynamics.

This gas features an exotic equation of state (pc ∝ −1/ρc),

which was originally used to describe the lifting force on

a wing of an airplane. Because its pressure is negative, the

Chaplygin gas became a good candidate to explain dark

energy (Kamenshchik et al. 2001; Fabris et al. 2002; Bilić

et al. 2002; Bento et al. 2002; Gorini et al. 2003; Kremer

2003). The attempts to correlate fields and fluids soon

showed that the constant potential tachyon field behaves

as a Chaplygin gas (Frolov et al. 2002; Gorini et al. 2004;

Chimento 2004; Del Campo & Herrera 2008). Its equation

of state allows generalizations, giving rise to the so called

Generalized Chaplygin Gas, or just GCG. This gas exerts

a negative pressure proportional in modulus to the inverse

of some power of its energy density and was investigated

in works such as (Biesiada et al. 2005; Wang et al. 2009;

Liao et al. 2013; Xu & Lu 2010; Wang et al. 2013), in-

cluding its relationship to a - now, not constant potential -

tachyon field (Gupta et al. 2012). Originally, the equation

of state of a Chaplyigin gas was so simple that even with

the exhaustive studies about the GCG there was still plenty

of room for further generalizations. Endowing the equation

of state (EoS) with a linear barotropic term, which alone

would describe an ordinary fluid, enriched the GCG which

under this assumption is called the Modified Chaplygin

Gas, MCG. Its motivations lie precisely on the possible

field nature of the gas (Benaoum 2002), and its parameters

have been constrained via observational analysis (Paul &

Thakur 2013). Further generalizations account for higher

order energy density terms in the EoS of a Chaplygin Gas,

the Extended Chaplygin Gas, ECG (Pourhassan & Kahya

2014; Lu et al. 2014).

In this work, we start from a very general Lagrangian

for a tachyon field non-minimally coupled to the scalar

curvature. Matter and radiation fields are also included

in the system as perfect fluids from the beginning. The

connection is initially taken to be metric-independent

and the action is also varied with respect to it, a pro-

cess known as the Palatini approach. Since we con-

sider a flat, homogeneous and isotropic Universe, the flat

Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric is

used to rewrite our functional in the form of a point-

like Lagrangian. This presents an extra term than usual,

which comes from the independent connection. The sys-

tem is constrained such that it presents invariance under

continuous point transformations, or a Noether symmetry.

The coupling and self-interaction potential functions of the

tachyon field are then determined. Every new field added

to the Lagrangian clearly influences these point transfor-

mations. For that matter, it is important to start off from

a complete system (including the radiation fields) if one

takes symmetry as a first principle. We show that for this

system to be Noether symmetrical, the non-minimal cou-

pling must vanish and the self-interaction potential must be

constant, hence representing the tachyonic Chaplygin gas.

The system is initially composed of five free parameters,

namely the Hubble constant, the three density parameters

for recent times and the normalized constant potential. The

radiation parameter is then established in an ad-hoc way so

we are left with four different free parameters. These are

determined via the χ2 analysis for the recent H(z) data

from supernovae (SNe) and gamma-ray bursts. We show

that although dark energy tends asymptotically to a cosmo-

logical constant, any small discrepancies make the tachyon

field dynamically active, so the Chaplygin gas exhibits the

property of transition from pressureless matter to dark en-

ergy.

In order to clarify the typos and notations used here,

we remark: the metric signature is (+,−,−,−); the Levi-

Civita connection is written with a tilde (Γ̃λ
µν =

{

λ
µν

}

)

while the independent connection is given without it (Γλ
µν).

Natural constants have been rescaled to unity (8πG = c =
1). Throughout the whole paper, derivatives in equations

are presented as follows: dots represent time derivatives,

while ∂qi ≡ ∂
∂qi and ∂q̇i ≡ ∂

∂q̇i stand for partial derivatives

with respect to the generalized coordinate qi and velocity

q̇i, respectively.

2 ACTION AND POINT LAGRANGIAN

A generalization of the general theory of relativity is pro-

posed through a non-minimal coupling of a function of the

tachyon field. The general action for both geometry and

source is written

S =

∫

d4x
√−gf(φ)R− V (φ)

√

1 − ∂µφ∂µφ−Ls, (1)

where φ is the tachyon field, f(φ) is the non-minimal cou-

pling function, V (φ) is the self-interaction potential and

Ls is the Lagrangian density of other sources (matter and

radiation).

In order to attain a more general theory we allow the

connection to be metric-independent. The variation of the

action with respect to the connection Γρ
µν results in the

well-known form

Γρ
µν = Γ̃ρ

µν +
1

2f

(

δρ
ν∂µf + δρ

µ∂νf − gµν∂ρf
)

. (2)

where Γ̃ρ
µν is the Levi-Civita connection.

Usually, the self-interaction potential and the coupling

function are set in an ad-hoc manner. Instead of approach-

ing the problem this way, we would like to constrain the

system to that which has a Noether symmetry. This is done

by operating a variational vector field on the point-like

Lagrangian, and for this, we need to rewrite it in terms of

a specific metric. For a flat, homogeneous and isotropic

Universe, spacetime is described by the flat FLRW metric.

The point-like functional in Equation (1) then becomes

L = 6f(äa2 + ȧ2a) − 3a3

2f
(∂φfφ̇)2

+3a3∂2
φfφ̇2 + 3a3∂φfφ̈

+9ȧa2∂φfφ̇ − a3V

√

1 − φ̇2 − a3ρs, (3)
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and ρs is a point-like Lagrangian for a perfect fluid

(Hawking & Ellis 1973).

In this system, besides dark energy, the Universe is

composed of matter (ordinary and dark) and radiation.

Both dark matter and ordinary matter are treated as dust,

and hence represented by the same entity here. As the

Universe expands, the matter density decreases with a−3

while the radiation’s with a−4. The Lagrangian above con-

tains second-order terms which are more tedious to deal

with. Since the action limits are fixed, we can integrate

these terms by parts, without loss of generality, so we can

work with a first-order Lagrangian, which reads

L = −6fȧ2a − 6a2ȧ∂φfφ̇ − a3V

√

1 − φ̇2

−3a3

2f
(∂φFφ̇)2 − ρ0

m − ρ0
r

a
, (4)

where ρ0
m and ρ0

r are the recent values of the total density

of matter and radiation, respectively, in the Universe.

3 NOETHER SYMMETRIES

Our system may now be constrained to that which is en-

dowed with a Noether symmetry by finding the forms of

f(φ) and V (φ) that allow symmetrical point transforma-

tion. This means that our Lagrangian shall have such a

form that a specific continuous transformation of the gener-

alized coordinates a → ā and φ → φ̄ preserves the general

form of the functional,

L(ā, φ̄) = L(a, φ). (5)

In order to find the function forms of V (φ) and f(φ)
that allow such transformation, we need to apply a certain

vector field on the Lagrangian given in Equation (4). This

vector field, X , is then called a variational symmetry, or

complete lift, and reads

X ≡ αi∂qi + α̇i∂q̇i , (6)

where the coefficients αi are functions of the generalized

coordinates a, φ. The operation of X on the Lagrangian

is simply the Lie derivative of L along this vector field

(LXL). According to the Noether theorem, if this deriva-

tive vanishes, there will be a conserved quantity named

Noether charge. Hence, this will be a variational symmetry

if

XL = LXL = 0, (7)

such that

L∆ 〈θL, X〉 = 0, (8)

where ∆ = d/dt is the dynamical vector field and

θL =
∂L

∂q̇i
dqi, (9)

is the locally defined Cartan one-form. The brackets repre-

sent the scalar product between vector field and one-form,

in the Dirac notation. Thus, the Noether charge reads

Σ0 ≡ 〈θL, X〉 = αi ∂L

∂q̇i
. (10)

The condition defined in Equation (7) reads in full

form,

0 = XL

= α∂aL + β∂φL +
(

ȧ∂aα + φ̇∂φα
)

∂ȧL

+
(

ȧ∂aβ + φ̇∂φβ
)

∂φ̇L, (11)

which for our system becomes

0 = α
(

− 6fȧ2 − 12aȧ∂φfφ̇ − 3a2V

√

1 − φ̇2

−9a2(∂φf)2φ̇2

2f
+

ρ0
r

a2

)

+ β
(

− 6∂φfȧ2a

−6a2ȧ∂2
φfφ̇ − a3∂φV

√

1 − φ̇2

+
3a3(∂φf)3φ̇2

2f2
−

3a3∂φf∂2
φfφ̇2

f

)

+
(

∂aαȧ + ∂φαφ̇
)(

− 12fȧa − 6a2∂φfφ̇
)

+
(

∂aβȧ + ∂φβφ̇
)

×
(

− 6a2ȧ∂φf

+
a3V φ̇

√

1 − φ̇2

− 3a3 (∂φf)2φ̇

f

)

, (12)

where α = α1 and β = α2.

The equation above must hold for any value of ȧ and

φ̇. If it were a polynomial equation for these dynamical

variables one could simply set all coefficients equal to zero,

but the different powers of the square roots make the task a

little more complicated. We shall differentiate with respect

to these quantities and evaluate the resulting equations for

different values of ȧ and φ̇, then we get the solutions for

α(a, φ), β(a, φ), V (φ) and f(φ). Setting ȧ = φ̇ = 0 in

Equation (12) we get

3αa2V − α
ρ0

r

a2
+ βa3∂φV = 0. (13)

Differentiating Equation (12) three times with respect to φ̇
and evaluating at φ̇ = 0 and ȧ = 1 gives

3a3V ∂aβ = 0, (14)

hence β 6= β(a). Similarly, differentiating Equation (12)

once with respect to φ̇, multiplying it by (1 − φ̇2)3/2 and

evaluating at φ̇ = 1 and ȧ = 0 we get

V ∂φβ = 0, (15)

and we conclude that β = β0 is a constant, since

the potential must be non-zero. The fourth derivative of
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Equation (12) with respect to φ̇, evaluated at φ̇ = 0 and

taking into account that ∂φβ = 0, leads to

9αa2V + 3βa3∂φV = 0. (16)

Since ρ0
r 6= 0, dividing Equation (16) by 3 and equat-

ing with Equation (13) results in α = 0 and V = V0, a

constant potential. Thus, Equation (12) reduces to

−6∂φfȧ2a − 6a2ȧ∂2
φfφ̇ +

3a3(∂φf)3φ̇2

2f2

−
3a3∂φf∂2

φfφ̇2

f
= 0, (17)

and it is clear that ∂φf = 0. The coupling must then be

minimal.

4 EQUATIONS OF MOTION

The Lagrangian, Equation (4), for constant self-interaction

potential and f = 1/2 (to regain Einstein’s constant ac-

cording to the notation adopted), reads

L = −3aȧ2 − V0a
3

√

1 − φ̇2 − ρ0
m − ρ0

r

a
. (18)

The Friedmann equation is obtained through the en-

ergy equation EL = ȧ∂L
∂ȧ + φ̇∂L

∂φ̇
− L, which gives

H2 =
1

3
ρ, (19)

where H = ȧ/a is the Hubble parameter and ρ = ρm +
ρr + ρφ is the total energy density of the fields.

ρφ =
V0

√

1 − φ̇2

, (20)

is the energy density of the tachyon field; ρm = ρ0
m/a3

and ρr = ρ0
r/a4 are the matter and the relativistic material

densities, respectively.

The Euler-Lagrange equation for the scale factor, to-

gether with Equation (19), provides the acceleration equa-

tion, which is

ä

a
= −1

6
(ρ + 3p) , (21)

where p = pr + pφ is the pressure of the fields (as usual,

matter behaves as dust so pm = 0), and pr = ρr/3. The

pressure exerted by the tachyon field is

pφ = −V0

√

1 − φ̇2. (22)

The Euler-Lagrange equation for the tachyon field

gives the generalized Klein-Gordon equation for the field,

which is the same as the fluid equation for dark energy

when written in terms of its energy density and pressure

ρ̇φ + 3H (ρφ + pφ) = 0. (23)

An equation of state in the form p(ρ) can now be

written for the tachyon field. From Equation (20) we

see that

√

1 − φ̇2 = V0/ρφ, which when substituted in

Equation (22) yields

pφ = −V 2
0

ρφ
. (24)

The Chaplygin gas is a fluid described by an equation

of state of the kind

p = −A

ρ
, (25)

where A is a positive defined constant, which is precisely

the same as Equation (24) for A = V 2
0 . Thus, as is widely

known from the literature, see e.g. (Frolov et al. 2002;

Gorini et al. 2004; Chimento 2004; Del Campo & Herrera

2008), a tachyon field only minimally coupled to the scalar

curvature, with constant potential, behaves as a Chaplygin

gas.

5 NOETHER CONSTANT

Any Lagrangian system endowed with a Noether symme-

try will exhibit a constant of motion, as stated by Noether’s

theorem. The Noether charge given by Equation (10) here

becomes

Σ0 = α
∂L

∂ȧ
+ β

∂L

∂φ̇
=

V0a
3φ̇

√

1 − φ̇2

, (26)

which is simply the first integral of Equation (23).

6 SOLUTIONS

The energy density of the Chaplygin gas, and its pres-

sure, can be rewritten as functions of the scale factor, using

Equation (10). These forms are well known from literature

and read

ρφ =

√

Σ2
0

a6
+ V 2

0 ; pφ = − V 2
0

√

Σ2

0

a6 + V 2
0

, (27)

where Σ0 is the Noether constant. From this equation, we

see the dual nature of the Chaplygin gas, which behaves as

dust matter for a ≤ 1

ρφ ∼ Σ0

a3
; pφ ∼ 0, (28)

and as a cosmological constant for a ≥ 1

ρφ ∼ V0; pφ ∼ −V0. (29)

In order to obtain curves showing the variation of

our parameters with respect to the redshift, we use the

relationship a = 1/(1 + z). The Friedmann equation

(Equation (19)) then becomes

H2 =
1

3

(

√

Σ2
0(1 + z)6 + V 2

0 + ρ0
m(1 + z)3

+ρ0
r(1 + z)4

)

. (30)
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The equation above can be written in a dimension-

less form by dividing it by the Hubble constant, H2
0 ≡

H(0)2 = ρ0/3, where ρ0 is the current density of all fluids

in the Universe, giving

H2

H2
0

=
(

√

Σ̄2
0(1 + z)6 + V̄ 2

0 + Ω0
m(1 + z)3

+Ω0
r(1 + z)4

)

, (31)

where Ω0
i ≡ ρ0

i /ρ0 is the current density parameter of

the i-th component. The bars indicate that the constants

have also been divided by the current density, i.e., Σ̄0 =
Σ0/ρ0 and V̄0 = V0/ρ0, then the density parameter for the

Chaplygin gas is simply

Ω0
φ =

√

Σ̄2
0 + V̄ 2

0 . (32)

This last relationship allows us to investigate the evolution

of the Hubble parameter in terms of the dark energy’s den-

sity parameter, instead of the Noether charge. Finally, we

write

H = H0

[√

[(Ω0
φ)2 − V̄ 2

0 ](1 + z)6 + V̄ 2
0

+Ω0
m(1 + z)3 + Ω0

r(1 + z)4
]1/2

. (33)

Recent observations (Bennett et al. 2013; Planck

Collaboration 2014) limit the range of values associated

to these parameters. In particular, there is great confidence

that Ω0
r ∼ 8.5 × 10−5, so we may adopt this result but

we will constrain the four remaining parameters (namely

H0, Ω
0
m, Ω0

φ and V̄0) via H(z) data.

Table 1 presents 25 measurements of the Hubble pa-

rameter from SNe and gamma-ray bursts (Simon et al.

2005; Stern et al. 2010; Moresco et al. 2012; Gaztañaga

et al. 2009; Zhang et al. 2014). The constructed func-

tion that describes the Hubble parameter, Equation (33),

depends on the redshift, plus four different parameters.

Hence, H = H(z, H0, Ω
0
m, Ω0

φ, V̄0). The values assumed

by these parameters that best fit the observational data are

the ones that minimize the function

χ2 =

25
∑

i=1

[

Hobs(zi) − H(zi, H0, Ω
0
m, Ω0

φ, V̄0)

σi

]2

. (34)

A primary condition for a good fit is that χ2/dof ≤ 1,

where ‘dof’ stands for degrees of freedom and in this

case is given by the number of data points, dof= 25.

Our minimized χ2 is given by H0 = 69.6524, Ω0
m =

0.288261, Ω0
φ = 0.711654 and V̄0 = 0.709957 resulting

in χ2 = 12.8676 and χ2/dof = 0.507504. Marginalizing

over two parameters allows us to analyze the correlation

by plotting the contours of their distributions within some

confidence interval.

The correlation between dark energy and matter den-

sity parameter is strong. The H(z) does not seem to im-

pose very strict constraints for our current matter density,

Table 1 Observational values for H(z) and their respective er-

rors (Simon et al. 2005; Stern et al. 2010; Moresco et al. 2012;

Gaztañaga et al. 2009; Zhang et al. 2014).

z Hobs σ

0.07 69 19.6

0.09 69 12

0.12 68.6 26.2

0.17 83 8

0.179 75 4

0.199 75 5

0.2 72.9 29.6

0.24 79.69 3.32

0.27 77 14

0.28 88.8 36.6

0.352 83 14

0.4 95 17

0.43 86.45 3.27

0.48 97 62

0.593 104 13

0.68 92 8

0.781 105 12

0.875 125 17

0.88 90 40

0.9 117 23

1.037 154 20

1.3 168 17

1.43 177 18

1.53 140 14

1.75 202 40

0.20 0.25 0.30 0.35

0.700

0.705

0.710

0.715

0.720

0.725

W0
m

W0
Φ

Fig. 1 Confidence intervals for 1-, 2- and 3-σ for the density

parameters Ω0

m and Ω0

φ.

but for dark energy we see that within 3-σ all points lie in

the range 0.697 ≤ Ω0
φ ≤ 0.726, as shown in Figure 1. The

correlation between Ω0
φ and V̄0 is much stronger, as one

would expect since the potential defines the energy density.

Nevertheless, it is quite interesting to see the form these

ellipses take in Figure 2; the current density parameter for

dark energy is given by Equation (32). The case Ω0
φ = V̄0

is just the cosmological constant scenario. From the fig-

ure, we see very thin ellipses with a slope close to unity.
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Fig. 2 Confidence intervals for 1-, 2- and 3-σ for the density

parameter Ω0

φ and the constant potential V̄0.

The best fit parameters listed above show a very small dif-

ference between the two of them, and as we will see this

difference grows bigger in the past, but there is a high ten-

dency for the cosmological constant.

The evolution of the density parameters for different

redshift scales is shown below. In Figure 3 radiation is ne-

glected for its energy density is too small to be observed.

As the redshift increases dark energy falls but ever more

slowly, and for values z ≥ 2 its density decreases so

smoothly that it almost appears to be constant. This is due

to the small difference between Ω0
φ and V̄0 that makes the

tachyon field dynamical and the Chaplygin gas property

thrive. From Equations (27) and (28) it becomes clear that

dark energy decays into matter fields as the redshift grows

and the term Σ̄0 outpaces V̄0. Furthermore, we are now

looking at the matter era, hence the almost constant behav-

ior. In Figure 4 we see the evolution of the density param-

eters for radiation and the combination of the Chaplygin

gas and matter, since the first behaves as the latter. In this

scenario, the equality of the densities happens a bit ear-

lier in our history than expected from the cosmological

constant case. For instance, we have zeq = 3968.15 (ap-

proximately 37.5 thousand years since the beginning of the

Universe) whereas for a non-dynamical field description

we would expect zeq ∼ 3600 (about 47 thousand years

old). Although a transition happening at higher redshifts

does not influence the time at which recombination occurs

(once it depends on the temperature), the earlier increase in

dark matter energy density allows it to combine and form

potential wells earlier, giving room for structure formation,

some of which we have recently discovered and which

turned out to be quite old (Andreon et al. 2009; Andreon

& Huertas-Company 2011).

The ratio ωφ = pφ/ρφ, between the pressure and en-

ergy density for dark energy, is shown in Figure 5. As ex-

pected from Equation (27), the ratio tends asymptotically

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

z

Wi

Wm

WΦ

Fig. 3 The dashed line stands for dark energy while the solid line

represents dark matter. As we enter the matter dominated era,

dark energy decays into matter fields contributing even more to

its dominance, with its energy density falling ever more slowly,

assuming an almost constant behavior.

2000 3000 4000 5000 6000

0.35

0.40

0.45

0.50

0.55

0.60

0.65

z

Wi

Wr

Wm + WΦ

Fig. 4 Density parameters plotted for high redshift values. The

dashed line represents the matter fields, where the Chaplygin gas

is included once it behaves as dust at this point. The solid line

stands for radiation’s energy density parameter. Equality in den-

sities happens at z = 3968.15.
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Fig. 5 Ratio between pressure and energy density for the

Chaplygin gas. Any small difference between Ω0

φ and V̄0 grows

considerably with the redshift and dark energy eventually be-

comes a pressureless field, and hence matter.

to −1 as the Universe expands but approaches zero quickly

as the redshift increases, when dark energy finally becomes

a pressureless field. The role of the Chaplygin gas becomes

clearer even though we are approaching the cosmological

constant in recent times.



Chaplygin Gas of Tachyon Nature 66–7

0.0 0.5 1.0 1.5 2.0

-0.4

-0.2

0.0

0.2

0.4

z

q

Fig. 6 Deceleration parameter. Expansion becomes accelerated

at zt = 0.65 and the current value of this parameters stands at

q0 = −0.56.
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Fig. 7 The Hubble parameter curve together with its observa-

tional data (Simon et al. 2005; Stern et al. 2010; Moresco et al.

2012; Gaztañaga et al. 2009; Zhang et al. 2014).

The deceleration parameter q is plotted in Figure 6.

The transition from a decelerated to an accelerated expan-

sion happens at zt = 0.65, while for our current time

q0 = −0.56, both of which are in agreement with observa-

tions (del Campo et al. 2012).

Although the Chaplygin gas has been extensively stud-

ied before, new observational data provide great motiva-

tion to revisit the model and set new constraints. The evo-

lution of the Hubble parameter described by this model,

together with the data we used to define our parameters,

is shown in Figure 7. Unfortunately, there are not many

satisfactory measurements to compute solid statistics for

this parameter as there are for the distance modulus, for

instance. Also, the errors associated with the data from

gamma-ray bursts are much bigger than one would de-

sire them to be. Nevertheless, these sources provide infor-

mation from a much younger Universe compared to SNe,

making it worthwhile for testing models and constraining

parameters.

7 CONCLUSIONS

In this work, we started from a general action where a

tachyon field represents the nature of dark energy. We al-

lowed it to be non-minimally coupled to the scalar cur-

vature and we considered the connection to be indepen-

dent through the Palatini approach. Dark matter, baryonic

matter and relativistic material were included in source

fields, as our intention was to build a more complete model.

Instead of establishing the self-interaction potential and the

coupling function in an ad-hoc manner, we stated that sym-

metry should play a more primary role and only functions

capable of composing a continuous and symmetric point

transformation on the generalized coordinates would be

considered. This led to the simpler case where the tachyon

field is only minimally coupled and its potential is con-

stant, behaving as a Chaplygin gas.

The theoretical framework of the Chaplygin gas has

been thoroughly investigated and is widely found in the lit-

erature.? For this reason, we focused on more recent obser-

vational data to constrain the dynamics of the system. The

Hubble parameter suggests that, if the Chaplygin gas is the

underlying nature of dark energy, it should be slightly dy-

namical, as opposed to the particular case of a cosmologi-

cal constant since, as we see, any small difference between

its constant potential and current density parameter grows

considerably with redshift. As this component exhibits a

dual behavior, acting as dark energy for small redshifts and

decaying into matter fields later on, the matter era begins

earlier in the history of the Universe, which could help ex-

plain older structures.
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