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Abstract We apply a new statistical analysis technique, the MeandFaglproach to Independent
Component Analysis (MF-ICA) in a Bayseian framework, toaggl spectral analysis. This algorithm can
compress a stellar spectral library into a few Independem@»nents (ICs), and the galaxy spectrum can
be reconstructed by these ICs. Compared to other algoritiinich decompose a galaxy spectrum into
a combination of several simple stellar populations, the IR approach offers a large improvement in
efficiency. To check the reliability of this spectral anaysethod, three different methods are used: (1) pa-
rameter recovery for simulated galaxies, (2) comparisah p@rameters estimated by other methods, and
(3) consistency test of parameters derived with galax@s the Sloan Digital Sky Survey. We find that our
MF-ICA method can not only fit the observed galaxy spectraiefiitly, but can also accurately recover the
physical parameters of galaxies. We also apply our speatralysis method to the DEEP2 spectroscopic
data, and find it can provide excellent fitting results for Eignal-to-noise spectra.

Key words. methods: data analysis — methods: statistical — galaxieduton — galaxies: fundamental
parameters — galaxies: stellar content

1 INTRODUCTION 2005; Chen et al. 2015) has been widely used. In this ap-
proach, the spectra of stellar populations are modeled by
Spectra contain plentiful information about the propertie combining stellar evolution tracks, stellar spectraldities

and star formation histories (SFHs). Up to now, a popu-

of a galaxy (Kong et al. 2014). Finding a way to ana- . ) . i
. . lar simple stellar population (SSP) library was provided by
lyze the spectra of observed galaxies and determine ﬂ}ﬁe isochrone synthesis technique (BC03). Several groups

parameters of a large sample of galaxies would not OnIfave selected a few SSPs from this library as templates

help us to nvestigate galaxy form_auorj and ev_olut|on, bu o fit observed galaxy spectra (Tremonti et al. 2004; Cid
also allow us to derive cosmological information from a
Fernandes et al. 2005).

large number of galaxies (Conroy 2013). Many methods,
based on the relevant features, have been devised to mea- However, the advent of large-area spectroscopic sur-
sure and understand the physical parameters of galaxiegys, such as the Third Sloan Digital Sky Survey
either by using spectral indices (Worthey et al. 1994) o(SDSS-III; Eisenstein et al. 2011), the Deep Extragalactic
emission features (Kewley et al. 2001; Shi et al. 2014)Evolutionary Probe 3 (DEEP3) Galaxy Redshift Survey
or by fitting the full spectrum (Tremonti et al. 2004; Cid (Cooper et al. 2011), and the Large sky Area Multi-Object
Fernandes et al. 2005; Ocvirk et al. 2006; Tojeiro et alfiber Spectroscopic Telescope (LAMOST; Cui et al. 2012),
2007; Liu et al. 2013). Due to the abundance of high-will be providing oceans of data, thus the development of
quality galaxy spectra, two different population syntkesi fast and automated extraction methods is required. We note
approaches have been commonly used to study the stehat statistical analysis techniques have been commonly
lar contents of a galaxy. The empirical population syntheimplemented. For example, Richards et al. (2009) utilized
sis method (Faber 1972; Bica 1988; Cid Fernandes et alhe diffusionk-means method to draw several prototype
2001; Kong et al. 2003) is based on modeling galaxies aspectra from the SSP database as input templates of the
a mixture of several observed spectra of stars or star cluspectral synthesis software STARLIGHT (Cid Fernandes
ters. However, this method does not consider stellar eveet al. 2005). Nolan et al. (2006) applied a data-driven
lution and is limited by the observed stellar/cluster specBayesian approach to the spectra of early-type galaxies.
tral library. Recently, a more direct approach, called evol Another blind source separation (BSS) technique applied
tionary population synthesis (Vazdekis, 1999; Girardiet a to spectra is principal component analysis (PCA, Mittaz
2000; Bruzual & Charlot 2003 hereafter BC03; Marastonet al. 1990; Kong & Cheng 2001, Yip et al. 2004), but the
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interpretation of the individual component spectra seemSSP database will be used to derive our templates in
rarely illuminating. Here, we explore a new statistical mul Section2.2.3.

tivariate data processing technique, independent compo-

nent analysis (ICA), in our spectral analysis. This tech2.2 MF-ICA Technique

nigue has been implemented in studies of the Cosmic _

Microwave Background (Maino et al. 2007) and the anal-2.2.1 Independent Component Analysis (ICA)

ysis of spectra (Lu et al. 2006; Allen et al. 2013); how- . o . .
ever, the Ensemble Learning ICA (EL-ICA, also known aslc_:A IS a new mult|\{ar|ate data processing method Wh'Ch
naive mean field or NMF) method used in Lu et al. (2006)_alms at deco_mppsmg complex r_nult|var|a_te_ observations
is known to fail in some circumstances (e.g. low signal-'nto _(_a\_combmanon of a few hidden ongmz_;\I_ sources
to-noise (S/N) spectra) (Hgjen-Sgrensen et al. 2001), a yvarinen et al. 2001.)' Compared to the trad|.t|onal mul-
Allen et al. (2013) only applied this technique to emission-tvariate data processing methods, such as principal com-

line galaxies. For the sake of non-negative values in thgonent analysis (PCA) or factor analysis, ICA is much

spectral analysis of galaxies, we adopt a new ICA algo_rnore powerful at finding hidden sources, even when tra-

rithm, the mean field approach to independent componer(ﬁitional methods fail completely. The following genera-

analysis (MF-ICA), which can constrain the sources andive model of ICA shows that multivariate observations

. . Phdiag) -rve
the mixing matrix to be non-negative with a more efficient®" mixed signalsz’, i = 1,2,...,m, are a combination
and more reliable algorithm of hidden sources, i.e. Independent Components (Izs),

The paper is structured as follows. In Section 2, wi i :th1e7 ?ﬁ’nn W:.hr?t:;m(ve Gal;ssmn noige’, weighted
introduce the MF-ICA method, and derive a few template y IXIng weightsuy, (m > n

from evolutionary population models of Charlot & Bruzual on .
(2007, CBO7 hereafter) which can be later used to ana- 't = Zw;hk +I" (i=1,2,....,m). (1)
lyze the spectra of galaxies. In Section 3, the simulated k=1

galaxy spectra are used to analyze the reliability of the
MF-ICA method. In Section 4, we analyze galaxy spec-,
tra observed by the SDSS, and compare our results wit
those obtained from the MPA/JHdatalogs, to investigate
whether our synthesis results are reasonable. In Section
some galaxy spectra from the DEEP2 galaxy redshift sur-

vey are fitted by our method, and our conclusions are out- i - i i
lined in Section 6. Fi) =D wiICh(A) + TN 2
k=1

In our analysis, we take multivariate observations as
he spectra of stellar systems (e.g. SSP database), and
dopt the assumption that each spectfif) can be ex-
ressed as a sum of several |08 (1)), so the model can
e written as

2 METHOD Here, we only know the spectrurfi(\). The unknown
mixing weights w}, the ICs IC,(\) and the noise
2.1 Stellar Population Models can be estimated from ICA algorithms, such as Joint
Approximate Diagonalization of Eigenmatrices (JADE;
Stellar population models can be generated by severglardoso & Souloumiac 1993), extended InfoMax (Bell
population synthesis codes. Here we adopt the 2007 veg, Sejnowski 1995), FastiCA (Hyvarinen et al. 2001),
sion of Galaxe¥ (CBO7), which is a new version of gnsemble Learning ICA (EL-ICA; Miskin & MacKay

BCO3. The CBO7 models have undergone a major im2001), Mean Field ICA (MF-ICA; Hgjen-Sarensen et al.
provement recently with the new stellar evolution pre-2002) and many others.

scriptions of Marigo & Girardi (2007) for the Thermally-

Pulsing Asymptotic Giant Branch (TP-AGB) evolution- 5 5 5 Mean field approach ICA (MF-ICA)

ary phase of low- and intermediate-mass stars. An accu-

rate modeling of this phase is related to correctly predicte The ICA algorithm we adopt in our spectral analysis is

fluxes in the wavelength range bf- 2.5 pm (CBO07). the MF-ICA method. Compared to other algorithms, MF-
The CBO7 models use an empirical spectral librarylCA is a Bayesian iterative algorithm which can constrain
with a range of wavelength (%1 — 36000 um, N =  sources and the mixing matrix to be positive by offering

6917), and spectral resolution of aboutA3 Moreover, priors for them. The main advantage of the MF-ICA algo-
CBO7 contains a large sample of SSPs, which covers 22dthm is the simplicity and generality of its implementatio
different ages fromi.0 x 105 to 2.0 x 10'° yr, and a In this approach, the likelihood for the parameters and
wide range of initial chemical compositions,= 0.0001,  sources is defined &3(X|W, 3, H) given by

0.0004, 0.004, 0.008, 0.02, 0.05 and 0Z,( = 0.02). T m

The observed spectrum of a galaxy can be expressed as a P(X|W, %, H) = (det2rX) "=

1

combination of these individual SSPs with weights. This we~ 3 Tr(X-WH)TE" 1 (X-WH) 3)

)

1 http://mww.mpa-garching. mpg.de/SDSS/ whereW is the mixing matrixX= [z!, 22, ..., 2™]T is the
2 http://www.bruzual.org mixed signhals matrix} is the noise covariance matrix, n
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is the number of input source signals, ahd is the deter- The SSP database of CB0O7 contains 1547 spectra
minant of the matrix. The likelihood of the parameters is(Sect. 2.1). Each spectrum was first truncated to the high
defined as?(X|W, X) obtained from resolution wavelength range 8822 — 9200A, to match

that of the SDSS spectrograph. In the EL-ICA method, the
P(X|W,X) = /dHP(X|W7 3 H)P(H). (4) numberofsources (i.e.ICs)should be the same as the num-

ber of mixed signals. Therefore, Lu et al. (2006) picked up
If priors on the mixing weight P(W) and the @ subsamplt_e out of the BCO3 SSP database as the mixed
sources P(H) are taken into account, then the pos-signals matrixX in the EL-ICA method, and estimated 74
teriors of sources and the mixing matrix are ob-hidden spectra. Finally they choose several ICs from these
tained fromP(H|X, W, 2) « P(X|W, =, H)P(H) and hidden spectra by the average fractional contributionéo th
P(W|X, %) « P(X|W,=)P(W), respectively. In the BCO3 SSP database. However, the MF-ICA method that
MF-ICA method, the noise covarian& and mixing ma- We applied can perform dimensionality reduction. Here the
trix W can be obtained from maximum a posteriori estimaWhole CBO7 SSP database was set as the input mixed sig-
tion, while source$i can be obtained from their posterior Nals matrixX, then the MF-ICA method will be applied

mean. The mean field approach can be solved by: to them, and the output ICs will be more precise. To avoid
. negative values appearing in spectral analysis, we set the
H=H), (5)  priors of the mixing matrix and sources to be positive.
As has been mentioned above, the number of ICs can
W = X(HTYHHT)!, (6) be less than the number of mixed signals in the MF-ICA

method, thus it should be predefined. The correct num-

1 o o ber can be determined as follows. We apply the Root Sum

= (X -WH)(X - WH)T), (7)  Square (RSS) method to select the proper number of ICs.
" The value of RSS between the original mixed signals (i.e.

where (-) = (-)gjw s x denotes the posterior average whole SSP database) and the recovered mixed matrix can
with respect to the sources given the mixing ma-be calculated by

trix and noise covariance. The solution of the MF-
ICA algorithm equals the updated noise covariance n
(Eq. (7)) and mixing matrix (Eq.(6)), and estimating RSS =
sources (Eg.(5)). Thus the optimized matrices of mix- F
ing matrix W, noise covariance®, and sourcesH

can be derived from this iterative method. More de-where the recovered mixed matrX is calculated from
tails about the MF-ICA method can be found in Hgjen-the estimated mixing matrix and sourc&s:= WH. We
Sgrensen et al. (2002) and the available™/B toolbox  preset the initial number of sources as one, then increase
(http://mole.imm.dtu.dk/toolbox/ita Through Bayesian the number and the value of RSS will be reduced. We re-
inference about the mixing matrix and sources, their priorpeat this process until the reduction is no longer significan
can be constrained to be non-negative, which will be usefufinally, the number of ICs can be set as 12.

in processing observed galaxy spectra, since the spectral Using the number of ICs we determined, the sources
parameters should not be negative. Although the EL-ICAcan be obtained from the MF-ICA calculation. Therefore,
method has been implemented in galaxy spectral analysihe SSP database can be compressed into 12 ICs. We
(Lu etal. 2006), here we adopt the MF-ICA method, whichpresent these 12 ICs in figure 4 of Su et al. (2013).

relies on advanced mean field approaches: linear response To confirm the reliability and quality of the ICs, we
theory and an adaptive version of the mean-field approactused the 12 estimated ICs to recover the 1547 SSPs in the
Hgjen-Sgrensen et al. (2001, 2002) have investigated bothB07 database as follows

the MF-ICA and EL-ICA methods. They concluded that
compared to the EL-ICA method, the advanced mean field
approaches can recover the correct sources even when en-
semble learning theory fails, and the convergence rate of
the MF-ICA method is found to be faster. A comparison ofand we found that the spectra reconstructed by these 12 ICs
these two ICA methods will be described in Section 3.3. excellently match those in the SSP database.

1/2
P a%i)?) , ®)

=1 i=1

12
fosp(N) =D wiICi(\) (i =1,2,..,1547), (9)
k=1

2.2.3 Analysis SSPs using MF-ICA 2.3 Fitting Galaxy Spectra

Through the multivariate data processing technique, wé&he aim of this study is to use these estimated 12 ICs to fit
expect to derive a minimal number of non-negative tem-galaxy spectra from large surveys. The SFHs of a galaxy
plates, which can represent the spectra of a galaxy withan be approximated as a combination of discrete bursts,
minimal loss of information. Here, we adopt the MF-ICA thus the population of a galaxy can be decomposed into a
algorithm to compress the spectral library of SSP fromcombination of SSPs. As shown in Section2.2.3, the SSP
CBO07 models (Sect. 2.1). database can be recovered with 12 ICs, so the model of
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observed galaxy spectrd,()), can be fitted by these 12 We apply our spectral analysis method to 500 simu-

ICs as lated spectra over the rangg22 — 9200A. We also use
12 the extinction law of Charlot & Fall (2000) to attenuate
fo(A) =71(}) Zaklck()" 7), (10)  each spectrum, where the absorption optical defthis
k=1

. . . _ uniformly distributed between 0 and 5. The velocity dis-
wherer()) is the reddening term, which describes thepersions is uniformly distributed between Sans—! and

intrinsic  starlight reddening and can be modeled by450kms~!. Finally we added Gaussian noise with (S/N)
the extinction law of Charlot & Fall (2000)ICy(X,0) = 10, 20 and 30.

is the k—th IC convolved with a Gaussian function.
The Gaussian widthr corresponds to the stellar ve- 35 Regults
locity dispersion of a galaxy. During the fitting pro-
cess, we mask points around prominent lines, such asrom fitting simulated spectra, we expect to examine the
Balmer lines (K, Hy, H), H3, Ha) and strong for- reliability of our spectral analysis approach which is lshse
bidden lines ([Q1]A3727, [Nelll]A3869, [ON1]AN4959,  on the MF-ICA algorithm. Our main parameters of inter-
5007, [He]A5876, [O1]A6300, [NIIJAA6548, 6584 and est areAv, o, t and Z. The following steps are used to
[SHIAN6717, 6721). estimate age and metallicity:

After subtracting the modeled stellar population spec-
trum, emission lines can be fitted with Gaussians simul{1) The pure spectrum of a stellar system in a galaxy,
taneously, similar to Tremonti et al. (2004): the forbidden  f4()), can be recovered by ICs, and it can also be rep-
lines ([Ou], [Oni], [O1], [N 1] and [SiI]) are set to have resented by a combination &f SSPs. Thus we can
the same line width and velocity offset; the same treatment ~ solve the equation
is applied to Balmer lines (1 HJ, H5 and Hx). By using

the procedures above, the observed galaxy spectra can be 12 N
quickly recovered. Fo) =D arlC(N) = biflsp(N).  (12)
k=1 j=1

3 RELIABILITY OF THE FITTING METHOD (2) We adopt 60 SSPs from the CB07 database including
3.1 Simulations models of 15 different ages & 0.001, 0.003, 0.005,
0.01, 0.025, 0.04, 0.1, 0.2, 0.6, 0.9, 1.4, 2.5, 5, 11,
In this section, we analyze the simulated galaxy spectrato 13 Gyr) and four different metallicitiesZ = 0.004,
examine the reliability of the MF-ICA method. All simu- 0.008, 0.02, 0.05).
lated spectra are generated from the 2007 version of BCO®) After solving Equation (12), the age and metallicity
stellar population synthesis code. For the sake of simplic-  can be computed by
ity, we parameterize each SFH of the simulated galaxy in
terms of an underlying continuous model superimposed 60
with random bursts on it (Kauffmann et al. 2003). The (logt)r = > _bjlog(t;), (13)
spectral energy distribution (SED) at timteof a stellar J=1
population characterized by an exponentially decliniag st 0
formation lawy(t) o< e~ is given b
() J Y log(Z), =1log ¥ b;Z;. (14)
j=1

F(t) = / Gt - S\, 2)dt, (1)

whereS, (¢, Z) is the power radiated by an SSP of age

and metallicityZ per unit Wavele_ngth per unit initial mass. Clearly, the values of starlight reddeninty, and stellar
The added SFHSs are described below: velocity dispersions are relatively well recovered. The

(1) The time when a galaxy begins forming stais dis- mean square errors (MSEs) between recovered and input
tributed uniformly between 0.1 and 13.5 Gyr. Star for-values are less than 0.20 and 7.45, respectively, as shown
mation timescale is uniformly distributed between 0 in Table 1.
and 1Gyr .

(2) Random bursts occur at any time with the same prob¥able 1 Summary of parameter error estimates for simulated
ability. Bursts are parameterized in terms of the frac-spectra. The different rows list the MSE between output and i
tion of stellar mass produced, which is logarithmically PUt values of the corresponding quantity, as obtained frians
distributed between 0.03 and 4, and their duration cafftions with different values of S/N.
vary between 0.03 and 0.3 Gyr.

(3) The metallicitiesZ are uniformly distributed between SN MSEay (mag) MSEo (kms ™) MSE(o, ¢, MSEiog(z),
0.02 Zs and2 Z,, which represent the range of stellar 10 0.191 7.449 0.201 0.201

it 5 20 0.169 6.301 0.189 0.202
metallicities _mferred from the spectra ef 2 x 10 2 0119 6017 0.160 0.196
SDSS galaxies.

Figure 1 shows the input parameters versus estimated
values from simulated spectra with SA 10, 20 and 30.
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Fig. 1 Comparison of the inputly (magnitude)g (km s~ 1) and stellar ages (yr) with output values that are estimiated simulations,
with S/IN=10, 20 and 30, using our MF-ICA method. The red dot-dashexisithe identity lineq = x).

From the above method, a galaxy spectrum can be We use these ICs to refit the simulated spectra. The in-
decomposed into 60 SSPs with weights. The estimateput parameters versus the estimated values that are output
weightsb; can reflect the fractional contributions of the and the MSE between them for simulations with S/N=20
j—th SSP with age; and metallicityZ;. Therefore, the are shown in Figure 3. The dispersions of parameters de-
light-weighted age and metallicity can be estimated. Agived by the EL-ICA method are larger than those by
shown in Figure 1 (bottom panel), the recovered and inpubur method, which are plotted in Figure 1. The MSEs
values of(log t) ;, have no significant difference with MSE of starlight reddening, velocity dispersion, stellar agd a
less than 0.20. According to the age-metallicity degenemnetallicity (Av, o, (log t) 1, log(Z) ) are 0.421, 33.841,
acy problem (Bressan et al. 1996), the value®@fZ);  0.405 and 0.299 for S/IN=20, respectively. These values are
recovered by our method must have some differencesnuch larger than those of our method, as shown in Table 1.
However, we can estimate the parameters with reasonablénally, we also fit the SSP database using these ICs. The
accuracy, and the Spearman’s rank correlation coefficiersipectra recovered are not as good as those by our method.
rs between output and inplidg(7) ;. is about 0.70 for SIN  We conclude that our method which is based on the MF-
= 20. Finally, the summary of MSE for parameters from ICA algorithm is more precise and reliable.
simulated spectra can be found in Table 1.

4 APPLICATION TO SDSS SPECTRA

3.3 Comparison with the EL-ICA Method Using our MF-ICA spectral analysis method, we fit the

SDSS galaxy spectra, analyze their stellar populationprop
To carefully test the performance of ICA algorithms, weerties, and measure their emission-line properties fram th
re-estimated the ICs by the EL-ICA algorithm (Miskin & starlight-subtracted spectra. In this section, we compare
MacKay 2001). The EL-ICA method, which is also known the physical parameters obtained from stellar population
as the naive mean field ICA method, has been applied ianalysis of the continuum and measurements of emission
galaxy spectral analysis by Lu etal. (2006). Here we usetines. We also compare parameters estimated from our fit-
the same steps as Lu etal. (2006) and also derived six IC8ng technique with those derived by the MPA/JHU group.
which we present in Figure 2. Because the aim of this section is only to test whether
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Fig.2 The spectra of six ICs estimated by the EL-ICA method. Sonoenprent spectral features are labeled the same as those in
figure 4 in Su et al. (2013).
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Fig.3 Comparison of the inpuly (magnitude)o (km s™') and stellar ages (yr) with the estimated output values omulations,
with S/N=20, using the EL-ICA method. The red dot-dashed line is tkeatity line (y = x).

the results from our spectral analysis method are reasort al. (1998). Then, they were transformed into the rest

able and meaningful, we will not investigate their physicalframe, with spectroscopic redshifts. The spectral fitteg r

properties, such as the formation and evolution of galaxiesults give a median?/d.o.f (degree of freedom) of 1.13,
nearly the excellent value of 1 that we expect.

4.1 DataPreparation Figure 4 shows some examples of the fitting. The spec-
tra can be well recovered by visual inspection, which sug-

The Sloan Digital Sky Survey (SDSS; York et al. 2000)gests that our MF-ICA spectral analysis approach works

has released huge amounts of high-quality observed spegell.

tra of objects. In this work, our sample of spectra was ex-

tracted from spectroscopic plates of SDSS Data Releasg? comparisonswith the MPA/JHU Database

8 (DRS; Aihara et al. 2011). Moreover, we choose the

objects which have been spectroscopically classified ashe MPA/JHU group has provided catalogs of estimated

galaxies. The spectra obtained from SDSS span a wavehysical parameters of SDSS galaxies publicly available

length range from 380 to 9200A with mean spectral on the websité. They inferred the SFHs of DR8 galax-

resolutionR = A/AX ~ 1800, and are taken with three ies on the basis of CB07 models, which were similar to

arcsecond diameter fibers. We finally fit about one mil-results from our research. Here we compare our own esti-

lion spectral samples of galaxies with redshift less than Imated parameters, such as the emission line measurements

which are obtained from the SDSS spectroscopic pipelineand stellar population properties, with those obtainechfro

We use the MF-ICA method, which was describedthe MPA/JHU catalogs. Although we do not expect our es-

in Section 2.3, to fit the spectral sample of galaxies frontimated parameters to be perfectly consistent with theirs,

SDSS. First, the spectra of galaxies were corrected for

foreground Galactic extinction, using the maps of Schlegel 3 Seehttp:/imww.sdss3.org/dr8/spectro/spectiocess.php
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Fig.5 The values of stellar extinctiody and stellar mas3/.. computed from the MPA/JHU database versus those valuesutethp
by our code. The dot-dashed line is the identity lipe=£ ). The dashed line in the right panel is a robust fit for thetieta The
number in the top left corner is the Spearman rank correlatoefficient.

we analyze the relationships between these parametersitoprevious research works, we constraip to be positive
examine the accuracy and reliability of the MF-ICA algo-in our analysis. Therefore, this constraint will not have a
rithm. significant impact on the results of our analysis.

4.2.1 Stellar extinction We adopt the value of Spearman’s rank correlation co-
efficientr, to describe the relationship between two vari-
In our fitting technique, the extinction of optical galaxy ables. As shown in Figure 5(a), our results are well and
spectra is modeled as one free parametbf. In linearly correlated to those extracted from the MPA/JHU
Figure 5(a), we plot the values ofy estimated by our catalogs, withry = 0.69. However, the extinction values
method versus those estimated by the MPA/JHU groupdy, obtained from the MPA/JHU database are systemat-
which adopt the same attenuation curve by Charlot & Falically lower than our values, similar to findings in Chen
(2000). Since only a few galaxies witly < 0 are found et al. (2012, in fig. 3f). One possible reason for this dis-
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Fig.7 Plot of our estimated nebular oxygen abundances versus tiatained by the MPA/JHU group. The dot-dashed line is the
identity line (y = ), while the number in the top left corner is the Spearman rmkelation coefficient.

crepancy is that we only use the optical-band spectra to, = 0.90. The small discrepancy is caused due to the
estimate the stellar extinctiofy,. different estimation methods. In our method, the stellar
masses are obtained from tié/L ratio, which is esti-
mated through the begf model. However, the MPA/JHU
group estimated theid/ /L ratio through a Bayesian in-
By using our stellar population analysis method, the lightference method, which connects two indicesisHand
weighted stellar mas®g(M);, of an SDSS galaxy also D»(4000), with a model obtained from a large library of
can be estimated. We calculate the mass to ligiiy )  Monte Carlo realizations of galaxies with different SFHs
ratio by adding the weigheti// L ratios of each SSP com- (Kauffmann et al. 2003).
ponent, and then derive the stellar mass by multiplying it
by luminosity. 4.2.3 Emission lines and nebular metallicities

In Figure 5(b), we plot our estimated stellar mass ver-
sus the MPA/JHU extinction-corrected stellar mass. Thén our case the emission lines were measured from
results from the two methods are very consistent, witta starlight-subtracted spectrum. The MPA/JHU group

4.2.2 Stellar mass
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adopted a similar method, however, they only used a sinef Ha is also an indictor of age, which would be larger for
gle metallicity CBO7 model to fit the observed contin- younger galaxies.
uum. We plot our estimated equivalent widths (EWs) of  Figure 8(c) shows that the light-weighted stellar age
emission lines, such asH[O 11]A5007, [O1I]A6300, Hy,  (log t), correlates negatively with EW() (rs = —0.79),
[N111\6584 and [S1]A6717 versus those measured byas we expect. These relations reflect that the stellar ages
the MPA/JHU group in Figure 6. As shown in Figure6, (log t); we obtained by our spectral synthesis are reason-
our values are consistent with those measured by thable.
MPA/JHU group, with a small discrepancy. We adopt the
MSE to quantify the discrepancy between them. On the} 3.2 Stellar mass and velocity dispersion
whole, the MSEs of all these values are less than 1, sug-
gesting that there are no significant differences. The sma#fccording to the viral theorem, for constant mass surface
discrepancy appearing is due to the different measuremefensity, the stellar mass (laly..) is expected to be pos-
of the synthesized spectrum, which is related to differenttively correlated with the stellar velocity dispersiondl
subtracted stellar absorption. o). In a sample of old galaxies, is related to galaxy mass
We also compared the value of nebular oxygen abunthrough the Faber-Jackson relation. Moreover, the stellar
dancel2 + log(O/H), which can be obtained from the Vvelocity dispersion of young, star forming galaxies is con-
equation described in Tremoni etal. (2004). As showriributed from the bulge and disk, thus it is related to galaxy
in Figure7, our estimated values of nebular oxygermass through the Tully-Fisher relation. In Figure 8(d), we
abundance show a high degree of correspondence wifplot our estimates of stellar mass (ldd.) with velocity
those drawn from the MPA/JHU catalog. The value ofdispersion (logr). The M. — o relation shows a strong
the Spearman rank coefficient is 0.99, nearly a perfedpositive trend with-y = 0.82 as we expect, which suggests
Spearman correlation of = 1, which indicates an ideal our synthesis results are physically meaningful.
linear relationship. We have analyzed correlations between physical pa-
This part can be summarized as follows. We have comtameters obtained from stellar populations, such as stella
pared estimated parameters such as stellar extinctidn, st@ges and stellar masses, with independent quantities. The
lar mass and emission line measurements with those olstrong correlations betweefiog t);, — D,(4000), Ha,
tained from the MPA/JHU catalogs. According to the anal-EW(Ha) and M. — o suggest that the parameters derived
ysis of relationships between these parameters, we cofy our spectral synthesis approach through the MF-ICA
clude that the MF-ICA method is reasonable and reliable.method are reasonable and meaningful.

4.3 Empirical Relations 5 APPLICATION TO SPECTRA OF GALAXIES
WITH HIGHER REDSHIFT
In this subsection, the accuracy of our method is tested in
another way. The parameters estimated from the analysfgptical galaxy redshift surveys are not only vitally impor-
of the continuum were compared with those estimated byant in cosmology, but also critical to understanding phys-
using measured emission lines. We analyze the relationcal processes related to galaxy formation and/or evolu-
ships between these parameters to investigate whether #éon (Fang et al. 2015). In the last few years, redshift sur-
sults derived from our method are reasonable. veys, such as the 2dF Galaxy Redshift Survey (2dFGRS;
Colless et al. 2001) and SDSS, have measured redshifts
4.3.1 Relations between Balmer features and stellar age©f millions of low redshift galaxies (with a median red-
. shift of = = 0.1). With larger aperture telescopes, a new
The value of 400@\ break index (Balogh et al. 1999) can generation of redshift surveys, such as DEEP2, BigBOSS
reflect the age of a galaxy. Highéx,(4000) values are re- and LAMOST, will measure galaxies with higher redshifts
lated to older, metal—rich galaxies, while lower values argDavis et al. 2007; Schlegel et al. 2009; Kong & Su 2010;
related to younger stellar subpopulations in galaxies. Th&ou et al. 2011). The motivation for this work is that we
strength of K, (Worthey & Ottaviani 1997) is another want to provide an easy-to-use full-spectrum fitting pack-
age indicator. Strong &, absorption of a galaxy reflects a age and determine parameters for spectra collected by the
burst of star formation that occurred in the past 1 Gyr.  LAMOST extragalactic surveys (Kong & Su 2010). Since
Therefore, our estimated ages of galaxies should increaske regular spectroscopic survey of LAMOST is just be-
with D,,(4000) values and decrease with Hvalues. ginning, we apply our synthesis approach to the spectra of
In Figure8(a) and (b), correlations between agesgalaxies from the DEEP2 survey, which has a similar S/N
D,(4000) and Hs values are shown as expected rela-as spectra from LAMOST (Luo et al. 2015).

tionships; D,,(4000)— (log t)r, trends withrs = 0.85 In the Extended Groth Strip (EGS) field, utilizing
are strongly positive, and # — (log ¢);, trends with the Deep Imaging Muti-object spectrograph (DEIMOS)
rs = —0.77 are strongly negative. mounted on the Keck 10 m telescope, the DEEP2 galaxy

For a galaxy with emission lines, thexkémission line  redshift survey provides spectral data from galaxies with
corresponds to the instantaneous star formation rate (SFRydshifts from 0 to 1.4. DEIMOS has a high-revolution
of a galaxy (Kennicutt & Evans 2012). Therefore the EWgrating of 1200 line mm?!, covering the rang&500 —
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