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Abstract We apply a new statistical analysis technique, the Mean Field approach to Independent
Component Analysis (MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can
compress a stellar spectral library into a few Independent Components (ICs), and the galaxy spectrum can
be reconstructed by these ICs. Compared to other algorithmswhich decompose a galaxy spectrum into
a combination of several simple stellar populations, the MF-ICA approach offers a large improvement in
efficiency. To check the reliability of this spectral analysis method, three different methods are used: (1) pa-
rameter recovery for simulated galaxies, (2) comparison with parameters estimated by other methods, and
(3) consistency test of parameters derived with galaxies from the Sloan Digital Sky Survey. We find that our
MF-ICA method can not only fit the observed galaxy spectra efficiently, but can also accurately recover the
physical parameters of galaxies. We also apply our spectralanalysis method to the DEEP2 spectroscopic
data, and find it can provide excellent fitting results for lowsignal-to-noise spectra.
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1 INTRODUCTION

Spectra contain plentiful information about the properties
of a galaxy (Kong et al. 2014). Finding a way to ana-
lyze the spectra of observed galaxies and determine the
parameters of a large sample of galaxies would not only
help us to investigate galaxy formation and evolution, but
also allow us to derive cosmological information from a
large number of galaxies (Conroy 2013). Many methods,
based on the relevant features, have been devised to mea-
sure and understand the physical parameters of galaxies,
either by using spectral indices (Worthey et al. 1994) or
emission features (Kewley et al. 2001; Shi et al. 2014),
or by fitting the full spectrum (Tremonti et al. 2004; Cid
Fernandes et al. 2005; Ocvirk et al. 2006; Tojeiro et al.
2007; Liu et al. 2013). Due to the abundance of high-
quality galaxy spectra, two different population synthesis
approaches have been commonly used to study the stel-
lar contents of a galaxy. The empirical population synthe-
sis method (Faber 1972; Bica 1988; Cid Fernandes et al.
2001; Kong et al. 2003) is based on modeling galaxies as
a mixture of several observed spectra of stars or star clus-
ters. However, this method does not consider stellar evo-
lution and is limited by the observed stellar/cluster spec-
tral library. Recently, a more direct approach, called evolu-
tionary population synthesis (Vazdekis, 1999; Girardi et al.
2000; Bruzual & Charlot 2003 hereafter BC03; Maraston

2005; Chen et al. 2015) has been widely used. In this ap-
proach, the spectra of stellar populations are modeled by
combining stellar evolution tracks, stellar spectral libraries
and star formation histories (SFHs). Up to now, a popu-
lar simple stellar population (SSP) library was provided by
the isochrone synthesis technique (BC03). Several groups
have selected a few SSPs from this library as templates
to fit observed galaxy spectra (Tremonti et al. 2004; Cid
Fernandes et al. 2005).

However, the advent of large-area spectroscopic sur-
veys, such as the Third Sloan Digital Sky Survey
(SDSS-III; Eisenstein et al. 2011), the Deep Extragalactic
Evolutionary Probe 3 (DEEP3) Galaxy Redshift Survey
(Cooper et al. 2011), and the Large sky Area Multi-Object
fiber Spectroscopic Telescope (LAMOST; Cui et al. 2012),
will be providing oceans of data, thus the development of
fast and automated extraction methods is required. We note
that statistical analysis techniques have been commonly
implemented. For example, Richards et al. (2009) utilized
the diffusionk-means method to draw several prototype
spectra from the SSP database as input templates of the
spectral synthesis software STARLIGHT (Cid Fernandes
et al. 2005). Nolan et al. (2006) applied a data-driven
Bayesian approach to the spectra of early-type galaxies.
Another blind source separation (BSS) technique applied
to spectra is principal component analysis (PCA, Mittaz
et al. 1990; Kong & Cheng 2001; Yip et al. 2004), but the
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interpretation of the individual component spectra seems
rarely illuminating. Here, we explore a new statistical mul-
tivariate data processing technique, independent compo-
nent analysis (ICA), in our spectral analysis. This tech-
nique has been implemented in studies of the Cosmic
Microwave Background (Maino et al. 2007) and the anal-
ysis of spectra (Lu et al. 2006; Allen et al. 2013); how-
ever, the Ensemble Learning ICA (EL-ICA, also known as
naive mean field or NMF) method used in Lu et al. (2006)
is known to fail in some circumstances (e.g. low signal-
to-noise (S/N) spectra) (Højen-Sørensen et al. 2001), and
Allen et al. (2013) only applied this technique to emission-
line galaxies. For the sake of non-negative values in the
spectral analysis of galaxies, we adopt a new ICA algo-
rithm, the mean field approach to independent component
analysis (MF-ICA), which can constrain the sources and
the mixing matrix to be non-negative with a more efficient
and more reliable algorithm.

The paper is structured as follows. In Section 2, we
introduce the MF-ICA method, and derive a few templates
from evolutionary population models of Charlot & Bruzual
(2007, CB07 hereafter) which can be later used to ana-
lyze the spectra of galaxies. In Section 3, the simulated
galaxy spectra are used to analyze the reliability of the
MF-ICA method. In Section 4, we analyze galaxy spec-
tra observed by the SDSS, and compare our results with
those obtained from the MPA/JHU1 catalogs, to investigate
whether our synthesis results are reasonable. In Section 5,
some galaxy spectra from the DEEP2 galaxy redshift sur-
vey are fitted by our method, and our conclusions are out-
lined in Section 6.

2 METHOD

2.1 Stellar Population Models

Stellar population models can be generated by several
population synthesis codes. Here we adopt the 2007 ver-
sion of Galaxev2 (CB07), which is a new version of
BC03. The CB07 models have undergone a major im-
provement recently with the new stellar evolution pre-
scriptions of Marigo & Girardi (2007) for the Thermally-
Pulsing Asymptotic Giant Branch (TP-AGB) evolution-
ary phase of low- and intermediate-mass stars. An accu-
rate modeling of this phase is related to correctly predicted
fluxes in the wavelength range of1 − 2.5 µm (CB07).

The CB07 models use an empirical spectral library
with a range of wavelength (91̊A − 36 000 µm, N =
6917), and spectral resolution of about 3Å. Moreover,
CB07 contains a large sample of SSPs, which covers 221
different ages from1.0 × 105 to 2.0 × 1010 yr, and a
wide range of initial chemical compositions,Z = 0.0001,
0.0004, 0.004, 0.008, 0.02, 0.05 and 0.1 (Z⊙ = 0.02).
The observed spectrum of a galaxy can be expressed as a
combination of these individual SSPs with weights. This

1 http://www.mpa-garching.mpg.de/SDSS/
2 http://www.bruzual.org

SSP database will be used to derive our templates in
Section 2.2.3.

2.2 MF-ICA Technique

2.2.1 Independent Component Analysis (ICA)

ICA is a new multivariate data processing method which
aims at decomposing complex multivariate observations
into a combination of a few hidden original sources
(Hyvärinen et al. 2001). Compared to the traditional mul-
tivariate data processing methods, such as principal com-
ponent analysis (PCA) or factor analysis, ICA is much
more powerful at finding hidden sources, even when tra-
ditional methods fail completely. The following genera-
tive model of ICA shows that multivariate observations
or mixed signalsxi, i = 1, 2, ...,m, are a combination
of hidden sources, i.e. Independent Components (ICs),hk,
k = 1, 2, ..., n, with additive Gaussian noiseΓi, weighted
by the mixing weightswi

k (m× n)

xi =
n

∑

k=1

wi
khk + Γi (i = 1, 2, ...,m) . (1)

In our analysis, we take multivariate observations as
the spectra of stellar systems (e.g. SSP database), and
adopt the assumption that each spectrumf i(λ) can be ex-
pressed as a sum of several ICs,ICk(λ), so the model can
be written as

f i(λ) =

n
∑

k=1

wi
kICk(λ) + Γi(λ) . (2)

Here, we only know the spectrumf i(λ). The unknown
mixing weights wi

k, the ICs ICk(λ) and the noise
can be estimated from ICA algorithms, such as Joint
Approximate Diagonalization of Eigenmatrices (JADE;
Cardoso & Souloumiac 1993), extended InfoMax (Bell
& Sejnowski 1995), FastICA (Hyvärinen et al. 2001),
Ensemble Learning ICA (EL-ICA; Miskin & MacKay
2001), Mean Field ICA (MF-ICA; Højen-Sørensen et al.
2002) and many others.

2.2.2 Mean field approach ICA (MF-ICA)

The ICA algorithm we adopt in our spectral analysis is
the MF-ICA method. Compared to other algorithms, MF-
ICA is a Bayesian iterative algorithm which can constrain
sources and the mixing matrix to be positive by offering
priors for them. The main advantage of the MF-ICA algo-
rithm is the simplicity and generality of its implementation.

In this approach, the likelihood for the parameters and
sources is defined asP (X|W,Σ,H) given by

P (X|W,Σ,H) = (det2πΣ)−
n

2

×e−
1

2
Tr(X−WH)TΣ

−1(X−WH), (3)

whereW is the mixing matrix,X= [x1, x2, ..., xm]T is the
mixed signals matrix,Σ is the noise covariance matrix, n
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is the number of input source signals, anddet is the deter-
minant of the matrix. The likelihood of the parameters is
defined asP (X|W,Σ) obtained from

P (X|W,Σ) =

∫

dHP (X|W,Σ,H)P (H). (4)

If priors on the mixing weight P (W) and the
sourcesP (H) are taken into account, then the pos-
teriors of sources and the mixing matrix are ob-
tained fromP (H|X,W,Σ) ∝ P (X|W,Σ,H)P (H) and
P (W|X,Σ) ∝ P (X|W,Σ)P (W), respectively. In the
MF-ICA method, the noise covarianceΣ and mixing ma-
trix W can be obtained from maximum a posteriori estima-
tion, while sourcesH can be obtained from their posterior
mean. The mean field approach can be solved by:

Ĥ = 〈H〉 , (5)

Ŵ = X〈HT〉〈HH
T〉−1 , (6)

Σ =
1

n
〈(X − ŴĤ)(X − ŴĤ)T〉 , (7)

where 〈·〉 = 〈·〉H|W,Σ,X denotes the posterior average
with respect to the sources given the mixing ma-
trix and noise covariance. The solution of the MF-
ICA algorithm equals the updated noise covariance
(Eq. (7)) and mixing matrix (Eq. (6)), and estimating
sources (Eq. (5)). Thus the optimized matrices of mix-
ing matrix Ŵ, noise covarianceΣ, and sourcesĤ
can be derived from this iterative method. More de-
tails about the MF-ICA method can be found in Højen-
Sørensen et al. (2002) and the available MATLAB toolbox
(http://mole.imm.dtu.dk/toolbox/ica). Through Bayesian
inference about the mixing matrix and sources, their priors
can be constrained to be non-negative, which will be useful
in processing observed galaxy spectra, since the spectral
parameters should not be negative. Although the EL-ICA
method has been implemented in galaxy spectral analysis
(Lu et al. 2006), here we adopt the MF-ICA method, which
relies on advanced mean field approaches: linear response
theory and an adaptive version of the mean-field approach.
Højen-Sørensen et al. (2001, 2002) have investigated both
the MF-ICA and EL-ICA methods. They concluded that
compared to the EL-ICA method, the advanced mean field
approaches can recover the correct sources even when en-
semble learning theory fails, and the convergence rate of
the MF-ICA method is found to be faster. A comparison of
these two ICA methods will be described in Section 3.3.

2.2.3 Analysis SSPs using MF-ICA

Through the multivariate data processing technique, we
expect to derive a minimal number of non-negative tem-
plates, which can represent the spectra of a galaxy with
minimal loss of information. Here, we adopt the MF-ICA
algorithm to compress the spectral library of SSP from
CB07 models (Sect. 2.1).

The SSP database of CB07 contains 1547 spectra
(Sect. 2.1). Each spectrum was first truncated to the high
resolution wavelength range of3322 − 9200 Å, to match
that of the SDSS spectrograph. In the EL-ICA method, the
number of sources (i.e. ICs) should be the same as the num-
ber of mixed signals. Therefore, Lu et al. (2006) picked up
a subsample out of the BC03 SSP database as the mixed
signals matrixX in the EL-ICA method, and estimated 74
hidden spectra. Finally they choose several ICs from these
hidden spectra by the average fractional contribution to the
BC03 SSP database. However, the MF-ICA method that
we applied can perform dimensionality reduction. Here the
whole CB07 SSP database was set as the input mixed sig-
nals matrixX, then the MF-ICA method will be applied
to them, and the output ICs will be more precise. To avoid
negative values appearing in spectral analysis, we set the
priors of the mixing matrix and sources to be positive.

As has been mentioned above, the number of ICs can
be less than the number of mixed signals in the MF-ICA
method, thus it should be predefined. The correct num-
ber can be determined as follows. We apply the Root Sum
Square (RSS) method to select the proper number of ICs.
The value of RSS between the original mixed signals (i.e.
whole SSP database) and the recovered mixed matrix can
be calculated by

RSS =





n
∑

j=1

m
∑

i=1

(xi
j − x̂i

j)
2





1/2

, (8)

where the recovered mixed matrix̂X is calculated from
the estimated mixing matrix and sources:X̂ = ŴĤ. We
preset the initial number of sources as one, then increase
the number and the value of RSS will be reduced. We re-
peat this process until the reduction is no longer significant.
Finally, the number of ICs can be set as 12.

Using the number of ICs we determined, the sources
can be obtained from the MF-ICA calculation. Therefore,
the SSP database can be compressed into 12 ICs. We
present these 12 ICs in figure 4 of Su et al. (2013).

To confirm the reliability and quality of the ICs, we
used the 12 estimated ICs to recover the 1547 SSPs in the
CB07 database as follows

f i
SSP(λ) =

12
∑

k=1

wi
kICk(λ) (i = 1, 2, ..., 1547), (9)

and we found that the spectra reconstructed by these 12 ICs
excellently match those in the SSP database.

2.3 Fitting Galaxy Spectra

The aim of this study is to use these estimated 12 ICs to fit
galaxy spectra from large surveys. The SFHs of a galaxy
can be approximated as a combination of discrete bursts,
thus the population of a galaxy can be decomposed into a
combination of SSPs. As shown in Section 2.2.3, the SSP
database can be recovered with 12 ICs, so the model of
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observed galaxy spectra,fg(λ), can be fitted by these 12
ICs as

fg(λ) = r(λ)

12
∑

k=1

akICk(λ, σ), (10)

where r(λ) is the reddening term, which describes the
intrinsic starlight reddening and can be modeled by
the extinction law of Charlot & Fall (2000).ICk(λ, σ)
is the k−th IC convolved with a Gaussian function.
The Gaussian widthσ corresponds to the stellar ve-
locity dispersion of a galaxy. During the fitting pro-
cess, we mask points around prominent lines, such as
Balmer lines (Hǫ, Hγ, Hδ, Hβ, Hα) and strong for-
bidden lines ([OII ]λ3727, [NeIII ]λ3869, [OIII ]λλ4959,
5007, [HeI]λ5876, [OI]λ6300, [NII ]λλ6548, 6584 and
[S II ]λλ6717, 6721).

After subtracting the modeled stellar population spec-
trum, emission lines can be fitted with Gaussians simul-
taneously, similar to Tremonti et al. (2004): the forbidden
lines ([OII ], [O III ], [O I], [N II ] and [SII ]) are set to have
the same line width and velocity offset; the same treatment
is applied to Balmer lines (Hγ, Hδ, Hβ and Hα). By using
the procedures above, the observed galaxy spectra can be
quickly recovered.

3 RELIABILITY OF THE FITTING METHOD

3.1 Simulations

In this section, we analyze the simulated galaxy spectra to
examine the reliability of the MF-ICA method. All simu-
lated spectra are generated from the 2007 version of BC03
stellar population synthesis code. For the sake of simplic-
ity, we parameterize each SFH of the simulated galaxy in
terms of an underlying continuous model superimposed
with random bursts on it (Kauffmann et al. 2003). The
spectral energy distribution (SED) at timet of a stellar
population characterized by an exponentially declining star
formation lawψ(t) ∝ e−γt is given by

Fλ(t) =

∫ t

0

ψ(t− t′)Sλ(t′, Z)dt′, (11)

whereSλ(t′, Z) is the power radiated by an SSP of aget′

and metallicityZ per unit wavelength per unit initial mass.
The added SFHs are described below:

(1) The time when a galaxy begins forming starst is dis-
tributed uniformly between 0.1 and 13.5 Gyr. Star for-
mation timescaleγ is uniformly distributed between 0
and 1Gyr−1.

(2) Random bursts occur at any time with the same prob-
ability. Bursts are parameterized in terms of the frac-
tion of stellar mass produced, which is logarithmically
distributed between 0.03 and 4, and their duration can
vary between 0.03 and 0.3 Gyr.

(3) The metallicitiesZ are uniformly distributed between
0.02Z⊙ and2Z⊙, which represent the range of stellar
metallicities inferred from the spectra of∼ 2 × 105

SDSS galaxies.

We apply our spectral analysis method to 500 simu-
lated spectra over the range3322 − 9200 Å. We also use
the extinction law of Charlot & Fall (2000) to attenuate
each spectrum, where the absorption optical depthτV is
uniformly distributed between 0 and 5. The velocity dis-
persionσ is uniformly distributed between 50km s−1 and
450km s−1. Finally we added Gaussian noise with (S/N)
= 10, 20 and 30.

3.2 Results

From fitting simulated spectra, we expect to examine the
reliability of our spectral analysis approach which is based
on the MF-ICA algorithm. Our main parameters of inter-
est areAV, σ, t andZ. The following steps are used to
estimate age and metallicity:

(1) The pure spectrum of a stellar system in a galaxy,
fg(λ), can be recovered by ICs, and it can also be rep-
resented by a combination ofN SSPs. Thus we can
solve the equation

fg(λ) =

12
∑

k=1

akICk(λ) =

N
∑

j=1

bjf
j
SSP(λ). (12)

(2) We adopt 60 SSPs from the CB07 database including
models of 15 different ages (t = 0.001, 0.003, 0.005,
0.01, 0.025, 0.04, 0.1, 0.2, 0.6, 0.9, 1.4, 2.5, 5, 11,
13 Gyr) and four different metallicities (Z = 0.004,
0.008, 0.02, 0.05).

(3) After solving Equation (12), the age and metallicity
can be computed by

〈log t〉L =

60
∑

j=1

bj log(tj) , (13)

log〈Z〉L = log
60
∑

j=1

bjZj . (14)

Figure 1 shows the input parameters versus estimated
values from simulated spectra with S/N= 10, 20 and 30.
Clearly, the values of starlight reddeningAV and stellar
velocity dispersionσ are relatively well recovered. The
mean square errors (MSEs) between recovered and input
values are less than 0.20 and 7.45, respectively, as shown
in Table 1.

Table 1 Summary of parameter error estimates for simulated
spectra. The different rows list the MSE between output and in-
put values of the corresponding quantity, as obtained from simu-
lations with different values of S/N.

S/N MSEAv (mag) MSEσ (km s−1) MSE〈log t〉L
MSElog〈Z〉L

10 0.191 7.449 0.201 0.201
20 0.169 6.301 0.189 0.202
30 0.119 6.017 0.169 0.196
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Fig. 1 Comparison of the inputAV (magnitude),σ (km s−1) and stellar ages (yr) with output values that are estimatedfrom simulations,
with S/N=10, 20 and 30, using our MF-ICA method. The red dot-dashed line is the identity line (y = x).

From the above method, a galaxy spectrum can be
decomposed into 60 SSPs with weights. The estimated
weightsbj can reflect the fractional contributions of the
j−th SSP with agetj and metallicityZj. Therefore, the
light-weighted age and metallicity can be estimated. As
shown in Figure 1 (bottom panel), the recovered and input
values of〈log t〉L have no significant difference with MSE
less than 0.20. According to the age-metallicity degener-
acy problem (Bressan et al. 1996), the values oflog〈Z〉L
recovered by our method must have some differences.
However, we can estimate the parameters with reasonable
accuracy, and the Spearman’s rank correlation coefficient
rs between output and inputlog〈Z〉L is about 0.70 for S/N
= 20. Finally, the summary of MSE for parameters from
simulated spectra can be found in Table 1.

3.3 Comparison with the EL-ICA Method

To carefully test the performance of ICA algorithms, we
re-estimated the ICs by the EL-ICA algorithm (Miskin &
MacKay 2001). The EL-ICA method, which is also known
as the naive mean field ICA method, has been applied in
galaxy spectral analysis by Lu et al. (2006). Here we used
the same steps as Lu et al. (2006) and also derived six ICs,
which we present in Figure 2.

We use these ICs to refit the simulated spectra. The in-
put parameters versus the estimated values that are output
and the MSE between them for simulations with S/N=20
are shown in Figure 3. The dispersions of parameters de-
rived by the EL-ICA method are larger than those by
our method, which are plotted in Figure 1. The MSEs
of starlight reddening, velocity dispersion, stellar age and
metallicity (AV, σ, 〈log t〉L, log〈Z〉L) are 0.421, 33.841,
0.405 and 0.299 for S/N=20, respectively. These values are
much larger than those of our method, as shown in Table 1.
Finally, we also fit the SSP database using these ICs. The
spectra recovered are not as good as those by our method.
We conclude that our method which is based on the MF-
ICA algorithm is more precise and reliable.

4 APPLICATION TO SDSS SPECTRA

Using our MF-ICA spectral analysis method, we fit the
SDSS galaxy spectra, analyze their stellar population prop-
erties, and measure their emission-line properties from the
starlight-subtracted spectra. In this section, we compare
the physical parameters obtained from stellar population
analysis of the continuum and measurements of emission
lines. We also compare parameters estimated from our fit-
ting technique with those derived by the MPA/JHU group.
Because the aim of this section is only to test whether
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Fig. 2 The spectra of six ICs estimated by the EL-ICA method. Some prominent spectral features are labeled the same as those in
figure 4 in Su et al. (2013).

Fig. 3 Comparison of the inputAV (magnitude),σ (km s−1) and stellar ages (yr) with the estimated output values fromsimulations,
with S/N=20, using the EL-ICA method. The red dot-dashed line is the identity line (y = x).

the results from our spectral analysis method are reason-
able and meaningful, we will not investigate their physical
properties, such as the formation and evolution of galaxies.

4.1 Data Preparation

The Sloan Digital Sky Survey (SDSS; York et al. 2000)
has released huge amounts of high-quality observed spec-
tra of objects. In this work, our sample of spectra was ex-
tracted from spectroscopic plates of SDSS Data Release
8 (DR8; Aihara et al. 2011). Moreover, we choose the
objects which have been spectroscopically classified as
galaxies. The spectra obtained from SDSS span a wave-
length range from 3800̊A to 9200Å with mean spectral
resolutionR = λ/∆λ ∼ 1800, and are taken with three
arcsecond diameter fibers. We finally fit about one mil-
lion spectral samples of galaxies with redshift less than 1,
which are obtained from the SDSS spectroscopic pipeline.

We use the MF-ICA method, which was described
in Section 2.3, to fit the spectral sample of galaxies from
SDSS. First, the spectra of galaxies were corrected for
foreground Galactic extinction, using the maps of Schlegel

et al. (1998). Then, they were transformed into the rest
frame, with spectroscopic redshifts. The spectral fitting re-
sults give a medianχ2/d.o.f (degree of freedom) of 1.13,
nearly the excellent value of 1 that we expect.

Figure 4 shows some examples of the fitting. The spec-
tra can be well recovered by visual inspection, which sug-
gests that our MF-ICA spectral analysis approach works
well.

4.2 Comparisons with the MPA/JHU Database

The MPA/JHU group has provided catalogs of estimated
physical parameters of SDSS galaxies publicly available
on the website.3 They inferred the SFHs of DR8 galax-
ies on the basis of CB07 models, which were similar to
results from our research. Here we compare our own esti-
mated parameters, such as the emission line measurements
and stellar population properties, with those obtained from
the MPA/JHU catalogs. Although we do not expect our es-
timated parameters to be perfectly consistent with theirs,

3 Seehttp://www.sdss3.org/dr8/spectro/spectroaccess.php
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Fig. 4 The spectral fitting results of some galaxies in our SDSS DR8 sample at a range of redshifts. The black lines show the observed
spectrum, red lines show the modeled stellar spectrum, greylines show the residual spectrum, and the redshift is labeled in the top left
corner of each panel.

Fig. 5 The values of stellar extinctionAV and stellar massM∗ computed from the MPA/JHU database versus those values computed
by our code. The dot-dashed line is the identity line (y = x). The dashed line in the right panel is a robust fit for the relation. The
number in the top left corner is the Spearman rank correlation coefficient.

we analyze the relationships between these parameters to
examine the accuracy and reliability of the MF-ICA algo-
rithm.

4.2.1 Stellar extinction

In our fitting technique, the extinction of optical galaxy
spectra is modeled as one free parameterAV. In
Figure 5(a), we plot the values ofAV estimated by our
method versus those estimated by the MPA/JHU group,
which adopt the same attenuation curve by Charlot & Fall
(2000). Since only a few galaxies withAV < 0 are found

in previous research works, we constrainAV to be positive
in our analysis. Therefore, this constraint will not have a
significant impact on the results of our analysis.

We adopt the value of Spearman’s rank correlation co-
efficientrs to describe the relationship between two vari-
ables. As shown in Figure 5(a), our results are well and
linearly correlated to those extracted from the MPA/JHU
catalogs, withrs = 0.69. However, the extinction values
AV obtained from the MPA/JHU database are systemat-
ically lower than our values, similar to findings in Chen
et al. (2012, in fig. 3f). One possible reason for this dis-
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Fig. 6 The comparison of EWs of Hβ, [O III ]λ5007, [OI]λ6300, Hα, [N II ]λ6584 and [SII ]λ6717 measured by the MPA/JHU group
with those by our code. The red dot-dashed line is the identity line (y = x), while the number in the bottom-right corner of each panel
indicates the MSE.

Fig. 7 Plot of our estimated nebular oxygen abundances versus those obtained by the MPA/JHU group. The dot-dashed line is the
identity line (y = x), while the number in the top left corner is the Spearman rankcorrelation coefficient.

crepancy is that we only use the optical-band spectra to
estimate the stellar extinctionAV.

4.2.2 Stellar mass

By using our stellar population analysis method, the light-
weighted stellar masslog〈M〉L of an SDSS galaxy also
can be estimated. We calculate the mass to light (M/L)
ratio by adding the weighedM/L ratios of each SSP com-
ponent, and then derive the stellar mass by multiplying it
by luminosity.

In Figure 5(b), we plot our estimated stellar mass ver-
sus the MPA/JHU extinction-corrected stellar mass. The
results from the two methods are very consistent, with

rs = 0.90. The small discrepancy is caused due to the
different estimation methods. In our method, the stellar
masses are obtained from theM/L ratio, which is esti-
mated through the bestχ2 model. However, the MPA/JHU
group estimated theirM/L ratio through a Bayesian in-
ference method, which connects two indices, HδA and
Dn(4000) , with a model obtained from a large library of
Monte Carlo realizations of galaxies with different SFHs
(Kauffmann et al. 2003).

4.2.3 Emission lines and nebular metallicities

In our case the emission lines were measured from
a starlight-subtracted spectrum. The MPA/JHU group
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adopted a similar method, however, they only used a sin-
gle metallicity CB07 model to fit the observed contin-
uum. We plot our estimated equivalent widths (EWs) of
emission lines, such as Hβ, [O III ]λ5007, [OI]λ6300, Hα,
[N II ]λ6584 and [SII ]λ6717 versus those measured by
the MPA/JHU group in Figure 6. As shown in Figure 6,
our values are consistent with those measured by the
MPA/JHU group, with a small discrepancy. We adopt the
MSE to quantify the discrepancy between them. On the
whole, the MSEs of all these values are less than 1, sug-
gesting that there are no significant differences. The small
discrepancy appearing is due to the different measurement
of the synthesized spectrum, which is related to different
subtracted stellar absorption.

We also compared the value of nebular oxygen abun-
dance12 + log(O/H), which can be obtained from the
equation described in Tremoni et al. (2004). As shown
in Figure 7, our estimated values of nebular oxygen
abundance show a high degree of correspondence with
those drawn from the MPA/JHU catalog. The value of
the Spearman rank coefficient is 0.99, nearly a perfect
Spearman correlation ofrs = 1, which indicates an ideal
linear relationship.

This part can be summarized as follows. We have com-
pared estimated parameters such as stellar extinction, stel-
lar mass and emission line measurements with those ob-
tained from the MPA/JHU catalogs. According to the anal-
ysis of relationships between these parameters, we con-
clude that the MF-ICA method is reasonable and reliable.

4.3 Empirical Relations

In this subsection, the accuracy of our method is tested in
another way. The parameters estimated from the analysis
of the continuum were compared with those estimated by
using measured emission lines. We analyze the relation-
ships between these parameters to investigate whether re-
sults derived from our method are reasonable.

4.3.1 Relations between Balmer features and stellar age

The value of 4000̊A break index (Balogh et al. 1999) can
reflect the age of a galaxy. HigherDn(4000) values are re-
lated to older, metal–rich galaxies, while lower values are
related to younger stellar subpopulations in galaxies. The
strength of HδA (Worthey & Ottaviani 1997) is another
age indicator. Strong HδA absorption of a galaxy reflects a
burst of star formation that occurred in the past0 − 1 Gyr.
Therefore, our estimated ages of galaxies should increase
with Dn(4000) values and decrease with HδA values.

In Figure 8(a) and (b), correlations between ages,
Dn(4000) and HδA values are shown as expected rela-
tionships;Dn(4000)− 〈log t〉L trends withrs = 0.85
are strongly positive, and HδA − 〈log t〉L trends with
rs = −0.77 are strongly negative.

For a galaxy with emission lines, the Hα emission line
corresponds to the instantaneous star formation rate (SFR)
of a galaxy (Kennicutt & Evans 2012). Therefore the EW

of Hα is also an indictor of age, which would be larger for
younger galaxies.

Figure 8(c) shows that the light-weighted stellar age
〈log t〉L correlates negatively with EW(Hα) (rs = −0.79),
as we expect. These relations reflect that the stellar ages
〈log t〉L we obtained by our spectral synthesis are reason-
able.

4.3.2 Stellar mass and velocity dispersion

According to the viral theorem, for constant mass surface
density, the stellar mass (logM∗) is expected to be pos-
itively correlated with the stellar velocity dispersion (log
σ). In a sample of old galaxies,σ is related to galaxy mass
through the Faber-Jackson relation. Moreover, the stellar
velocity dispersion of young, star forming galaxies is con-
tributed from the bulge and disk, thus it is related to galaxy
mass through the Tully-Fisher relation. In Figure 8(d), we
plot our estimates of stellar mass (logM∗) with velocity
dispersion (logσ). TheM∗ − σ relation shows a strong
positive trend withrs = 0.82 as we expect, which suggests
our synthesis results are physically meaningful.

We have analyzed correlations between physical pa-
rameters obtained from stellar populations, such as stellar
ages and stellar masses, with independent quantities. The
strong correlations between〈log t〉L − Dn(4000), HδA,
EW(Hα) andM∗ − σ suggest that the parameters derived
by our spectral synthesis approach through the MF-ICA
method are reasonable and meaningful.

5 APPLICATION TO SPECTRA OF GALAXIES
WITH HIGHER REDSHIFT

Optical galaxy redshift surveys are not only vitally impor-
tant in cosmology, but also critical to understanding phys-
ical processes related to galaxy formation and/or evolu-
tion (Fang et al. 2015). In the last few years, redshift sur-
veys, such as the 2dF Galaxy Redshift Survey (2dFGRS;
Colless et al. 2001) and SDSS, have measured redshifts
of millions of low redshift galaxies (with a median red-
shift of z = 0.1). With larger aperture telescopes, a new
generation of redshift surveys, such as DEEP2, BigBOSS
and LAMOST, will measure galaxies with higher redshifts
(Davis et al. 2007; Schlegel et al. 2009; Kong & Su 2010;
Zou et al. 2011). The motivation for this work is that we
want to provide an easy-to-use full-spectrum fitting pack-
age and determine parameters for spectra collected by the
LAMOST extragalactic surveys (Kong & Su 2010). Since
the regular spectroscopic survey of LAMOST is just be-
ginning, we apply our synthesis approach to the spectra of
galaxies from the DEEP2 survey, which has a similar S/N
as spectra from LAMOST (Luo et al. 2015).

In the Extended Groth Strip (EGS) field, utilizing
the Deep Imaging Muti-object spectrograph (DEIMOS)
mounted on the Keck 10 m telescope, the DEEP2 galaxy
redshift survey provides spectral data from galaxies with
redshifts from 0 to 1.4. DEIMOS has a high-revolution
grating of 1200 line mm−1, covering the range6500 −
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Fig. 8 Relations of the 4000̊A break index versus the light-weighted mean stellar age (a); the HδA index versus the light-weighted mean
stellar age (b); the EW of Hα versus the light-weighted mean stellar age (c); the comparison of our estimated stellar mass (log M∗)
with velocity dispersion (logσ) (d). The number in the top left corner of each panel is the Spearman rank correlation coefficientrs.

Fig. 9 The spectral fitting results of some galaxies in our DEEP2 sample covering a range of redshifts, which are labeled in the top
left corner of each panel. The black lines show the observed spectrum, red lines show the modeled stellar spectrum, and grey lines
show the residual spectrum. We also mask the “telluric absorption” regions between dashed lines (observed frame:7750− 7700Å and
6850 − 6900Å).
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9100 Å, with a spectral resolution ofR = λ/∆λ ∼ 6000
(Faber et al. 2003). In our study, we only analyze galax-
ies with redshift qualityQ ≥ 3. Thus, we obtained 9501
galaxies withQ ≥ 3 in the EGS, corresponding to a me-
dian redshift of 0.74. Details about extraction of spectra for
these galaxies can be found in Davis et al. (2007). Finally,
we obtained about 1400 sources withS/N > 3, and show
some examples of the fitting in Figure 9. It can be seen that
our MF-ICA fitting method works well, and we will ana-
lyze their physical properties in future work.

6 SUMMARY

In this work, we have presented the MF-ICA method to
compress the CB07 SSP library into a few ICs that can
act as templates to fit observed galaxy spectra. Although
many statistical multivariate data processing techniques
are available, MF-ICA seems to be among the most useful,
since it has the capability of providing good estimates of
the results by selecting proper parameters. The goal of our
project is to estimate physical properties quickly and accu-
rately for a large sample of galaxies. By using the MF-ICA
algorithm, we can fit an observed spectrum of a galaxy in
only a few seconds, which is efficient in terms of time for
analysis of galaxy spectra observed by large-area surveys,
such as LAMOST and BigBOSS.

We have tested our method to fit simulated and SDSS
DR8 galaxy spectra. Simulations show that important pa-
rameters of galaxies can be accurately recovered by our
method, such as stellar contents, SFHs, starlight reddening
and stellar velocity dispersion.

We have compared parameters estimated from our fit-
ting technique to those obtained from the MPA/JHU group
for DR8 galaxies. These physical parameters and mea-
surements are in good agreement. We also analyze the
correlations between physical parameters obtained from
stellar populations with independent quantities. We find
strong correlations betweenM∗−σ, 〈log t〉L−Dn(4000),
HδA and EW(Hα).

In future studies, we intend to apply our fitting tech-
nique to other large databases, such as the LAMOST
ExtraGAlactic Surveys (LEGAS) and the DEEP2 galaxy
redshift survey. We have fitted more than 1400 DEEP2
galaxy spectra. Our next step will be to analyze their phys-
ical properties.

Acknowledgements We are grateful to the anonymous
referee for making constructive suggestions to im-
prove the paper. We thank Stephane Charlot for pro-
viding the unpublished CB07 stellar population syn-
thesis models and helpful discussions. This work is
supported by the Strategic Priority Research Program
“The Emergence of Cosmological Structures” of the
Chinese Academy of Sciences (No. XDB09000000),
the National Basic Research Program of China (973
Program) (2015CB857004), and the National Natural
Science Foundation of China (NSFC, Nos. 11225315,
1320101002, 11433005 and 11421303).

References

Aihara, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29
Allen, J. T., Hewett, P. C., Richardson, C. T., Ferland, G. J., &

Baldwin, J. A. 2013, MNRAS, 430, 3510
Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G., &

Ellingson, E. 1999, ApJ, 527, 54
Bell, A. J., & Sejnowski, T. J. 1995, Neural Computation, 7, 1129
Bica, E. 1988, A&A, 195, 76
Bressan, A., Chiosi, C., & Tantalo, R. 1996, A&A, 311, 425
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Cardoso, J.-F., & Souloumiac, A. 1993, IEE Proceedings F

(Radar and Signal Processing, 140, 362
Charlot, S. & Bruzual, A. G. 2007, in preparation
Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718
Chen, Y., Bressan, A., Girardi, L., et al. 2015, MNRAS, 452,

1068
Chen, Y.-M., Kauffmann, G., Tremonti, C. A., et al. 2012,

MNRAS, 421, 314
Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., &
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