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Abstract Relic gravitational waves (RGWs), a background originating during inflation, would leave im-
prints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using
the method of pulsar timing. In this paper, we discuss the effects of RGWs on single pulsar timing, and
quantitatively analyze the timing residuals caused by RGWswith different model parameters. In princi-
ple, if the RGWs are strong enough today, they can be detectedby timing a single millisecond pulsar with
high precision after the intrinsic red noises in pulsar timing residuals are understood, even though simul-
taneously observing multiple millisecond pulsars is a morepowerful technique for extracting gravitational
wave signals. We correct the normalization of RGWs using observations of the cosmic microwave back-
ground (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so
compared to our previous works. We obtained new constraintson RGWs using recent observations from
the Parkes Pulsar Timing Array, employing the tensor-to-scalar ratior = 0.2 due to the tensor-type polar-
ization observations of CMB by BICEP2 as a reference value, even though its reliability has been brought
into question. Moreover, the constraints on RGWs from CMB and Big Bang nucleosynthesis will also be
discussed for comparison.
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1 INTRODUCTION

A stochastic background of relic gravitational waves
(RGWs) is predicted by applications of both general rel-
ativity and quantum mechanics to cosmology (Grishchuk
1975, 2001; Starobinskiǐ 1979; Maggiore 2000; Zhang
et al. 2005, 2006; Miao & Zhang 2007; Giovannini 2010).
These RGWs are theorized to have originated from quan-
tum fluctuations during the inflationary stage. Hence,
RGWs carry unique information about the very early uni-
verse and serve as a probe into the universe much earlier
than the cosmic microwave background (CMB) can do.
As an advantage for their possible detection, RGWs are
believed to be spread over a very broad frequency band,
∼ 10−19 − 1010 Hz, which makes them one of the ma-
jor scientific targets of various types of gravitational wave
(GW) detectors, such as ground-based interferometers at
102 − 103 Hz (The LIGO Scientific Collaboration & The
Virgo Collaboration 2009; Willke et al. 2002; Acernese
et al. 2005; Somiya 2012), space-based interferometers at
10−4 − 10−1 Hz (Seto et al. 2001; Crowder & Cornish
2005; Cutler & Harms 2006; Kawamura et al. 2006;
Amaro-Seoane et al. 2012), and high-frequency GW detec-

tors around 100 MHz (Cruise 2000; Tong & Zhang 2008;
Li et al. 2003, 2008; Tong et al. 2008; Akutsu et al. 2008).
For very low frequencies around10−18 Hz, RGWs can be
detected by measuring the magnetic type of polarization
in CMB (Zaldarriaga & Seljak 1997; Kamionkowski et al.
1997), which has been a detection goal of WMAP (Page
et al. 2007; Komatsu et al. 2011; Hinshaw et al. 2013),
Planck (Planck Collaboration et al. 2014), and BICEP2
(Ade et al. 2014).

Another important tool to detect RGWs directly is pul-
sar timing. The existence of a stochastic gravitational wave
(GW) background will make the times of arrival (TOAs)
of the pulses emitted from pulsars fluctuate. The fluctu-
ations of TOA are implied in the pulsar timing residu-
als. If multiple millisecond pulsars are observed simulta-
neously, forming pulsar timing arrays (PTAs) (Detweiler
1979; Romani & Taylor 1983; Hellings & Downs 1983;
Kaspi et al. 1994), GW signals can be extracted by corre-
lating the timing residuals of each pair (Detweiler 1979;
Jenet et al. 2005). PTAs respond to the frequency range
of 10−9 − 10−6 Hz, which is determined by observational
characteristics. Currently, there are several such projects
operating, such as the Parkes Pulsar Timing Array (PPTA)
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(Hobbs 2008; Manchester et al. 2013), European Pulsar
Timing Array (EPTA) (van Haasteren et al. 2011), and the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) (Demorest et al. 2013). Much more
sensitive facilities like the Five-hundred-meter Aperture
Spherical Telescope (FAST) (Nan et al. 2011; Hobbs et al.
2014) and Square Kilometre Array (SKA) (Kramer et al.
2004; Janssen et al. 2015) are being planned or are under
construction.

Even though there has been no direct detection of
RGWs so far, one can still give constraints on RGWs
based on current observations and some conceivable the-
ories. These constraints could prevent us from choosing
some unreasonable parameters for RGWs. At present, var-
ious constraints on GW background have been studied.
Recent observations from PPTA gave an upper limit on
the energy density spectrumΩg(fPPTA) at fPPTA = 2.8
nHz (Shannon et al. 2013). On the other hand, physical
processes that happened in the early universe can also
provide constraints on RGWs. Big Bang nucleosynthesis
(BBN) puts a tight upper bound on the total energy frac-
tion (Maggiore 2000) of GW background for frequencies
f > 10−10 Hz (Allen & Romano 1999). CMB and mat-
ter power spectra also give an upper limit on the total
energy fraction of GWs for frequenciesf > 10−15 Hz
(Smith et al. 2006). Therefore, a successful model of
RGWs should be compatible with the above constraints.
The RGW spectrum is, to a large extent, mainly described
by the initial amplitude normalized by the tensor-to-scalar
ratio r (Boyle & Steinhardt 2008) and the inflation spec-
tral index β (Grishchuk 2001; Zhang et al. 2005; Miao
& Zhang 2007; Tong & Zhang 2009). Here, we assume a
zero running spectral indexαt (Tong & Zhang 2009), since
it only affects the spectrum at high frequencies. Sinceβ
directly describes the expansion behavior of inflation, de-
termination of or constraints onβ would be powerful in
discriminating various inflationary models. The aforemen-
tioned bounds can be converted into constraints onβ for
a fixed r (Tong & Zhang 2009; Zhang et al. 2010) and
for a varyingr in a general analysis (Tong et al. 2014).
The WMAP observations of spectra associated with CMB
anisotropies and polarization have yielded upper bounds
on the ratior of RGWs with a fixed scalar index (Komatsu
et al. 2011). Moreover, recent observations of the polariza-
tions of CMB by BICEP2 (Ade et al. 2014) gave what hith-
erto has been the best estimation:r = 0.2. Although this
result has been brought into question, we still user = 0.2
as a reference value throughout this paper.

It is worth pointing out that we corrected the normal-
ization of the amplitude of RGWs at a pivotk0 by using
the tensor-type power spectrum of CMB at the time cor-
responding to thek0 mode re-entering the Hubble horizon
instead of that at the present time. This will reduce the am-
plitudes of RGWs for all the modes by two orders of mag-
nitude or so compared to our previous works (Tong 2012;
Tong et al. 2014). Hence, we will give new constraints on
RGWs based on theoretical RGWs and the updated obser-

vational data of PPTA. As a general discussion, we will
not employ quantum normalization (Grishchuk 2001; Tong
et al. 2014) in this paper. Based on these conditions, we
will study how RGWs affect pulsar timing with different
values ofβ both in the time domain and the frequency do-
main. Moreover, we will quantitatively calculate the cor-
responding pulsar timing residuals induced by RGWs for
differentβ. Even though simultaneously observing multi-
ple millisecond pulsars is a more powerful technique for
extracting GW signals, in this paper we only discuss the
effect of RGWs on the TOAs of an individual pulsar since
it is the basis for GW detection by PTAs. In principle, one
can also extract the signal of GWs from timing residuals
of a single pulsar with the assumption that the intrinsic red
noises are understood. Thus, a comparison between the de-
tection sensitivity curve determined by a ground clock and
white-timing noise with the theoretical spectra of RGWs
will be given. Throughout this paper we the use units in
which the light speedc = 1.

2 RELIC GRAVITATIONAL WAVES IN THE
ACCELERATING UNIVERSE

In a spatially flat universe, the perturbed Friedmann-
Robertson-Walker metric under the existence of the RGWs
is

ds2 = a2(τ)
[

− dτ2 + (δij + hij)dxidxj
]

, (1)

wherea(τ) is the scale factor,τ is the conformal time,
and hij stands for perturbations to the homogenous and
isotropic spacetime background due to RGWs. According
to the Einstein field equations, RGWs satisfy

∂µ

[√−g∂µhij(τ, x)
]

= 0 , (2)

whereg ≡ det(gµν). The general solution of Equation (2)
can be expanded ask-modes in Fourier space, and has the
following form

hij(τ, x) =
∑

A=+,×

∫

d3k

(2π)3/2
ǫA
ijh

A
k (τ)eik·x , (3)

whereA stands for the two polarization states under the
transverse-traceless gauge. Since the two polarizations of
hA

k (τ) have the same statistical properties and give equal
contributions to the unpolarized RGW background, the
summation indexA can be dropped. For a power law in
the forma(τ) ∝ τα, hk(τ) has an analytic solution which
is a linear combination of Bessel and Neumann functions
(Zhang et al. 2005, 2006; Miao & Zhang 2007). In fact,
the scale factor in all the stages of cosmic expansion of the
universe can be written in forms of a power law (Grishchuk
2001; Miao & Zhang 2007; Tong & Zhang 2009; Tong
2012). For example, the scale factor in the inflationary
stage has the following form

a(τ) = l0|τ |1+β , −∞ < τ ≤ τ1, (4)

where the inflation indexβ is a model parameter describ-
ing the expansion behavior of inflation, andτ1 denotes the
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end of inflation. The special case ofβ = −2 corresponds
to the exact de Sitter expansion driven by a constant vac-
uum energy density. However, for inflationary expansions
driven by some dynamic field, the predicted values ofβ
could deviate from−2, depending on specific models. In
the single-field slow-roll inflation model, one always has
β < −2, i.e., a red spectrum (Liddle & Lyth 2000). For ex-
ample, the relationns = 2β + 5 which is often employed
(Grishchuk 2001; Tong & Zhang 2009) givesβ = −2.02
for ns ≃ 0.96 based on the observation of CMB by
Planck (Planck Collaboration et al. 2014). However, some
other inflation models, such as those that incorporate phan-
tom inflation (Piao & Zhang 2004), also predict a blue
spectrum, which has not been excluded by observations
(Stewart & Brandenberger 2008; Camerini et al. 2008).
Below, we recognizeβ as a major free parameter of RGWs.
As shown in Tong (2013),βs describing the expansion be-
havior of the reheating process only affects the RGWs at
very high frequencies which are far above the upper limit
on frequency of the pulsar timing response. In this paper,
we will takeβs = 1 (Starobinsky 1980; Kuroyanagi et al.
2009). After the radiation-dominant stage and the matter-
dominant stage, the universe is undergoing an accelerating
stage and the scale factor has the following form

a(τ) = lH |τ − τa|−γ , (5)

whereγ ≃ 3.5 can be determined by a numerical fitting
method with the energy density contrastΩΛ = 0.685 given
by Planck+WMAP (Planck Collaboration et al. 2014).
Conveniently,|τ0 − τa| = 1 was employed (Zhang et al.
2005, 2006), i.e., the present scale factora(τ0) = lH . By
definition, one haslH = γ/H0, where the Hubble con-
stantH0 = 100 h km s−1 Mpc−1 with h = 0.673 (Planck
Collaboration et al. 2014). The coefficients and constants
embedded in the expressions of the scale factors can be de-
termined by the continuity ofa(τ) anda′(τ) at the points
joining the various stages.

The increases of the scale factor for different stages
are defined as

ζ1 ≡ a(τs)/a(τ1),

ζs ≡ a(τ2)/a(τs),

ζ2 ≡ a(τE)/a(τ2),

ζE ≡ a(τ0)/a(τE),

where τs, τ2 and τE represent the beginnings of the
radiation-dominated stage, the matter-dominated stage and
the accelerating stage, respectively. For the accelerating
stage in the simpleΛCDM model, one hasζE = 1+ zE ≃
(ΩΛ/Ωm)1/3, wherezE is the redshift when the acceler-
ating expansion begins. For the matter-dominated stage,
one hasζ2 = (1 + zeq)ζ

−1
E with zeq = 3402 (Planck

Collaboration et al. 2014). For the radiation-dominated
stage, the value ofζs depends on the reheating temperature
TRH, at which time the radiation-dominated stage begins.
Due to conservation of the entropy,ζs can be written in

terms ofTRH (Tong 2012, 2013)

ζs =
TRH

TCMB(1 + zeq)

(

g∗s

g⋆s

)1/3

, (6)

whereTCMB = 2.725 K = 2.348 × 10−13 GeV is the
present CMB temperature,g∗s ≃ 200 is the effective num-
ber of relativistic species contributing to the entropy af-
ter the reheating, andg⋆s = 3.91 is that after recombina-
tion (Watanabe & Komatsu 2006; Tong 2012). For single
field inflation, CMB data would yield the lower bound of
TRH & 6 × 103 GeV, and the largest upper bound could
be up toTRH . 3 × 1015 GeV (Martin & Ringeval 2010).
Some models like the slow-roll massive scalar field infla-
tion, predict a definite value ofTRH = 5.8 × 1014 GeV
(Tong 2012). In this paper we generally consider a large
range ofTRH ∼ (104 − 1015) GeV for a complete demon-
stration. The uncertainty inTRH is due to the lack of
knowledge on the reheating process that happened follow-
ing the inflationary expansion that converted vacuum en-
ergy into radiation, so the parameterζ1 is also uncertain.
Based on the slow-roll scalar inflation models (Mielczarek
2011; Tong 2012, 2013),ζ1 depends on the specific form
of the potentialV that drives the inflation. However, the
determination ofζ1 in that method has a very large relative
uncertainty. If we calculate the spectra of RGWs at low fre-
quencies, some particular values ofζ1 can be set as it only
affects RGWs at very high frequencies.

The spectrum of RGWsh(k, τ) is defined by

〈hij(τ, x)hij(τ, x)〉 ≡
∫

∞

0

h2(k, τ)
dk

k
, (7)

where the angle brackets mean ensemble average. The
present RGW spectrum is related to thecharacteris-
tic strain spectrum (Maggiore 2000) orchirp amplitude
(Boyle et al. 2006; Boyle & Steinhardt 2008) byhc(f) ≡
h(f, τ0)/

√
2. Assuming that the wave mode crosses the

horizon of the universe whenλ/(2π) = 1/H , then the
characteristic comoving wavenumber at a certain joining
time τx can be defined as (Tong et al. 2014)

kx ≡ k(τx) = a(τx)H(τx) . (8)

For example, the characteristic comoving wavenumber at
present iskH = a(τ0)H0 = γ. By a similar calculation,
one has the following relations

kE

kH
= ζ

−
1
γ

E ,
k2

kE
= ζ

1
2

2 ,
ks

k2
= ζs,

k1

ks
= ζ

1
1+βs

1 .

(9)
In the present universe, the physical frequency is related to
a comoving wavenumberk as

f =
k

2πa(τ0)
=

k

2πlH
. (10)

Thus, one can easily havefH = H0/2π, and other charac-
teristic frequencies can be easily determined subsequently
by Equation (9). Note thatfs depends on the value ofTRH.
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The present energy density contrast of RGWs is defined
by ΩGW = 〈ρg〉/ρc, whereρg is the energy density of
RGWs andρc = 3H2

0/8πG is the critical energy density.
The dimensionless energy density spectrum is related to
the characteristic amplitude of RGWs as (Grishchuk 2001;
Maggiore 2000)

Ωg(f) =
dΩGW

d ln f
=

2π2

3
h2

c(f)
( f

H0

)2

. (11)

The analytic solutions of RGWs have been studied by
many authors (Zhang et al. 2006; Watanabe & Komatsu
2006; Miao & Zhang 2007; Kuroyanagi et al. 2009; Tong
& Zhang 2009). On the other hand, the approximate solu-
tions of RGWs in the whole frequency range were listed in
Tong (2012). Even though the initial amplitude of RGWs
can, in principle, be given by the quantum normalization
condition (Tong et al. 2014), it relies on many physical pro-
cesses which are not well understood at present. Here, for a
simple discussion, we will not consider the normalization
condition. On the other hand, the initial amplitude should
be normalized to observations. Below, we will determine
the initial amplitude of RGWs based on observations of
CMB.

3 CONSTRAINTS ON RGWS BY CURRENT
OBSERVATIONS

3.1 Determining the Primordial Amplitude of RGWs
from Observations of CMB

From observations of the B-mode polarization in the spec-
trum of CMB, the power spectrum of RGWs at a pivot
wavenumberk0/a(τ0) = 0.002 Mpc−1 can be normalized
to the scalar power spectrum using the tensor-to-scalar ra-
tio (Peiris et al. 2003; Spergel et al. 2007; Komatsu et al.
2011)

r ≡ ∆2
h(k0)

∆2
R

(k0)
, (12)

where∆2
h(k0) ≡ h2(k0, τi) (Boyle & Steinhardt 2008)

with τi denoting the moment that a modek re-enters the
Hubble horizon, and the scalar power spectrum∆2

R
(k0) =

2.427×10−9 given by WMAP 9+BAO+H0 (Hinshaw et al.
2013). It is worth pointing out that we used an incorrect
normalization in our previous work (Tong 2012; Tong et al.
2014), where∆2

h(k0) ≡ h2(k0, τ0) was employed. This
overestimated the spectrum of RGWs by two orders of
magnitude or so, which will be analyzed later. Recently,
the detection of B-mode polarization at degree angular
scales in CMB by BICEP2 (Ade et al. 2014) gave a def-
inite valuer = 0.2+0.07

−0.05. Even though this result was sub-
sequently brought into question (BICEP2/Keck and Planck
Collaborations et al. 2015), we still taker = 0.2 in
the following for a tentative demonstration. In addition,
CMB observations can also give constraints on the ratio
r (Hinshaw et al. 2013; Planck Collaboration et al. 2014;
BICEP2/Keck and Planck Collaborations et al. 2015). For
example, Planck Collaboration et al. (2014) gaver < 0.11

andr < 0.26 for a vanishingαs and a non-vanishingαs,
respectively. The current limit is given by a joint analysis
of BICEP2/Keck Array and Planck Data (BICEP2/Keck
and Planck Collaborations et al. 2015):r0.05 < 0.12 at
the95% confidence level. On the other hand, a lower limit
r & 10−2 was obtained (Boyle et al. 2006) using a discrete,
model-independent measure of the degree of fine-tuning
required, if0.95 . ns < 0.98, in accord with current mea-
surements.

According to the approximate solutions listed in Tong
(2012), the spectrum of RGWs atf = f0 satisfies

h(k0, τ0) = A

(

f0

fH

)β

(1 + zE)−
2+γ

γ , (13)

whereA stands for the initial amplitude of RGWs and it
can be determined by observations. Equation (13) means
that the k0-mode of RGWs re-entered the horizon at
the matter-dominated stage sincefH < f0 < f2. So,
h(k0, τ0) has suffered a decay from the time thek0-mode
re-entered the horizon to the present time, i.e.,h(k0, τ0) =

h(k0, τi)
a(τi)
a(τ0)

, where a(τi)
a(τ0)

is the decaying factor. From
Equations (9) and (13), one can easily have

h(k0, τi) = A

(

f0

fH

)2+β

. (14)

Combining Equations (12) and (14), one has

A =
√

∆2
R

(k0)r

(

fH

f0

)2+β

. (15)

Hence,A can be determined for a givenr andβ. Figure 1
shows a comparison of the analytic spectrum and the ap-
proximate spectrum of RGWs forTRH = 1015 GeV, where
β = −2 and ζ1 = 105 were also set. The value ofζ1

was chosen such thatf1 should be lower than the upper
limit on frequency∼ 4 × 1010 Hz (Grishchuk 2001; Tong
2012). One can see that the approximate spectrum agrees
with the analytic spectrum very well, so we can constrain
some model parameters using the approximate spectra of
RGWs simply from observations.ζs depends onTRH lin-
early, as doesfs as can be seen from Equation (9). We plot-
ted the approximate spectrum for the cases ofTRH = 104

GeV in Figure 1. It is clear that differentTRH only af-
fects the spectrum at very high frequencies (& 10−3 Hz).
Since PTAs respond to frequencies localized in the range
of 10−9−10−6 Hz, the imprints of RGWs on PTAs do not
depend on the value ofTRH.

3.2 Constraints on β by PTAs and the Very Early
Universe

PTA experiments have set constraints on the GW back-
ground (Bertotti et al. 1983; Kaspi et al. 1994; Thorsett &
Dewey 1996; McHugh et al. 1996; Jenet et al. 2006; Hobbs
et al. 2009; van Haasteren et al. 2011; Demorest et al. 2013;
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Fig. 1 A comparison between the analytic (solid line) and ap-
proximate (dashed line) spectra of RGWs with a fixed parameter
set ofβ = −2, ζ1 = 10−5 andTRH = 1015 GeV. An approxi-
mate spectrum (dot-dashed line) of RGWs withTRH = 104 GeV
is also plotted for comparison.

Zhao et al. 2013). In the data analysis of PTAs, the charac-
teristic strain spectrum of GW background is usually mod-
eled with a power law in the form

hc(f) = hyr

(

f

yr−1

)α

, (16)

wherehyr is the amplitude atf = yr−1. For the frequency
band10−9 ≤ f ≤ 10−6 Hz of PTA experiments, the
characteristic strain spectrum has the following form (Tong
2012)

hc(f) =
A√
2

(

f

fH

)1+β (

fH

f2

)

(1 + zE)−
2+γ

γ . (17)

With the help of Equation (15), Equation (17) can be
rewritten as

hc(f) =

√

∆2
R

(k0)r

2

(

f2
H

f0f2

) (

f

f0

)1+β

(1 + zE)−
2+γ

γ .

(18)
Note thatf/f0 ≫ 1 in the pulsar timing frequency band.
Comparing Equation (16) and Equation (18) tells us that
the power law index is related to the inflation index via

α = 1 + β. (19)

Improving on earlier work (e.g. Kaspi et al. 1994),
Jenet et al. (2006) developed a frequentist technique in
statistics, and have calculated an upper limit onhyr for
different values ofα. Recently, Shannon et al. (2013) pro-
vided an upper limit ofhyr < 2.4 × 10−15 at the95%
confidence level forα = −2/3 using data from PPTA and
available observations from the Arecibo Observatory. Even
though this limit is intended for supermassive black hole
binaries, one can equivalently translate it to the case of
RGWs, which leads tohyr < 1.0 × 10−15 for α = −1.
Note that these limits are independent ofH0.

Figure 2 displays the upper limit curves ofhyr(α) for
PPTA in different phases. The values provided by PPTA
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Fig. 2 The constraints onα given by the PPTA (2006) (Jenet
et al. 2006), PPTA (2013) (Shannon et al. 2013) and values from
the PPTA expected in the future (Jenet et al. 2006), calculated by
confronting RGWs withr = 0.2. These constraints are made at
the frequency of one cycle per year.

(2006) and those expected in the future as obtained from
simulated data with 20 possible pulsars using PPTA timing
are taken from Jenet et al. (2006). To constrain the param-
eterα, hc(yr−1) with r = 0.2 is also plotted. As shown
in Tong et al. (2014), the conditionhc(yr−1) < hyr(α)
leads to an upper limit onα (or β) for a givenr. Since
r = 0.2 is set in this paper, PPTA (2013) provides an up-
per limit of α < −0.70 (β < −1.70). Comparably, PPTA
(2006) gives an upper limit ofα < −0.63 (β < −1.63),
and future PPTA observations will allow an upper limit of
α < −0.76 (β < −1.76).

Besides the constraints from PTAs, some other ob-
servations also give constraints on RGWs. For example,
β can be constrained by ground-based laser interferome-
ters (Tong & Zhang 2009; Chen et al. 2014). However,
ground-based laser interferometers respond to RGWs at
the frequency range of102 − 103 Hz, and RGWs with
high frequencies depending on theoretical models which
are not well understood. For instance, if we chooseTRH =
104 GeV, there will be no RGWs with frequencies larger
than0.24 Hz. In addition, BBN and CMB can give con-
straints on the GW energy density contrast at the time
of nucleosynthesis and CMB decoupling, respectively.
The constraint from BBN is given byΩBBN

GW < 1.1 ×
10−5(Nν − 3) (Maggiore 2000), where the effective num-
ber of neutrino species at the time of BBN has an upper
bound ofNν − 3 < 1.4 (Cyburt et al. 2005). On the other
hand, CMB givesΩCMB

GW < 1.3×10−5 (Smith et al. 2006).
Note that the lower frequency limits contributing the en-
ergy density contrasts for BBN and CMB are different. For
BBN, flow ∼ 10−10 Hz corresponds to the horizon scale
at the time of BBN (Allen & Romano 1999); while for
CMB, flow ∼ 10−15 corresponds to the horizon scale at
the decoupling of CMB (Zhang et al. 2010). However, the
upper limit on frequency for both of the two cases isf1. As
pointed out above,f1 depends onζs and thus depends on
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Fig. 3 Upper limits onβ with varying TRH given by BBN and
CMB.

TRH in turn, so the constraints onβ given by BBN or CMB
depend onTRH. As shown in Equation (9),f1 also depends
on ζ1, however, we found that the limits ofβ constrained
by BBN/CMB are nearly independent ofζ1. This can be
explained becauseζ1 only affects the power spectrum in
the frequency band (fs, f1), which contributes very little
to the total energy density contrast. This was also clearly
demonstrated in figure 1 of Tong et al. (2014).

Figure 3 shows the upper limits onβ constrained by
BBN and CMB with varyingTRH. One can see that BBN
and CMB define almost the same constraints for the whole
range ofTRH. The most stringent constraint is given by
β < −1.83 with TRH = 1015 GeV, which is more strin-
gent than those given by current PPTA data. However, one
should bear in mind that constraints onβ given by PTAs
are independent ofTRH.

4 IMPRINTS OF RGWS ON PULSAR TIMING

The existence of GWs will change the geodesic of pho-
tons from millisecond pulsars as they travel to the ob-
server. Consequently, the TOAs of the electromagnetic sig-
nals from pulsars will be perturbed, forming the so-called
timing residuals if the effect of RGWs is not taken into
account in the timing model. The GW background would
lead to a red power law spectrum of the timing residuals.
Even though such red spectra can also be produced by in-
trinsic noise of pulsars (Verbiest et al. 2009; Shannon &
Cordes 2010), inaccuracies in the solar system ephemeris
(Champion et al. 2010) or variations in terrestrial time stan-
dards (Hobbs et al. 2012), a GW background produces a
unique signature in the timing residuals that can be con-
firmed by observing correlated signals between multiple
pulsars widely distributed on the sky (Hellings & Downs
1983; Jenet et al. 2005). However, here we only analyze
how RGWs affect the timing residuals of a single pulsar. In
principle, if the GW signals are strong enough, one could
extract their signals buried in the data of the timing residual
measurements after all known effects have been accounted
for. On the other hand, even though GWs are very weak,

one can still constrain the amplitude of GWs with the long-
term accumulation of data in the form of timing residuals.

The frequency of the signals from a pulsar will be
shifted due to the existence of a GW. For a GW propa-
gating in the direction̂Ω, the redshift of the signals from
a pulsar in the direction̂p is given by (Detweiler 1979;
Anholm et al. 2009)

z(t, Ω̂) =
νe − νp

νp
=

p̂ip̂j

2(1 + Ω̂ · p̂)
∆hij , (20)

whereνe andνp represent the frequencies of the pulse re-
ceived at the Earth and the pulse emitted at the pulsar, re-
spectively, and

∆hij = [hij(tp, Ω̂) − hij(te, Ω̂)] , (21)

is the difference in the metric perturbation traveling along
the directionΩ̂ at the pulsar compared to that at the Earth.
tp andte are the times at which the GW passes the pulsar
and the Earth, respectively. Note that the standard Einstein
summation convention was used in Equation (20). The vec-
tors (te, xe) and (tp, xp) give the spacetime coordinates
of the Solar System barycenter (SSB) and the pulsar, re-
spectively. In the following, we choose a coordinate sys-
tem where the origin of the space coordinates is located at
the SSB, and uset instead ofte to denote the time coordi-
nate. Moreover, the following conventions are often used
(Anholm et al. 2009),

tp = t − L , xp = Lp̂ , (22)

whereL is the distance of the pulsar from the SSB. If we
assume that the amplitude of the GW is the same at the
SSB and the pulsar, then∆hij can be written as the fol-
lowing in the form of a Fourier integration (Anholm et al.
2009)

∆hij(t, Ω̂) =
∑

A=+,×

∫

∞

−∞

dfei2πft(e−i2πfL(1+Ω̂·p̂)

−1)hA(f, Ω̂)ǫA
ij(Ω̂) , (23)

whereA stands for the two polarizations of GWs, and the
corresponding tensorǫA

ij(Ω) can be written as

ǫ+ij(Ω̂) = m̂im̂j − n̂in̂j , ǫ×ij(Ω̂) = m̂in̂j + n̂im̂j , (24)

with m̂ andn̂ being unit vectors that are orthogonal toΩ̂
and to each other. One has straightforwardly,

ǫA
ij(Ω̂)ǫA′,ij(Ω̂) = 2δAA′

. (25)

If we assume that the stochastic background is isotropic,
unpolarized and stationary, the ensemble average of the
Fourier amplitudes can be written as

〈h̃∗

A(f, Ω̂)h̃A′(f ′, Ω̂′)〉 =
1

16π
δ(f − f ′)δ2(Ω̂, Ω̂′)

δAA′Sh(f) . (26)
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Note that the spectral densitySh(f) defined above is twice
as much as that shown in equation (8) of Maggiore (2000),
and satisfiesSh(f) = Sh(−f). HereSh(f) is called aone-
sided spectral density, and it is related to the characteristic
strain amplitude as (Maggiore 2000)

h2
c(f) = fSh(f) . (27)

Substituting Equation (23) into Equation (20), one has

z(t, Ω̂) =
∑

A

∫

∞

−∞

dfei2πft(e−i2πfL(1+Ω̂·p̂) − 1)

hA(f, Ω̂)FA(Ω̂) , (28)

where

FA(Ω̂) ≡ ǫA
ij(Ω̂)

1

2

p̂ip̂j

1 + Ω̂ · p̂
(29)

has been defined. For a stochastic GW background, the
total redshift is given by summing over the contributions
coming from GWs in every direction (Anholm et al. 2009)

z(t) =

∫

S2

dΩ̂ z(t, Ω̂) . (30)

The pulsar timing residual is defined as the integral of the
redshift

R(t) ≡
∫ t

0

dt′z(t′) . (31)

The total relative frequency changes can be divided into
two parts

s(t) = z(t) + n(t) , (32)

wherez(t) is induced by the RGWs andn(t) is the intrinsic
noise in the timing measurement which is assumed to be
stationary and Gaussian. In addition, we also assume that

〈z(t)〉 = 〈n(t)〉 = 0, 〈z(t)n(t)〉 = 0 , (33)

where the angle brackets denote the expected value. With
the help of Eqs. (26), (28) and (30), the variance of the
relative frequency changes is given by

〈z2(t)〉 ≡
∫ ∞

0

dfSz(f) = F

∫ ∞

0

dfSh(f) , (34)

whereSz(f) = FSh(f) and

F ≡ 1

8π

∫

S2

dΩ̂
∣

∣

∣
ei2πfL(1+Ω̂·p̂)

−1
∣

∣

∣

2 ∑

A

FA(Ω̂)FA(Ω̂) . (35)

Using the definition in Equation (29), one can easily obtain
(Jenet et al. 2011)

F =
1

3
− 1

8π2f2L2
+

sin (4πfL)

32π3f3L3
. (36)

The behavior ofF is shown in Figure 4. It can be seen
thatF is generally frequency-dependent, however,F will
converge to a fixed value of1/3 whenfL & 3. For pulsar

0.5 1.0 5.0 10.0 50.0 100.0
0.1

0.2

0.3

0.4

0.5

0.6

fL

F F=1�3

Pulsar timing experiments

fL>10

Fig. 4 The property of the reduction factorF with different
regimes offL. For the pulsar timing experiments, one hasfL >
10.

timing experiments, the distances of millisecond pulsars
are usually larger than 0.1 kpc, andfL > 10 for frequen-
ciesf > 10−9 Hz. Therefore, one always hasF = 1/3
for pulsar timing experiments. The factorF represents the
root mean square (rms) signal response averaged over the
sky and polarization states.

Similarly, the ensemble average of the Fourier compo-
nents of the noise satisfies

〈ñ∗(f)ñ(f ′)〉 =
1

2
δ(f − f ′)Sn(f) , (37)

where the noise spectral density satisfiesSn(f) = Sn(−f)
with dimension Hz−1. So, the variance of the noise is

〈n2(t)〉 =

∫ ∞

0

dfSn(f) . (38)

Equivalently, the noise level of a GW detector is usu-
ally measured by thestrain sensitivity h̃(f) ≡

√

Sn(f)

with dimension Hz−1/2. For a given signal-to-noise ratio
(SNR), one can discuss the ability of a detector to reach
the minimum detectable amplitude of RGWs. Under the
assumption that the dispersion caused by interplanetary
plasma is adequately calibrated and the intrinsic rotation
instability of the pulsar can be negligible or be well under-
stood, the noise spectrum is characterized by contribution
due to the ground clock and a white-timing noise of 100 ns
in a Fourier band of+/ − 0.5 cycles/day (Alves & Tinto
2011). The 100 ns level is the current timing goal of PTAs
and three pulsars are being timed to this level (Verbiest
et al. 2009). Following the noise model discussed in Jenet
et al. (2011), the expression for the noise spectral densityof
the relative frequency fluctuations is (Alves & Tinto 2011)

Szn(f) = [4.0×10−31f−1+3.41×10−8f2] Hz−1 . (39)

For SNR=1, i.e.,Sz(f)/Szn(f) = 1, we plotted the strain
sensitivity for the detection of the GW background by a
single pulsar and the analytic strain amplitude per root Hz
(considering theF factor) of RGWs,hc(f)

√

F/f (Zhang
et al. 2010), with different values ofβ in Figure 5. One can
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Fig. 5 The strain sensitivity curve to be explored by the noise
spectrum of the relative frequency fluctuations for a singlepulsar
timing. Values forhc(f)

√

F/f of RGWs with different parame-
tersβ = −1.9, β = −2.0 andβ = −2.02 are also demonstrated
for comparison.

see that it is hard to detect RGWs even for a blue spectrum
by timing an individual pulsar, however, it is more hopeful
that the lower frequencies of RGWs can be detected. Note
that SNR=5 is conventionally taken as a detection thresh-
old for PTAs. Thus, the sensitivity curve shown in Figure 5
should be multiplied by a factor of

√
5. Therefore, sig-

nificant SNR improvements in pulsar timing sensitivities
for radio telescopes will be required for reliable detection.
There are two methods that can be applied to this type of
target. First, one can simultaneously measure the timings
of several pulsars. The SNR can be improved by correlat-
ing the data of several pulsars just as in the method used in
the networks of ground-based interferometers. Second, one
should try to suppress various types of noise in the timing
measurements.

The one-sided power spectrum of the induced timing
residuals by RGWs,P (f), is defined as (Jenet et al. 2006)

∫ ∞

0

P (f)df = σ2 , (40)

whereσ2 is the variance of the timing residuals generated
by the stochastic background of RGWs. The power spec-
trumP (f) is related to the characteristic strain as

P (f) =
1

12π

1

f3
hc(f)2. (41)

P (f) has the unit of s3.
Figure 6 shows the corresponding one-sided power

spectra of the induced timing residuals by RGWs with
β = −1.9, β = −2 andβ = −2.02. It can be seen that
RGWs with β = −1.9 lead to a higherP (f) by about
two orders of magnitude than that given by RGWs with
β = −2. For β = −1.9, the power spectrum is as high
as10−5 s3 around10−9 Hz. In fact, the limits of integra-
tion are determined by the observing strategy that is used.
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 (s
3 )

f (Hz)

Fig. 6 The one-sided power spectra of the induced timing resid-
uals by RGWs with differentβ.

The lowest detectable frequency is given by1/T , where
T is the total time span of the data set. The highest one is
determined by the Nyquist sampling rate. If one observes
pulsars at an interval of∆t, then the highest frequency is
2/∆t. For the observation of pulsar timing,∆t is typically
two weeks, and the total timespan for the data is assumed
to be around 10 years. Then, based on Equation (40), one
has the standard deviation of the timing residualsσ = 3.2
ns, 0.4 ns and0.3 ns for β = −1.9, −2 and−2.02, re-
spectively. For comparison, we also calculated the case of
β = −1.8 with σ = 26.2 ns, even thoughβ is not possibly
so large.

5 SUMMARY

In summary, we analyzed the effects of RGWs on pul-
sar timing residuals, based on some reasonable parameters
constrained by the recent observations of PPTA and phys-
ical processes that happened in the very early universe.
First of all, we corrected the normalization of RGWs by
the CMB observations, and now the spectra are reduced
by two orders of magnitude compared to our previous re-
sults. Then, we compared the analytic spectrum and the ap-
proximate spectrum of RGWs, and we found they matched
each other very well. Therefore, one can take advantage
of both of them. When we constrain the parameterβ by
the PPTA, the approximate spectrum is applied in a sim-
ple way. However, when we calculate the total energy den-
sity contrast and timing residuals induced by RGWs, the
analytic spectrum is used. The current PPTA gives a con-
straint,β < −1.70, and the future PPTA would give a
constraintβ < −1.76. On the other hand, the constraints
of β from the BBN/CMB are dependent on some other
cosmic parameters, such as the temperature of the reheat-
ing processTRH and the expansion times of the reheat-
ing processζ1. The strongest constraint from BBN/CMB
is β < −1.83. Note that the constraints from BBN/CMB
are slightly overestimated because of the effects of neu-
trino free-streaming (Weinberg 2004),e+e− annihilation
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and the QCD transition (Schwarz 1998; Wang et al. 2008).
It is worth pointing out that constraints onβ from the PPTA
are more convincing sinceβ is independent of other pa-
rameters.

Based on these constraints, we choseβ = −1.9,
β = −2 andβ = −2.02 for demonstration. We compared
the sensitivity curve determined by the ground clock and
a white noise of100 ns with the predicted RGWs. It was
found that RGWs cannot be detected by a single pulsar
timing at present, however, it is very hopeful that RGWs
with frequencies as low as10−9 Hz could be detected
if the intrinsic red noises were understood. Note that the
noise spectrum discussed in this paper is quite ideal, since
many other noise components are not included. We quan-
titatively calculated the rms residuals induced by RGWs
with different values ofβ, and found that the rms residu-
als areσ = 3.2 ns,0.4 ns and0.3 ns forβ = −1.9, −2
and−2.02, respectively. Moreover, the rms residual can be
as much as26.2 ns for β = −1.8. In addition, we also
showed the power spectra of the induced timing residuals
by RGWs with different values ofβ.

RGWs are a very important and effective tool to ex-
ploit knowledge about the very early universe. All the
aforementioned constraints on RGWs will help us to un-
derstand the early universe more clearly. For example,
the parameters describing expansion times of the reheat-
ing processζ1, the expansion timesζs of the radiation-
dominated stage and some other parameters can be more
accurate. However, quantum normalization is not em-
ployed here in order to give a general result, but it should
be considered elsewhere for a more complete discussion.
Moreover, RGWs play a key role in connecting the subject
of cosmology with pulsar timing observations.
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