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Abstract We explore the problems of degeneracy and discreteness in the standard cosmological model
(ΛCDM). We use the Observational Hubble Data (OHD) and the typeIa supernovae (SNe Ia) data to study
this issue. In order to describe the discreteness in fitting of data, we define a factorG to test the influence
from each single data point and analyze the goodness ofG. Our results indicate that a higher absolute value
of G shows a better capability of distinguishing models, which means the parameters are restricted into
smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor
G is an effective way of model differentiation when using different models to fit the observational data.
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1 INTRODUCTION

The PLANCK (Planck Collaboration et al. 2014) satellite
released its first results in 2013, which gave tighter con-
straints on cosmological parameters than before. Extensive
observations have been made to constrain cosmological pa-
rameters including the Observational Hubble Data (OHD)
(Yi & Zhang 2007; Zhang et al. 2014; Ma & Zhang
2011; Moresco et al. 2012; Farooq et al. 2013; Farooq
& Ratra 2013; Yuan & Zhang 2015), type Ia supernovae
(SNe Ia) (Suzuki et al. 2012; Perlmutter & Schmidt 2003;
Riess et al. 1998), cosmic microwave background (CMB)
radiation (Dunkley et al. 2009; Komatsu et al. 2011;
Hinshaw et al. 2013; Planck Collaboration et al. 2014) and
baryon acoustic oscillations (BAO) (Eisenstein et al. 2005;
Percival et al. 2010). Qualitatively, the constraints imposed
by more numerous observations can provide smaller con-
fidence intervals for cosmological parameters. However,
quantitative studies address how well the cosmological
parameters are constrained if only a limited number of
datasets are available. In this paper, we present a new
method that relies on a factorG to investigate this issue
with OHD and SNe Ia data and using the confidence inter-
val and figure of merit (FoM) as evaluation criteria.

2 METHODOLOGY

2.1 Standard Cosmological Model (ΛCDM)

We examine a standard non-flatΛCDM model with a cur-
vature term,Ωk = 1 − Ωm − ΩΛ, but without a radiation
term (Ma & Zhang 2011; Farooq et al. 2013). Specifically,

the Hubble parameter is given by

H(z) = H0E(z; Ωm, ΩΛ, H0)

= H0

√

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ . (1)

The relationship between luminosity distance and red-
shift of SNe Ia is described as below (Riess et al. 1998; Liu
et al. 2011)
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Noting thatΩm + ΩΛ + Ωk = 1, we have
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The distance modulus is given by following an empir-
ical equation (Perlmutter et al. 1997)

µ = 5 logDL − 5 logH + 52.384 . (4)

Combining Equations (3) and (4), we obtain the rela-
tionship between distance modulus and redshift, which is
dependent upon cosmological parameters.

Two datasets are utilized to constrain cosmological pa-
rameters. These are the existing OHD with 28 data points
(Zhang et al. 2014; Simon et al. 2005; Stern et al. 2010;
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Moresco et al. 2012; Busca et al. 2013; Blake et al. 2012;
Chuang & Wang 2013) and the SNe Ia data provided by the
Supernova Cosmology Project (SCP) (Suzuki et al. 2012),
which contain 580 SNe Ia with redshifts, distance moduli
and errors.

2.2 Degeneracy and Discreteness

How the Hubble parameter and the distance modulus de-
pend on redshift are shown in Figure 1. An inspection of
Figure 1 suggests that in low-redshift regions, different
models predict very similar distance moduli, i.e., they are
degenerate. Therefore, the OHD and SNe Ia data in low-
redshift regions cannot be used to distinguish these mod-
els. Here we examine Figure 2 to find the observational
error associated with the OHD and SNe Ia datasets since
error bars are not clearly shown in Figure 1. From Figure
2, we find that the values of observational errors are basi-
cally at the level of the red line, and in the region repre-
senting OHD errors are from0 to 30 while in the region
representing SNe Ia errors are from0.1 to 0.3. In addition,

Figure 2 does not show an obvious relationship between
observational error and redshift.

Based upon the likelihood function of a single point,
we can study the relationship between the goodness-of-fit
and the final fitting results for a given model. With a set
of data for fitting, the probability densities of each point
show little difference in parameter space, suggesting that
the probabilities of all parameters are approximately the
same. We cannot distinguish the best fitting points, how-
ever the confidence intervals are relatively large. In orderto
examine the quality of single points, we apply a perturba-
tion to one parameter and investigate how the likelihood of
the single point varies. This can be regarded as finding the
absolute value of derivative of the likelihood. Likelihood
depends on parameters (we give the equations in Sect. 2.3),
which indicate that we can calculate the derivative of the
likelihood with respect to the parameters.

For the OHD dataset, we calculate the partial deriva-
tive of H(z; Ωm, ΩΛ, H0) with respect to different param-
eters. In this paper, we do not consider the goodness of
confidence intervals forH0.

∂H

∂Ωm

=
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2
√
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, (5)
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For the SNe Ia dataset, we calculate the partial derivative of distance modulus with respect to parametersµ =
µ(z; Ωm, ΩΛ, H0):
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Notice that in the above four functions,Ωm + ΩΛ +
Ωk = 1 is still assumed and the definition ofcosn(x) is
similar to that ofsinn(x).

cosn(x) =











coshx Ωk > 0 ,

x Ωk = 0 ,

cosx Ωk < 0 .

2.3 Definition of FactorG

In the following equations, we introduceθ to representΩm

or ΩΛ, andx represents the observational variables,µ or
H . For the sake of simplicity, we use the subscripts ‘th’ to
denote theoretical values and ‘ob’ to denote observational
values, i.exth andxob respectively.L is the symbol for

likelihood, i.e.,

Li(z; θ|x) = exp
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, (9)
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The posterior of a model is proportional to the product of
the likelihood at each point
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Fig. 1 Theoretical and observational Hubble parameter and the distance modulus of SNe Ia. The upper panel shows the OHD dataset
with 1σ confidence intervals and the theoreticalH(z; Ωm, ΩΛ, H0) value of different models. The lower one indicates the SNe Ia
datasets with1σ confidence intervals and the theoretical curves predicted by different models. The red, blue and green curves represent
predictions from models associated with thePLANCK (Planck Collaboration et al. 2014) and WMAP (Komatsu et al. 2011) data, and
the model with only a matter term, respectively. Black dots and error bars indicate observational data.

The observational error is stochastic, representing ran-
dom differences betweenxob,i andxth,i. Moreover, only
values for the gradient are important for our study. Hence
we setxob,i − xth,i = σ = σ̄, whereσ̄ is the average
of observational errors of all data. Under the same con-
ditions, we can define the discreteness factorG which is
proportional to1

σ
∂xth

∂θ

G(z; θ|x) =
1

σ

∂xth

∂θ
. (13)

The factorG depends on the redshifts and the confi-
dence intervals of the data. Small confidence intervals are
required to distinguish models if the models tend to be de-
generate. In the parameter regions where the models ap-
pear to be discrete, we do not need small confidence inter-
vals. The value ofG can be used to quantitatively measure
the discreteness of data points with errors at different red-
shifts.
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Fig. 2 The observational error of the SNe Ia dataset given by SCP. The top panels illustrate the OHD dataset and the bottom panels
display the SNe Ia datasets. In addition, the left panels show the two dimensional plots of observational error versus redshift, where the
red lines are the average values of all errors. The right panels show histograms of the distributions of observational errors (OHD in 10
bins and SNe Ia in 12 bins).

In the fitting process, if a new observational data point
is added, it will have an effect on the result such that

Gn =
∂

∂θ
(− lnLn) , (14)

∂

∂θ
(− lnL) = Gn

+

n−1
∑

i=1

[

∂xth,i

∂θ

(xob,i − xth,i)
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]

. (15)

Here we use− lnL(z, θ) instead ofL(z, θ) to simplify
the formulas. It is not so important to find an explicit equa-
tion for the likelihood. Now we have a criterion to mea-
sure the discreteness of different data points caused by the
model itself. In the next section, we will apply our method
to the existing 28 OHD and 580 SNe Ia data given by SCP
to examine the ability of the factorG to judge the discrete-
ness of data points.

3 ANALYSIS AND RESULTS

One of the results that we focus on is the relationship be-
tween the redshiftz and the factorG. From the definition of
the factorG, we find it is also related to the parameters we
select, which means, for different parameters at the same
redshift, the goodness of discreteness of the data points is
different.

Nowadays, constraints on cosmological parameters
give the value ofΩm ≃ 0.32 and ΩΛ ≃ 0.68 (Planck

Collaboration et al. 2014), i.e.PLANCK. In our exper-
iment, we find that these values are hardly affected by
adding more datasets. After parameters are confirmed, the
factorG will be a function that only depends on the redshift
and observational error.

Figure 3 shows how factorG changes with redshiftz.
Here, for the theoretical value of factorG, we assume that
all the standard deviations are equal to the average standard
deviation. For an observational value of factorG, we take
observational standard deviations. Since the key point is
the degree that likelihood changes with the cosmological
parameter, it is sufficient to focus on the absolute value|G|.

From Figure 3, we find that|G(z; Ωm|x)| and
|G(z; ΩΛ|H)| monotonically increase with redshift, while
|G(z; ΩΛ|µ)| does not, which indicates that for the con-
straint onΩm, high redshift data show an obvious advan-
tage. However, this is not the case forΩΛ, since high red-
shift datasets of SNe Ia do not show this kind of advan-
tage. Considering the true standard deviations associated
with each data point, Figure 3 also indicates the true value
of discreteness. Both true and theoretical standard devia-
tions indicate the same tendency, but due to the different
errors associated with each data point, there is a fluctua-
tion in goodness of discreteness. Consequently, although
some data points are at higher redshifts, the factorG for
these data points may be smaller thanGs of lower redshift
data points.

Next, we consider different subsets of data depending
on the absolute value of factorG of Ωm andΩΛ for both
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Table 1 The fitting results by considering different subsets of all data depending onG. In columnsΩm andΩΛ: (1)
Italic text means these points are reasonable in theΛCDM model. (2) Normal text means they are unreasonable in the
ΛCDM model. (3) Blanks in (Ωm, ΩΛ) mean no constraint results due to non-convergence. (4) Results from (Ωm, ΩΛ)
in bold text and the result in the first row of the table are shown in Fig. 4.

Dataset θ Lev. Dat. Ωm ΩΛ FoMmΛ

SNe Ia all 580 0.273±0.070 0.712±0.117 387.18
SNe Ia Ωm high 500 0.287±0.071 0.751±0.126 353.54
SNe Ia Ωm high 400 0.255±0.086 0.657±0.187 206.13
SNe Ia Ωm mid 500 0.320±0.120 0.788±0.168 200.93
SNe Ia Ωm mid 400 0.279±0.179 0.784±0.223 109.64
SNe Ia Ωm low 500 0.222±0.152 0.672±0.187 142.60
SNe Ia Ωm low 400 –1.097±0.357 0.342±0.353
SNe Ia ΩΛ high 500 0.281±0.072 0.739±0.127 353.54
SNe Ia ΩΛ high 400 0.270±0.081 0.706±0.169 238.91
SNe Ia ΩΛ mid 500 0.291±0.079 0.778±0.132 303.60
SNe Ia ΩΛ mid 400 0.320±0.089 0.810±0.147 210.99
SNe Ia ΩΛ low 500 0.307±0.087 0.743±0.137 244.70
SNe Ia ΩΛ low 400 0.245±0.139 0.780±0.189 126.50
OHD all 28 0.279±0.078 0.637±0.260 128.63
OHD Ωm high 22 0.280±0.082 0.643±0.279 125.11
OHD Ωm high 16 0.271±0.097 0.438±0.416 78.18
OHD Ωm mid 22 0.870±0.220 1.480±0.369
OHD Ωm mid 16 0.779±0.409 1.230±0.661
OHD Ωm low 22 0.740±0.391 1.220±0.610
OHD Ωm low 16

OHD ΩΛ high 22 0.293±0.072 0.766±0.235 150.92
OHD ΩΛ high 16 –0.202±1.569 –0.181±2.072 100.72
OHD ΩΛ mid 22 0.258±0.091 0.497±0.422 79.31
OHD ΩΛ mid 16

OHD ΩΛ low 22

OHD ΩΛ low 16

OHD and SNe Ia data. To make a comparison, we compute
different values for the factorG that correspond to differ-
ent parameters. For OHD, we take 28, 22 and 16 out of 28
data, while for SNe Ia, we take 580, 500 and 400 out of 580
data. When not all data are selected, we linearly divide data
into three levels, representing the high, middle and lowGs
of all data. Then we employ a Markov Chain Monte Carlo
(MCMC) method to resample the best-fitting points and
explore the changes in the best-fitting point and associated
confidence intervals. We use the publicly available code
PyMC (https://github.com/pymc-devs/pymc) to perform a
full MCMC analysis. The results are listed in Table 1.
The results close toPLANCK (Planck Collaboration et al.
2014) and WMAP (Komatsu et al. 2011) can be considered
reasonable and these reasonable results are also close to
results using SNe Ia data and OHD and given by Komatsu
et al. (2011); Ma & Zhang (2011); Moresco et al. (2012);
Wang et al. (2012); Farooq et al. (2013); Zhang et al.
(2014).

Table 1 indicates that if we select the same level of
data, for bothΩΛ andΩm, the confidence intervals are gen-
erally increasing with the quantities of datasets decreasing,
suggesting that our factorG is effective in distinguishing
the data in terms of discreteness. However, we find that in
some cases the Markov Chains associated with this group
of data do not converge, or the fitting yields abnormal re-
sults.

Theories of probability and statistics indicate that the
goodness-of-fit increases with the amount of observational
data. However, in our experiment, we find that the confi-
dence intervals may become smaller when we remove data
with a lower factorG. There are two ways to tighten the
constraints associated with a dataset, directly checking the
standard deviation error of the constrained parameter to ex-
amine the constraint on the specified parameter and estab-
lishing a quantified FoM to examine the comprehensive ef-
fect on both parameters. The FoM can be defined as long
as it reasonably rewards a tight fit while punishing a loose
one. We apply the definition of a0.95 confidence region
in a parameter space (Albrecht et al. 2006), which can be
calculated by

FoMxy =
π

A
=

1

σ(θx)σ(θy)
√

1 − ρxy

. (16)

Hereρxy is a correlation coefficient betweenθx andθy that
is related to covariance matrixCxy = σ(θx)σ(θy)ρxy. The
larger FoM is, the better constraint we get.

Seeing that in the OHD dataset, we haveσ = 0.235
for the case of 22 data points, which is smaller thanσ =
0.260, if we setΩΛ as the parameter ofG, we consider
that OHD atz = 0.48, z = 0.88 andz = 1.75 did not
have a positive effect altogether in fitting. Therefore, we
may remove these points. We also notice that the FoMmΛ

for the case of 22 data points is larger than the one that
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Fig. 3 Theoretical and observational factorG of OHD set and SNe Ia dataset. In these two sub-figures, blue dashed and dotted-dashed
curves represent the theoretical predictions. We apply theOHD set and SNe Ia dataset in Eq. (13) to calculate factorG(z; Ωm|H),
G(z; Ωm|µ), G(z; ΩΛ|H) andG(z; ΩΛ|µ) of each point, then we plot theseGs as dots in the figure. The vertical black dotted line
indicates the point of highest redshift and the horizontal black dotted line denotesG = 0.

includes all the data points, which means removing some
of the points even improves the total constraint quality.

Moreover, we should notice that the standard deviation
associated withΩm andΩΛ contains a correlation due to
the sameσ−1. Here, a point of larger discreteness ofΩm

may show a relatively larger discreteness ofΩΛ.

We should mention that theG factor applies for one
parameter in one function, and the effect brought by data
removal has been ignored. It can be considered that the
factorG we defined reflects the quality of the observational
data. We remove some data in order to investigate how the
factorG changes and find data that do not have a positive
effect on the fitted cosmological model. Furthermore, we
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Fig. 4 Typical confidence regions in the(ΩΛ, Ωm) parameter subspace. The solid, dashed and dotted contours respectively correspond
to 68.3%, 95.4% and99.7% intervals. The black dot-dashed line indicates a flat universe. TheΩΛ interval shown by a red contour is
slightly smaller than that shown by a blue contour which is written in bold in Table 1.

deal with these removed points in accordance with specific
conditions.

4 CONCLUSIONS AND DISCUSSION

In this paper, we develop a new method to study the de-
generacy and discreteness in a cosmological model. We
define a criterion called discreteness factorG that relates
the modeling functions to likelihood and undetermined pa-
rameters. The definition of the factorG is independent of
any specific modeling functions, hence it can be general-
ized to an arbitrary modeling process. We start from a non-
flat ΛCDM model based on the existing OHD with 28 data
points (Zhang et al. 2014; Simon et al. 2005; Stern et al.
2010; Moresco et al. 2012; Busca et al. 2013; Blake et al.
2012; Chuang & Wang 2013) and SNe Ia data with 580
data points released by the SCP (Suzuki et al. 2012). The
functions indicate that, theoretically, the factorG of Ωm

increases with redshift, however, due to the different ob-
servational standard deviations for all data, the true value
of Gs only shows the trend, especially for the OHD dataset.

We compute the factorG for Ωm andΩΛ and consider
different subsets of the data utilizing the true value ofGs in
both the OHD and SNe Ia datasets. We generate an MCMC
to find the best-fitting points and their confidence intervals.
The fitting results demonstrate that theG has an effect on
the fitting, and a higher absolute value ofG gives a stronger
constraint and a larger FoM evaluation. In addition, data
with lower G values may provide not only larger confi-

dence intervals but also unreasonable best-fitting points.
However, if the effect ofG is strong enough, it will rep-
resent the intrinsic properties of statistics and probability
associated with the data. Once we find that the intervals de-
crease or FoM increases with fewer data that have a lower
G value, we can investigate how observational data affect
the associated constraints.
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