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Abstract We explore the problems of degeneracy and discretenesg istdindard cosmological model
(ACDM). We use the Observational Hubble Data (OHD) and the Ig@eipernovae (SNe la) data to study
this issue. In order to describe the discreteness in fittfrdata, we define a factdy to test the influence
from each single data point and analyze the goodne§s@tir results indicate that a higher absolute value
of G shows a better capability of distinguishing models, whiokams the parameters are restricted into
smaller confidence intervals with a larger figure of meriteation. Consequently, we claim that the factor
G is an effective way of model differentiation when using éiint models to fit the observational data.
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1 INTRODUCTION the Hubble parameter is given by

The PLANCK (Planck Collaboration et al. 2014) satellite H(z) = HoB(z; 2w, 2, Ho)

released its first results in 2013, which gave tighter con- = Ho/Qm(1+ 23 + (1 +2)2+Qx. (1)
straints on cosmological parameters than before. Extensiv _ ) S

observations have been made to constrain cosmological pa- '€ relationship between luminosity distance and red-
rameters including the Observational Hubble Data (OHDFhm of SNe la is described as below (Riess et al. 1998; Liu
(Yi & Zhang 2007; Zhang et al. 2014; Ma & Zhang €tal. 2011)

2011; Moresco et al. 2012; Farooq et al. 2013; Farooq

& Ratra 2013; Yuan & Zhang 2015), type la supernovaep, — e+ Z)sinn
(SNe la) (Suzuki et al. 2012; Perlmutter & Schmidt 2003; Hy

Z/ 1
Q dz'|
4 k'/o Bz O, On, Hy)

Riess et al. 1998), cosmic microwave background (CMB) (2)
radiation (Dunkley et al. 2009; Komatsu et al. 2011, sinhz Qi >0

Hinshaw et al. 2013; Planck Collaboration et al. 2014) and sinn(z) = z Q=0 .

baryon acoustic oscillations (BAO) (Eisenstein et al. 2005 sinz Q<0

Percival et al. 2010). Qualitatively, the constraints iregad

by more numerous observations can provide smaller con-
fidence intervals for cosmological parameters. However, 14z
quantitative studies address how well the cosmological L= VT = — Q|
parameters are constrained if only a limited number of
datasets are available. In this paper, we present a new . 2
method that relies on a factdf to investigate this issue x(z) = / z . (3)
with OHD and SNe la data and using the confidence inter- o E(zQm, Qa, Ho)

val and figure of merit (FOM) as evaluation criteria. The distance modulus is given by following an empir-
ical equation (Perlmutter et al. 1997)

Noting thatQ2,,, + Q5 + Qi = 1, we have

sinn[v/1 — Q,,, — Qax(2)],

5 METHODOLOGY w=>5log Dy, —5log H + 52.384. (4)

Combining Equations (3) and (4), we obtain the rela-

2.1 Standard Cosmological Model {CDM) tionship between distance modulus and redshift, which is
dependent upon cosmological parameters.
We examine a standard non-fla€ DM model with a cur- Two datasets are utilized to constrain cosmological pa-

vature term, = 1 — Q,, — Q,, but without a radiation rameters. These are the existing OHD with 28 data points
term (Ma & Zhang 2011; Farooq et al. 2013). Specifically,(Zhang et al. 2014; Simon et al. 2005; Stern et al. 2010;
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Moresco et al. 2012; Busca et al. 2013; Blake et al. 2012Figure 2 does not show an obvious relationship between
Chuang & Wang 2013) and the SNe la data provided by thebservational error and redshift.

Supernova Cosmology Project (SCP) (Suzuki et al. 2012), Based upon the likelihood function of a single point,
which contain 580 SNe la with redshifts, distance moduliwe can study the relationship between the goodness-of-fit

and errors. and the final fitting results for a given model. With a set
of data for fitting, the probability densities of each point
2.2 Degeneracy and Discreteness show little difference in parameter space, suggesting that

the probabilities of all parameters are approximately the
How the Hubble parameter and the distance modulus desame. We cannot distinguish the best fitting points, how-
pend on redshift are shown in Figure 1. An inspection ofever the confidence intervals are relatively large. In otdler
Figure 1 suggests that in low-redshift regions, differentexamine the quality of single points, we apply a perturba-
models predict very similar distance moduli, i.e., they aretion to one parameter and investigate how the likelihood of
degenerate. Therefore, the OHD and SNe la data in lowthe single point varies. This can be regarded as finding the
redshift regions cannot be used to distinguish these modibsolute value of derivative of the likelihood. Likelihood
els. Here we examine Figure 2 to find the observationaflepends on parameters (we give the equations in Sect. 2.3),
error associated with the OHD and SNe la datasets sinaghich indicate that we can calculate the derivative of the
error bars are not clearly shown in Figure 1. From Figurdikelihood with respect to the parameters.
2, we find that the values of observational errors are basi- For the OHD dataset, we calculate the partial deriva-
cally at the level of the red line, and in the region repre-tive of H (z; Qy,, Q4 , Ho) With respect to different param-
senting OHD errors are froih to 30 while in the region eters. In this paper, we do not consider the goodness of
representing SNe la errors are from to 0.3. In addition,  confidence intervals foH,.

OH Hoz(1 4+ 2)? 5)
0 20/ (1 + 2)3 + Qp + (1 — Qp — Q) (1 +2)2°
oOH —Hyz(z+ 2) ©)

00 2\/9 (14+2)3+05+ (1 —Qm — Q) (1 +2)2

For the SNe la dataset, we calculate the partial derivativeistance modulus with respect to parametgrs=
M(Z;QmaQAaHO):

a(?zu 71n510D {C"bn [NORIE H ?2(5213 /OZ%Z(Z“)Q]}’ 7

ﬂ:ii{&—i— 1+zcosn(|\/—x )[ Lx(z) /Zﬁz(z+2)]}. (8)

6QA hllODL 2Qk 2291{ 0 2E3

Notice that in the above four function®,, + Qx + likelihood, i.e.,
Q. = 1is still assumed and the definition ebsn(x) is

imi i (Tob,i — Teni)®
similar to that ofsinn(x). Li(z;0|x) = exp _# 7 9)
0;
o (wob,i - mth,i) OFin.i
coshz Q) >0, 89( InLi) = o? 00 (10)
cosn(r) = r =0, The posterior of a model is proportional to the product of
cosz U <0. the likelihood at each point
0
In L) In||L; 11
2.3 Definition of Factor G 39( ( H ) (D
In the following equations, we introduédo represent,, 0 O%ih,n (Tob.n — Tihyn)
or Q,, andx represents the observational variablesr %(_ Inf) = 90 o2
H. For the sake of simplicity, we use the subscripts ‘th’ to
denote theoretical values and ‘ob’ to denote observational i Z |:awth ,i (Lob,i mth,i):| (12)
values, i.exy, andx,, respectively. is the symbol for Uf
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Fig. 1 Theoretical and observational Hubble parameter and thamtis modulus of SNe la. The upper panel shows the OHD dataset
with 1o confidence intervals and the theoreti¢a(z; Qm, Qa, Ho) value of different models. The lower one indicates the SNe la
datasets with o confidence intervals and the theoretical curves predictadiffierent models. The red, blue and green curves represent
predictions from models associated with fIEANCK (Planck Collaboration et al. 2014) and WMAP (Komatsu et LD data, and

the model with only a matter term, respectively. Black datg arror bars indicate observational data.

The observational error is stochastic, representing ran- The factorG depends on the redshifts and the confi-
dom differences between,;, ; andz;, ;. Moreover, only  dence intervals of the data. Small confidence intervals are
values for the gradient are important for our study. Henceequired to distinguish models if the models tend to be de-
we setx.,; — xwh,; = 0 = o, Whereg is the average generate. In the parameter regions where the models ap-
of observational errors of all data. Under the same conpear to be discrete, we do not need small confidence inter-
ditions, we can define the discreteness fa¢tarhich is  vals. The value of; can be used to quantitatively measure

proportional to% 6§;h the discreteness of data points with errors at different red
shifts.
1 aﬂfth

(13)

Gz 0l) = — 2
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Fig.2 The observational error of the SNe la dataset given by SC®1djh panels illustrate the OHD dataset and the bottom panels
display the SNe la datasets. In addition, the left panelashe two dimensional plots of observational error versdshét, where the
red lines are the average values of all errors. The rightlpam®w histograms of the distributions of observationedrsr(OHD in 10

bins and SNe la in 12 hins).

In the fitting process, if a new observational data pointCollaboration et al. 2014), i.ePLANCK. In our exper-

is added, it will have an effect on the result such that

0
Q;n - E;é (‘_ 1Ill:n) ) (111)

n nil O%th,i (Tob,i — Tini) (15)
< | 00 o? '

K2

Here we use- In L(z, 6) instead ofL(z, #) to simplify

the formulas. It is not so important to find an explicit equa-
tion for the likelihood. Now we have a criterion to mea-
sure the discreteness of different data points caused by tﬂgg

. ) . |
model itself. In the next section, we will apply our meth0d|§traint 0N, high redshift data show an obvious advan-

to the existing 28 OHD and 580 SNe la data given by SC
to examine the ability of the factaf to judge the discrete-
ness of data points.

3 ANALYSIS AND RESULTS

iment, we find that these values are hardly affected by
adding more datasets. After parameters are confirmed, the
factorG will be a function that only depends on the redshift
and observational error.

Figure 3 shows how fact@} changes with redshift.
Here, for the theoretical value of factgr we assume that
all the standard deviations are equal to the average stndar
deviation. For an observational value of facthrwe take
observational standard deviations. Since the key point is
the degree that likelihood changes with the cosmological
parameter, it is sufficient to focus on the absolute valile
From Figure 3, we find thaiG(z;Qwm|x)| and
z; QA | H )| monotonically increase with redshift, while
z;Q|1)| does not, which indicates that for the con-

tage. However, this is not the case fog, since high red-
shift datasets of SNe la do not show this kind of advan-
tage. Considering the true standard deviations associated
with each data point, Figure 3 also indicates the true value
of discreteness. Both true and theoretical standard devia-

One of the results that we focus on is the relationship betions indicate the same tendency, but due to the different

tween the redshift and the factog. From the definition of

errors associated with each data point, there is a fluctua-

the factorg, we find it is also related to the parameters wetion in goodness of discreteness. Consequently, although
select, which means, for different parameters at the sangme data points are at higher redshifts, the faGtdor
redshift, the goodness of discreteness of the data points isese data points may be smaller tigzmof lower redshift

different.

Nowadays, constraints on cosmological parameters

~

give the value of(),,, ~ 0.32 and Q2 0.68 (Planck

data points.
Next, we consider different subsets of data depending
on the absolute value of factgr of 2, andQ, for both
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Table 1 The fitting results by considering different subsets of alladdepending og. In columnsQ,,, andQx: (1)
Italic text means these points are reasonable ilM@®M model. (2) Normal text means they are unreasonable in the
ACDM model. (3) Blanks inQ.,, 24) mean no constraint results due to non-convergence. (4)Réom Q2m, Qa)

in bold text and the result in the first row of the table are shawfig. 4.

Dataset 6 Lev. Dat. OQm Qp FoM,,, A
SNe la all 580 0.273+0.070 0.712+0.117 387.18
SNe la Qm high 500 0.287+0.071 0.7514+0.126 353.54
SNe la Qm high 400 0.2551-0.086 0.657+0.187 206.13
SNe la Qm mid 500 0.320+0.120 0.788+-0.168 200.93
SNe la Qm mid 400 0.279+0.179 0.784+0.223 109.64
SNe la Qm low 500 0.222+0.152 0.67240.187 142.60
SNe la Qm low 400 —1.09A-0.357 0.3420.353

SNe la Qa high 500 0.281+0.072 0.739+0.127 353.54
SNe la Qa high 400 0.270+0.081 0.706+0.169 238.91
SNe la Qa mid 500 0.291+0.079 0.778+0.132 303.60
SNe la Qa mid 400 0.320+-0.089 0.810+-0.147 210.99
SNe la Qa low 500 0.307+-0.087 0.74340.137 244.70
SNe la Qa low 400 0.245+0.139 0.780+0.189 126.50
OHD all 28 0.279+0.078 0.637+0.260 128.63
OHD Qm high 22 0.280+0.082 0.643+0.279 125.11
OHD Qm high 16 0.271+0.097 0.438+-0.416 78.18
OHD Qm mid 22 0.870+0.220 1.486-0.369

OHD Qm mid 16 0.779+0.409 1.236:0.661

OHD Qm low 22 0.740+0.391 1.226:0.610

OHD Qm low 16

OHD Qa high 22 0.293+0.072 0.766+0.235 150.92
OHD Qa high 16 —0.202+1.569 —0.18%-2.072 100.72
OHD Qa mid 22 0.258+0.091 0.49A-0.422 79.31
OHD Qa mid 16

OHD Qa low 22

OHD Qa low 16

OHD and SNe la data. To make a comparison, we compute Theories of probability and statistics indicate that the
different values for the factag that correspond to differ- goodness-of-fitincreases with the amount of observational
ent parameters. For OHD, we take 28, 22 and 16 out of 28ata. However, in our experiment, we find that the confi-
data, while for SNe la, we take 580, 500 and 400 out of 58@ence intervals may become smaller when we remove data
data. When not all data are selected, we linearly divide dataith a lower factorG. There are two ways to tighten the
into three levels, representing the high, middle and@fsv  constraints associated with a dataset, directly checkiag t

of all data. Then we employ a Markov Chain Monte Carlostandard deviation error of the constrained parameterto ex
(MCMC) method to resample the best-fitting points andamine the constraint on the specified parameter and estab-
explore the changes in the best-fitting point and associatdishing a quantified FoM to examine the comprehensive ef-
confidence intervals. We use the publicly available coddect on both parameters. The FoM can be defined as long
Py MC (https://github.com/pymc-devs/pymc) to perform a  as it reasonably rewards a tight fit while punishing a loose
full MCMC analysis. The results are listed in Table 1.one. We apply the definition of @95 confidence region
The results close tBLANCK (Planck Collaboration et al. in a parameter space (Albrecht et al. 2006), which can be
2014) and WMAP (Komatsu et al. 2011) can be consideredalculated by

reasonable and these reasonable results are also close to - 1

results using SNe la data and OHD and given by Komatsu FoM,,, = — = . (16)

et al. (2011); Ma & Zhang (2011); Moresco et al. (2012); A (02)a(0y) /1 = Pay

Wang et al. (2012); Farooq et al. (2013); Zhang et alyere,, is a correlation coefficient betweép and,, that
(2014). is related to covariance matr®,,, = o (0, )o(6,)pa,. The
Table 1 indicates that if we select the same level ofarger FoM is, the better constraint we get.
data, for boti2, and(2,,, the confidence intervals are gen- Seeing that in the OHD dataset, we have= 0.235
erally increasing with the quantities of datasets decregsi for the case of 22 data points, which is smaller than:
suggesting that our factaf is effective in distinguishing 0.260, if we setQ, as the parameter @, we consider
the data in terms of discreteness. However, we find that ithat OHD atz = 0.48, z = 0.88 andz = 1.75 did not
some cases the Markov Chains associated with this groupave a positive effect altogether in fitting. Therefore, we
of data do not converge, or the fitting yields abnormal re-may remove these points. We also notice that the ;oM
sults. for the case of 22 data points is larger than the one that
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Fig. 3 Theoretical and observational fac@mf OHD set and SNe la dataset. In these two sub-figures, bkleedaand dotted-dashed
curves represent the theoretical predictions. We applyOH® set and SNe la dataset in Eq. (13) to calculate faGtor; Q| H),
G(z; Qm|p), G(z;Qa|H) andG(z; Qa|p) of each point, then we plot thegts as dots in the figure. The vertical black dotted line
indicates the point of highest redshift and the horizonkatk dotted line denote§ = 0.

includes all the data points, which means removing some We should mention that thé factor applies for one
of the points even improves the total constraint quality. parameter in one function, and the effect brought by data
removal has been ignored. It can be considered that the
) .. factorG we defined reflects the quality of the observational
Moreover, we should notice that the standard deviationyata \We remove some data in order to investigate how the
associated with2,, and{2, contains a correlation due to factor G changes and find data that do not have a positive

—1 H H . .
the samer . Here, a point of larger discreteness(@f,  effect on the fitted cosmological model. Furthermore, we
may show a relatively larger discreteness$)gf.
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Black dot-dashed line: Flet universe
Green contour: SNe Ia, all

Blue contour: OHD, all

Red contour: OHD, § =(2,, high, 22

80— 01 oz 03 02z 05 06 07 08

Q

Fig. 4 Typical confidence regions in th€, Q) parameter subspace. The solid, dashed and dotted conéspetively correspond
t0 68.3%, 95.4% and99.7% intervals. The black dot-dashed line indicates a flat us&efhe2, interval shown by a red contour is
slightly smaller than that shown by a blue contour which igtem in bold in Table 1.

m

deal with these removed points in accordance with specifidence intervals but also unreasonable best-fitting points.

conditions. However, if the effect oG is strong enough, it will rep-
resent the intrinsic properties of statistics and prolitgbil
4 CONCLUSIONS AND DISCUSSION associated with the data. Once we find that the intervals de-

crease or FoM increases with fewer data that have a lower
In this paper, we develop a new method to study the deg value, we can investigate how observational data affect
generacy and discreteness in a cosmological model. W@e associated constraints.
define a criterion called discreteness fadfothat relates )
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