
RAA 2016 Vol. 16 No. 2, 21 (12pp) doi: 10.1088/1674–4527/16/2/021
http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and
Astrophysics

Trends of stellar entropy along stellar evolution

Marcio Guilherme Bronzato de Avellar, Rodrigo Alvares de Souza and Jorge Ernesto Horvath

Instituto de Astronomia, Geofı́sica e Ciências Atmosféricas - Universidade de São Paulo, Rua do Matão, 1226,
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Abstract This paper is devoted to discussing the difference in the thermodynamic entropy budgetper
baryon in each type of stellar object found in the Universe. We trackand discuss the actualdecrease of
the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of
matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars.
We then discuss the case of actual stars with different masses throughout theirevolution, clarifying the role
of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the
role of gravity in driving the composition and the structural changes of stars with different Main Sequence
masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in
this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the
gravitational field itself.
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1 INTRODUCTION

Entropy, as defined by physicists, is a mathematical func-
tion constructed from the statistical description of a system
that encodes its thermodynamic macro-state. When writ-
ten in terms of the energy, volume and number of particles
of the system, entropy is a true thermodynamic potential
from which other physical quantities like pressure, temper-
ature and chemical potential can be computed. The classi-
cal works of Gibbs and Boltzmann (see a review by Müller
2007) clarified the meaning of entropy and suggested that
it is also related to the degree of disorder of a system,
although only in a very restricted sense, then mainly re-
lated to the heat capacity analogies with solids, liquids and
gases1. Since entropy is related to the amount of energy, in-
cluding heat, that is available to do work on a system, it is
the entropy that drives the evolution of the system (Müller
2007).

It is often stated that entropy plays a key role in any
process in the Universe, and by means of its study we can
achieve a better understanding of the fate of the Universe
and its contents. The Universe contains several differenti-
ated structures from the largest to the smallest scales, andit
is precisely among the latter that we are going to study the
relations of entropy in various evolutionary states of the
most fundamental astrophysical objects in Nature: stars,
beginning with molecular clouds all the way down to the

1 Metals have lower heat capacities and lower entropies than liquids.
At the same time, metals have fewer ways to spread out some injected
energy through their internal structures which makes them more orderly
than liquids.

(ultimate) formation of black holes. The features of the
thermodynamic entropy of a star along its main evolution-
ary phases will be addressed in Section 2. We present and
discuss the results of entropy calculations in Section 3. We
conclude in Section 4 by discussing how the entire process
of stellar evolution can be seen from the point of view of
the entropy budget and sources in each step of the process.

2 BASIC HYPOTHESES AND MODELS

Stars are essentially self-gravitating systems held by some
internal pressure against collapse. The stability of starsis
due to the fact that they spend almost all their lives in
stationary states, in which the virial equilibrium relation
Epot + 2Ekin = 0 holds, where all forms of potential
and kinetic energies are taken into account. During most
of their “active” lives stars generate energy through nu-
clear reactions, either in its simplest form (hydrogen to he-
lium conversion) or advanced versions (helium to carbon
and beyond). A set of timescales describing how the struc-
tural, thermal and energetic adjustments are made can be
defined, including

– τff ∼

(

3
8πGρ̄

)1/2

is the free-fall timescale, an upper

limit to the maximum velocity of propagation of any
perturbation;

– τth ∼
R2

Dth
whereDth is the thermal diffusion coef-

ficient (ratio of the conductivity to thermal capacity),
characterizing the time the star takes to establish a sta-
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tionary distribution of temperature when the latter is
perturbed;

– τKH ∼ GM2

RL is the Kelvin-Helmholtz timescale, re-
lated to the time it takes for the star to radiate away a
significant fraction of its available energy;

– τnuc ∼

(

1
X

dX
dt

)−1

related to the burning of a given

nuclear fuel with mass abundanceX .

Stars in steady state satisfyτff < τth < τmKH <
τnuc. Whenever a nuclear fuel species is exhausted, the last
inequality is violated, and the star seeks a new equilibrium
state by contracting on a Kelvin-Helmholtz timescale. Note
that, because of the high thermal content and the first in-
equality, this isnot actually a collapse. However, in each
of the stages gravity gets stronger, and ultimately drives
changes in the state of matter inside (i.e. degeneracy).
Therefore, we can state that entropy should be produced
but also radiated away (to the envelope and later away
from the star), while hydrostatic equilibrium is maintained.
Things are different in two specific moments in the lives
of stars: in the initial formation process and late during
the final true collapse (supernova stage). In these two mo-
ments, the contraction is violent and out-of-equilibrium,
irreversible processes take place and play a major role and
the entropy generation and radiation is much more marked.

We are thus led to consider the Second Law of
Thermodynamics in a familiar form for the system star +
environment, namely Equation (1)

dS

dt
= Σ −

∮

−→
JS d

−→
Π . (1)

In principle, tracking all the sources of entropy inside
the star (Σ) and the flux of the entropy currents

−→
JS through-

out the boundaryΠ we could calculate the increase or de-
crease of entropy for each stageof evolution of a given
star with a given mass. Instead of that, one can just cal-
culate initial and final states, thus “weighting” the rela-
tive importance of both terms on the right hand side of
the above equation. Note that there could be ejection of
mass (and entropy with it) in some explosive stages, al-
though we shall not discuss the details of this complication
in the remainder of the discussion. Here we will just com-
pare the entropy content of the final configuration of each
step of the evolution of the objects under study (these final
configurations will have the same number of baryons, for
reasons that will be explained later). Besides, as we shall
see later in Figure 1, a considerable amount of entropy is
lost with the processes that lead to the explosive stages. In
addition, the luminosity equation for a differential shellto
evolve whenever there is a compression or expansion reads
(in Lagrangian coordinates)

dL

dm
= ǫ − T

dS

dt
(2)

with ǫ being the nuclear energy generation rate andS the
entropy per mass unit and we have neglected the energy

loss in the form of neutrinos. As we can see, there could
be luminosity generation even without nuclear reactions
(ǫ = 0), provided there is enough temporal variation of the
enclosed entropydS

dt . Processes like ionization driven by
compression, for example, contribute to the second term in
some stages in between steady burning stages. The second
term of Equation (2), also known as the thermal term, is
more important for giant branch stars, not discussed here.

A couple of comments are necessary regarding the
above equation since it bears a very important meaning
when one has to compute the structure of a star. If one turns
off the term for nuclear energy generation, the virial theo-
rem guarantees that the star will contract somewhat, releas-
ing part of its gravitational energy to compensate the de-
crease of its internal energy. However, even if one does not
“turn off” the source term, nuclear reactions slowly change
the composition and the temperature gradients inside the
star and then the structure, leading it to a new gravitational
configuration as the star expands or contracts (depending
on the internal energy balance).

These gravitational adjustments imply that gravita-
tional work is done on the stellar matter which, in turn
(due to the energy sources) drives an exchange of heat
between adjacent shells of stellar matter. In this way, the
above equation is a direct consequence of the principle of
conservation of energy:dQ/dt = dU/dt+PdV/dt. Thus,
the change of entropy with time is a consequence of the
very process of evolution of the star, i.e., the attempt of
gravity to sustain the star in a state of (quasi) hydrostatic
equilibrium, a heat-exchange process among matter shells
(that is why some authors call this term, not very precisely,
the “gravitational energy source”). Therefore, this term is
related toτKH , and since the stars evolve on a much slower
timescale thanτKH , except when the star enters in the
Hertzsprung gap,TdS/dt ≃ 0 and the condition of (local)
thermal equilibrium is satisfied. Any complete and realis-
tic model including transient adjustments must take into
account theTdS/dt term. However, when computing the
structure of a star we realize that we have to make some
assumptions about the initial and boundary conditions and,
in the case of a collapsing or expanding phase, the models
may depend on these conditions, sometimes quite strongly.
Here we meet the real physical meaning of the equation
just described: one cannot compute the structure of a star
without knowing its previous history as stated in Clayton
(1968).

As a matter of fact, it should be remembered that the
above Equation (2) doesnot determine the luminosity of
a star as seen by a distant observer. That equation is a
prescription for what the luminosity should be in order
to maintain the energy balance, e.g., the energy losses are
balanced by nuclear fusion and gravitational adjustments
of the structure of the star, and is valid in any differential
shell inside the star. The energy outflow from the star is ul-
timately determined by the radiation transport mechanisms
such as diffusion, convection and conduction, all depen-
dent on the shape and value of the temperature gradient,
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to be determined as a solution of the full set of structure
equations.

After all these considerations we shall, in order to be
able to compare the different evolutionary phases of our
model stars, first set a conserved quantity. The baryon
number is precisely tailored for such a purpose, and we
shall fix it to the valueN = 1.61 × 1057 throughout
this work, unless explicitly stated. This is not an arbitrary
choice: the number corresponds to a mass (for small bind-
ing energy) of about∼ 1.35 M⊙. It corresponds rather
well to a solar-type example while hydrogen burning is
considered, and even beyond, and is very close to the
critical transition mass between the “evolutionary phases”
from the high-mass tail of the mass distribution of white
dwarfs to the low-to-average mass tail of the mass distri-
bution of neutron stars as well.

Our plan for discussing all the changes in entropy will
be as follows: taking into account that a star will end up as
one of the three kinds of compact objects (a white dwarf,
a neutron star or a black hole),2 we set these final config-
urations as having the same number of baryons (our con-
served quantity),N = 1.61 × 1057, and we calculate the
thermodynamic entropy of each compact object. After that
we track back what would be the progenitor of each of our
compact objects, e.g., what would be the mass of the main
sequence (MS) star that could produce the compact objects
with 1.61×1057 baryons. We calculate the entropy of these
progenitor stars in some chosen epoch of their lives dur-
ing the MS. In the last step of our plan, we track back the
entropy of the primordial clouds that produced these MS
stars.

Our assumptions on the stellar state at each stage are:

– the total energy is given byEtot = Eint+Ekin+Epot;
– the virial conditionEpot = −2 × Ekin is satisfied;
– the components have equilibrium particle distribu-

tions, for example, equipartition of energy holds for
ideal gases,Ekin ∼ kT . This is justified as long as the
thermal timescale remains very short, as is usually the
case.

In general, the entropy is a function of the (internal)
energy, the volume and the number of particles in a sys-
tem: S = S(Ein, V, N). Thus, we must properly choose
the physical models that yield the energy and volume in
each stage for a fixed number of baryons. The evolutionary
stages we will discuss are:

(1) White dwarf: White dwarfs are the endpoint of the
evolution of ordinary stars with∼ 1 to∼ 7 M⊙.
From the point of view of stellar evolution, things
depart considerably from the previous stages in
the lives of ordinary stars. At this stage hydrogen

2 Because the fate of a star depends on the mass it has at the moment
it enters the main sequence, the progenitors of the compact objects must
have different initial masses. Roughly, a white dwarf has a progenitor with
1−7.5 M⊙, a neutron star has a progenitor with8−25 M⊙ and a black
hole has a progenitor with≥ 25 M⊙.

can no longer burn in the star and the core con-
tracts under its own gravity just after reaching the
Schönberg-Chandrasekhar condition (Schönberg &
Chandrasekhar 1942), a condition that changes the hy-
drostatic equilibrium. This is the end of the MS stage
(see below) and the star moves out of it and follows a
completely new path in the Hertzsprung-Russell (HR)
diagram. For a low to intermediate mass star like the
one we are dealing with, the contraction of the core
proceeds until the point where it is eventually halted by
the degeneracy pressure of the electron gas, while the
combination of conservation of energy plus the virial
relation forces the envelope to expand. After a series
of structural changes, including the ignition of helium
in degenerate conditions in the core (helium flash), the
star will eject its outer envelope in a series of ther-
mal pulses with increasing amplitude. Mass loss at this
stage is very large and cannot be ignored, therefore to
hold the baryon number fixed as before we are not con-
sidering the actual evolutionary path but rather an ideal
model situation for the sake of clarity. This is the end
point of the evolution of this star because the remnant
cannot generate energy. It will cool down releasing all
the thermal energy it had stored.
It is widely known that the actual composition of a
“typical” white dwarf is mainly carbon-oxygen (C-
O) and they have typical masses of about0.6 M⊙.
However, in order to conserve the baryon number of
1.6 × 1057 we had to assume the creation of a very
heavy white dwarf with≃ 1.35M⊙ well in the tail
of the mass distributions of these stars. The com-
position is then different: it is probably an oxygen-
magnesium-neon (O-Mg-Ne) white dwarf. To produce
such a heavy white dwarf, the progenitor star was cho-
sen to have a mass of7 M⊙, roughly 8.3 × 1057

baryons, which must lose6.7 × 1057 baryons during
the mass loss phase. This is a reasonable assumption.
Thus, in order to calculate the structure of this star
we assumed the ultra-relativistic regime with a poly-
trope of index n ∼ 3, since the mass of this
object is quite near the Chandrasekhar mass limit
(Chandrasekhar 1931). The equation of state is then
given byP = Kρ4/3. The assumed central density
is 1 × 1010 g cm−3 from which RWD ≃ 0.002 R⊙

(∼ 1500 km) is obtained.
We calculated the entropy of the WD in two spe-
cific moments: the hot initial phase, after the ther-
mal pulses, where the core temperature isTHWD ∼

5× 108 K and for a very late and evolved phase, when
the core temperature isTCWD ∼ 1 × 105 K.

(2) Neutron star: Neutron stars are formed by the col-
lapse of a massive star (8−25 M⊙) resulting in a com-
pact object of≥ 1.2 M⊙ andR ∼ 10 km.3 Neutron
stars are supposed to have all the same composition
since the burning stages that occur during evolution

3 Another possible way to form a neutron star is via the accretion-
induced collapse of a white dwarf (van den Heuvel 2011).
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reach in the end the limit of iron, from which no more
exothermic processes are possible. So, with iron as the
starting point for further evolution, the core contracts
to a completely new phase of (dense) matter.
Neutron stars also have a mass distribution, possibly
two peaked (Valentim et al. 2011), and the different
masses are possibly due to the masses of the progenitor
stars and the mass loss processes during earlier stages
of evolution during the post MS phase. Thus, in order
to produce a neutron star with1.6×1057 baryons, that
is located near the lighter part of the mass distribution
of neutron stars, we assumed a progenitor with11 M⊙

that loses about11.5 × 1057 baryons in the ultimate
supernova explosion.
We calculated the entropy of our neutron star in three
distinct moments: the hot proto-neutron star phase
whose temperature was assumed to beT ∼ 5×1011 K
andRPNS ∼ 55.75 km (this is about five times the ra-
dius of the forthcoming neutron star, due entirely to
the “hot phase”); a later “stationary” hot phase with
T = 1 × 109 K and RNS ≃ 11.15 km, which set-
tles a few hours after the formation at most; and a fi-
nal cold “stationary” phase withT = 1 × 107 K and
RNS ≃ 11.15 km representing the cooling of the iso-
lated neutron star after approximately∼ 106 yr.

(3) Black hole: We end our calculations with the ultimate
state of collapsed matter, the black hole. The actual
formation of this extreme compact object is marked by
the death of a very massive star (≥ 25M⊙). In a sim-
ilar way as the process of neutron star formation, we
assumed a progenitor with25M⊙ that, after its nor-
mal evolution, ejects28.1× 1057 baryons ending with
the formation of a black hole with1.6× 1057 baryons.
After the formation of the event horizon, the final ob-
ject emits thermal radiation at a Hawking temperature
of TBH = ~c3

2kbπG(Nmu) ≃ 1.8 × 10−7 K. The cel-
ebrated proportionality between the entropy and the
area (Bekenstein 1973, 1974) now applies, since all
forms of matter have disappeared beyond the horizon.

(4) MS star: We follow the entropy evolution,
dominated by the ideal gas component, using
Townsend’s Mad Star online tool (http://www.astro.
wisc.edu/∼townsend/) to create ordinary MS star
models, burning hydrogen to helium with solar metal-
licity. We created four MS stars: one with1.35 M⊙

that will evolve in some 4 billion years into an old
ordinary star (it will evolve further to a C-O white
dwarf that we will NOT study here); one with7 M⊙

that will evolve in some hundreds of millions of years
to an O-Mg-Ne white dwarf; one with a mass of
11 M⊙ that will evolve in some dozens of millions of
years to a neutron star; and one with a mass of25 M⊙

that will evolve in some hundreds of thousands of
years to a black hole. Mad Star is an online tool based
upon an approach by Bill Paxton using the famous
Eggleton code. Although some limitations exist, none
of them have a strong influence on our final results.

(5) Molecular cloud: Modern determinations of stellar
forming conditions (Caproni et al. 2000) have shown
the occurrence of substantial clumping within molec-
ular clouds. We consider the formation of stars in-
side these clumps which have typical temperatures
∼ 20 K, typical masses∼ 0.2M⊙ and typical den-
sities ∼ 105 cm−3 that merge together to form a
single star. The radius of each small cloud is then
RSMC ≃ 8.23×1016 cm ≃ 0.03 pc. Thus, each small
cloud amounts to1.19 × 1056 baryons. The clumps
at the moment of the star formation stage are opaque
to radiation, but their entropy is largely dominated by
the ideal gas component (we neglect magnetic fields in
this discussion). The merging of a few of these small
clumps will produce a star with the assumed baryon
content, in a complex process driving the star towards
the Zero-Age Main Sequence (ZAMS) immediately
following the ignition of hydrogen and the establish-
ment of the hydrostatic equilibrium condition.
We want to study the thermodynamic entropy of a
given1.6×1057 baryons in different states, i.e., in dif-
ferent degrees of compactification of the matter, simul-
taneously to the changes in the entropy content of the
objects that originated these final compacted baryons
in the first place during their evolution. As mentioned
above, we have three compact stars representing three
different exotic states of matter. We need then four
original molecular clouds: three for the three compact
stars (each with a different number of baryons, ob-
viously) and another one to account for1.6 × 1057

baryons enclosed in an ordinary star in its “normal”
state.
Clumping of small molecular clouds adds up to form
four molecular clouds, with1.6× 1057 baryons,8.3×
1057 baryons,13.1 × 1057 baryons and29.7 × 1057

baryons, respectively, that will form the four MS stars
that, in turn, will form our final four objects whose
entropy will be studied.

It is important to check the state of degeneracy in each
stage of evolution, since degenerate gases follow a differ-
ent entropy expression than ideal gases. In Table 1 we give
the Fermi temperature in each stage, remembering that de-
generacy occurs ifTobject ≪ TF .

Employing the values in Table 1 we can calculate the
entropies in all the stages.

3 RESULTS AND DISCUSSION

In each subsection below we discuss how we calculate the
components of the entropy and its total value in each evo-
lutionary stage. Then, in Table 2 we show which term of
the entropy is dominant. This is of course impossible for a
black hole, which does not have any ordinary component
left and needs a separate consideration.

A comparison with other known entropy sources in the
Universe is interesting, as discussed by Frampton et al.
(2009). It is important to remark that stars giving rise to
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Table 1 Fermi temperature (K) of each evolutionary stage given by our hypotheses: molecular cloud (MC), ordinary MS star, white
dwarf (WD), proto-neutron star (PNS) and neutron star (NS).It is important to notice that in the table below we calculated an average

Fermi temperature by employing the average density of each object. The Fermi temperature is given byTF =
1

kb

~
2

2mu

(

3π2η
)2/3

,

whereη =
N
V

is generally a function of the radial coordinater.

MC Star 0 Star 1 Star 3 Star 4 WD PNS NS

T
Fe−

∼ 10
−7 ∼ 10

5 ∼ 10
5 ∼ 10

5 ∼ 5 × 10
4 ∼ 10

11 ∼ 10
14 ∼ 10

15

TF
H+

∼ 5 × 10
−11 ∼ 150 ∼ 120 ∼ 70 ∼ 30 ∼ 5 × 10

7 ∼ 10
10 ∼ 10

12

neutron stars/black holes represent∼ 1% of the1022 stars
present in the visible Universe. In any case, the entropy
content of all the stellar populations is tiny compared to
other known components (i.e. CMB photons) and thus ir-
relevant for the whole budget.

3.1 Molecular Cloud

Giant molecular clouds are the main cradle of stars.
Fragmentation of a giant cloud and further clumping and
collapse of smaller units form the main blocks, as dis-
cussed above. These are mainly composed of neutral
molecular hydrogen, which can roughly be described by
the ideal gas law. Here we assume that small molecular
clouds clump together to form the molecular cloud that will
ignite the MS stars with the determined number of baryons
as described in the previous section. We also assume that
each small molecular cloud is in equilibrium just before
the clumping and collapses to form the stars in the ZAMS.
Because the temperature isTMC = 20 K ≫ TFe−/ions

there is no degeneracy. Then, the entropy can be calculated
by the expression for an ideal gas

SMC =
∑

SSMCbaryons

=
∑

NSMC,bkb

[

ln
( VSMC

NSMC,b

)

+
3

2
ln

(EinSMC

NSMC,b

)

+ const

]

, (3)

where const= 3
2 ln

(

4πmu

3h2

)

+ 5
2 , kb is the Boltzmann con-

stant,VSMC is the volume of each small cloud andmu is
the atomic mass unit. The important assumption here is
that the composition of the clouds is just molecular hydro-
gen.

The total entropy in each of our four cases is the sum
of the entropy of a certain number of small clouds that add
up to a specific number of baryons. So, for our first ob-
ject, 6.73 small clouds clump together to form an object
with 1.6×1057 baryons; for the second, 34.98 small clouds
form an object with8.3×1057 baryons; for the third, 54.97
small clouds form an object with13.1 × 1057; and for the
fourth, 124.93 small clouds form an object with29.7×1057

baryons. Recall that each small cloud has1.19 × 1056

baryons, as described in the previous section.

From our assumptions ofEtot = 0, Epot = −2Ekin

andEkin = 3
2NkbTcl, we finally find

SMC1 = 4.77 × 1042 erg K−1 or S →
S

kbN
= 21.47;

SMC2 = 24.8 × 1042erg K−1 or S →
S

kbN
= 21.65;

SMC3 = 39.0 × 1042erg K−1 or S →
S

kbN
= 21.57;

and

SMC4 = 88.6 × 1042erg K−1 or S →
S

kbN
= 21.62.

The calculation of the entropy of a molecular cloud in
an earlier stage is tricky and requires careful consideration
(not attempted here). In the transparent stages of the cloud,
the radiation is not effectively coupled to matter and it is
not clear whether it should be included. Nevertheless, this
stage happens well before any actual condensation stage
and is not important for our considerations.

3.2 Main Sequence Stars

The second evolutionary stage encompasses the MS stars,
the region in the HR diagram where the stars stay most
of their lives. For stars in the range of masses worked out
here,1.35 M⊙ to 25 M⊙, the period of residence on the
MS is∼ 1/M2.5−3. The energy generation is mainly due
to the so-calledp − p chain for stars with masses up to
2 M⊙ but due to the CNO cycle for masses above2 M⊙.
In our case, this is roughly4 Gyr. As previously stated, typ-
ical temperatures of our four models are≥ 107 K while the
Fermi temperature is∼ 105 K for electrons and∼ 102 K
for ions of hydrogen (H+). Therefore, there is essentially
no degeneracy along the MS, except for maybe a small de-
gree of degeneracy in the inner core.

The four molecular clouds collapsed to form four
models of MS stars with ZAMS masses1.35 M⊙, 7 M⊙,
11 M⊙ and25 M⊙. The Mad Star evolutionary code cal-
culates the entropy of the structure in such a way that the
entropy of each star on the MS is

S1.35M⊙
= 8.26 × 1044erg K−1 or S →

S

kbN
= 3718;

S7M⊙
= 53.5 × 1044erg K−1 or S →

S

kbN
= 4671;

S11M⊙
= 78.3 × 1044erg K−1 or S →

S

kbN
= 4331;
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and

S25M⊙
= 212 × 1044erg K−1 or S →

S

kbN
= 5173.

The general behavior of entropy with ageing inside the
MS is to become smaller and smaller, as illustrated with the
example of the star with mass1.35 M⊙

SZAMS = 8.26 × 1044erg K−1 or

S →
S

kbN
= 3718;

St=0.8 Gyr = 8.13 × 1044erg K−1 or

S →
S

kbN
= 3659;

St=2 Gyr = 7.70 × 1044erg K−1 or

S →
S

kbN
= 3466;

and

St=4 Gyr = 5.10 × 1044erg K−1 or

S →
S

kbN
= 2295.

In Section 3.7 we give a more general consideration of
the behavior of the entropy of stars of several masses on
the main sequence and post-main sequence stages.

3.3 White Dwarf

The condition of matter inside a white dwarf is quite dif-
ferent in the two stages we considered. In the hot phase,
the electrons are degenerate, but the ions basically con-
stitute a Boltzmann gas. Therefore we have three compo-
nents for the total entropy. While we can still use the same
terms in Equation (3) for the ions and use the expression

Srad = 4
45

π2k4
b

c3~3 V T 3 for the radiation, we need a new ex-
pression for the entropy of the degenerate matter

SWDe− =
1

2

π2(x2
e + 1)1/2Nkb

(

kbTWD

mec2

)

x2
e

, (4)

wherexe ≡
p

fe−

mec andpfe− is the Fermi momentum of
the electron sea. The factor1/2 comes from the suppo-
sition thatNp = Nn = Ne, which is reasonable for a
white dwarf. From our calculationSe− ∼ 1040 erg K−1

andSions ∼ 1042 erg K−1.
Thus, for the hot initial state we obtain

SWDhot ≃ 1.27 × 1042erg K−1 or S →
S

kbN
= 5.72.

However, as the star cools down the electrons remain
degenerate, but the ions suffer a phase transition to form
aCoulomb lattice (Mestel & Ruderman 1967). The Debye
temperature marking the crossover of these regimes is, for
our model,θD ≃ 1.8 × 108 K. Because we chose a final
“stationary” state with a temperature∼ 105K ≪ θD, we

are well inside the regime where the heat capacity goes
with ∼ T 3 corresponding to phonon lattice excitations.
The entropy is then given by

SWDcold−ions =
16Nπ4kb

15

(

T

θD

)3

∼ 1033erg K−1 (5)

while for the degenerate electronsSe− ∼ 1036 erg K−1.
For the cold final state we then obtain

SWDcold ≃ 4.14 × 1036erg K−1 or

S →
S

kbN
= 1.86 × 10−5.

We see that the entropy budget changes with the cool-
ing age of a white dwarf. At first, in the hot WD state, most
of the entropy is stored in ions. In the cold WD state, the
degenerate electrons eventually hold the largest fractionof
entropy, with the excess of entropy being carried away by
the photons.

3.4 Neutron Star

Again, the state of matter inside the star differs radically
in these phases. In the proto-neutron star phase the as-
sumed temperature is5 × 1011 K resulting in electrons
which are still degenerate (the Fermi temperature in this
configuration isTFe− ∼ 1013 K), but the neutrons can
still be considered a non-degenerate gas with some de-
generacy correction (the Fermi temperature in this state is
TFions ∼ 5 × 1010 K).

Then, the entropy of a proto-neutron4 star is given by
the entropy of degenerate electrons plus the entropy of a
neutron Boltzmann gas

SPNS ≃ 2.96 × 1042erg K−1 or S →
S

kbN
= 13.32 .

After the proto-neutron star phase, the neutron star
settles and quickly cools down via neutrino emission.
Our model for cold neutron stars results from solv-
ing the Tolman-Oppenheimer-Volkoff (TOV) equations
(Weber 1999) complemented by the SLy4 equation of state
(Douchin & Haensel 2001), a particularly suitable choice
for a compact star composed of very neutron rich matter
with interactions. From the sequence of stars provided by
the solution of the TOV equations, we selected the star with
N = 1.6 × 1057 baryons which corresponds to a (gravita-
tional) massM ≃ 1.23 M⊙ and radiusR = 11.15 km,
showing the effects of stronger gravity in these objects
through a lower total mass (larger binding).

Assuming a temperature ofTNS ∼ 1 × 109 K in this
later stage, the neutrons become degenerate and support
the star against further collapse. Then the stellar entropy
is given by the entropy of degenerate neutrons (we have

4 Here we used a radiusRPNS = 5 RNS, whereRNS = 11.15 km;
which mimics the hot stage before cooling.
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neglected the small fraction of electrons/protons enforced
by beta equilibrium)

SNS =
π2(x2

n + 1)1/2Nkb

(

kbTNS

mnc2

)

x2
n

, (6)

wherexn ≡
pfn

mnc andpfn is the Fermi momentum of the
neutron sea. The entropy is then

SNShot ≃ 1.21 × 1039erg K−1

or S →
S

kbN
= 5.45 × 10−3.

As the neutron star cools down, eventually reaching a
temperature ofTNS ∼ 1 × 107 K in the core, its entropy
decreases further to

SNScold ≃ 1.21 × 1037erg K−1

or S →
S

kbN
= 5.45 × 10−5.

At this stage, the entropy decrease is mainly due to photon
emission.

3.5 Black Hole

A black hole is a region in space-time in which an event
horizon has been formed. This region encloses all the mat-
ter of the progenitor and ultimately it does not matter
which kind of particles have contributed to the formation of
this final compact object. Because there is no access to the
interior content of a black hole, a thermodynamic descrip-
tion of the collapse cannot be based on the entropy of the
contents since these are lost from the observable Universe.

The black hole entropy depends solely on the observ-
able properties of the black hole: mass, electric charge
and angular momentum. Because of the area theorem
(Bekenstein 1973, 1974), these three parameters appear in
a combination defining the area. The expression for the en-
tropy of a Schwarzschild (non-rotating, uncharged) black
hole is given by

SBH =
kbA

4G~
=

4kbπG(Nmu)2

~c
, (7)

where we used the fact thatA = 4πR2
H = 16π(GM/c2)2

with RH = 2GM/c2.
The numeric value of the entropy of1.6×1057 baryons

enclosed by the event horizon is then

SBH ≃ 2.63×1061erg K−1 or S →
S

kbN
= 1.2×1020.

That is many orders of magnitude larger than the pre-
ceding states of matter. This can be considered a measure
of the degree of irreversibility of the ultimate collapse to
form black holes out of known matter and energy, that is,
the entropy currents are quickly stopped from flowing out
of the black hole because of the horizon formation and the
highly irreversible collapse generates huge amounts of en-
tropy. This qualitative picture, however, cannot be taken

too seriously, since it is not clear yet how exactly the en-
tropy is located in the area (makingS a non-extensive
quantity), a subject of much discussion and calculations
for string theorists and loop quantum gravity researchers
(Ghosh & Perez 2011; Jacobson et al. 2005) beyond the
scope of our work.

3.6 Thermodynamic Entropy Summary

In Table 2 we show the dominant entropy contribution in
each compact object with1.6 × 1057 baryons reflecting,
at the same time, how entropy ends up stored in the final
configurations at different states of matter and the evolu-
tionary path as the stars go through their lives. In Figure 1
we show the thermodynamic entropyper baryon in units
of kb as a function of the central density at each stage of
the evolution (notice that for a black hole we assumed an
effective central density of1018 g cm−3 for the purpose of
plotting).

It is most important to realize that in stellar evolution
gravity ultimately drives the changes in the energetic pro-
cesses in the interior of stars and the final states of matter
in the compact objects according to the mass of each pro-
genitor star.

The important comparison is then between the progen-
itor MS stars with masses7 M⊙, 11 M⊙ and25 M⊙, and
the “initial” final configurations of the resulting hot white
dwarf, hot neutron star (passing through the proto-neutron
star phase), and black hole respectively. We clearly see a
trend in lowering the entropy from earlier stages until the
final configurations.

From the point of view of the baryon content in re-
lation to the state of matter inside the compact objects, we
see that although the MS star with7 M⊙ has lower entropy
than the MS star with11 M⊙, the entropy jump to a state
of lower entropy is higher from the MS star with11 M⊙

to the neutron star than from the MS star with7 M⊙ to
the white dwarf. Thus, for the same number of baryons, a
more compact object has lower entropy and this difference
is due to the structural changes of matter, from ordinary
matter in white dwarfs to very neutron-rich matter in neu-
tron stars. In this respect, the entropy of the proto-neutron
star is very similar to the entropy of the hot white dwarf,
since in broad terms, the proto-neutron stars are a kind of
iron white dwarf, with matter in a state that resembles the
state of a white dwarf.

Gravity is the ultimate force driving the entropy
changes and stellar evolution. Then one can wonder why
the most compact object, the black hole, has an entropy that
is so many orders of magnitude higher than the other com-
pact objects with the same number of baryons, apparently
contradicting the very conclusion we stated in the previous
paragraph. The answer lies in the gravity field itself and its
putative entropy content. We shall see below that the latter
could nicely explain the big difference of entropy content
between low and high curvature stars.
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Table 2 Entropy components (erg K−1) of each compact object with1.6 × 10
57 baryons given by our hypotheses: hot white dwarf

(HWD), cold white dwarf (CWD), proto-neutron star (PNS), hot neutron star (HNS), cold neutron star (CNS) and black hole (BH).

Radiation Ideal baryons Ideal electrons Degeneratee− Crystal Degeneraten Area

HWD ∼ 10
37 ∼ 10

42 – ∼ 10
40 – – –

CWD ∼ 10
26 – – ∼ 10

36 ∼ 10
33 – –

PNS ∼ 10
42 ∼ 10

42 – ∼ 10
42 – – –

HNS ∼ 10
32 – – – – ∼ 10

39 –

CNS ∼ 10
26 – – – – ∼ 10

37 –

BH ∼ 10
−17 – – – – – ∼ 10

61
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Fig. 1 Thermodynamic entropyper baryon in units ofkb versus the central density of the objects in each stage of evolution. The (red)
diamonds are the four molecular clouds; the (green) squares are the four MS stars (note that there are five squares, but one of them
represents an evolved version of the same1.35 M⊙ star); and the (pink) circles represent the compact stars (white dwarf, neutron
star and black hole plus proto-neutron star). The (black) arrows show the changes (or “evolution”) of the entropy as stellar evolution
proceeds. The two (blue) arrows going from the cold white dwarf to the proto-neutronstar and from the cold neutron star to the black
hole are the special cases of induced collapse. Notice that for a black hole we assumed an effective central density of10

18 g cm−3 for
the purposes of plotting.

To finish the thermodynamic entropy summary, in
Figure 2 we show regions in the planeT vs ρ in which the
entropy regime is dominant in the typical density and tem-
perature range corresponding to the models studied here.
We also show the well-known dominant pressure regimes
for comparison.

We see that the entropy regimes arenot directly con-
nected to the pressure regimes, although they overlap in
many situations. This can be seen in the specific case of
a white dwarf: while the electron degeneracy pressure is
dominant through the whole range of densities of white
dwarfs, the entropy of the degenerate electrons is domi-
nant only in the regime of low temperatures and high den-
sities (the lighter grey region of the WD box of Fig. 2).
This change is directly related to the evolution of the white
dwarfs, more specifically to the cooling and to the fact that
there is no energy generation inside the core of these ob-

jects. A similar behavior may occur for the degenerate neu-
tron composition case, and it is worth further study.

3.7 Actual Main Sequence Stars and Beyond

The considerations made above about the entropy of an
idealized path for a fixed baryon number were intended to
show how this quantity evolves as successive stellar equi-
librium states arise. However, it is clear that actual starsdo
not complete the whole evolution, and therefore it is im-
portant to discuss how the entropy behaves for the whole
range of stellar masses in actual stars.

It is currently agreed that nuclear reactions start for the
central conditions of stars with mass above0.08 M⊙ (for
solar composition). In addition, the stellar structure is sta-
ble up to a high mass limit of at least90 M⊙ and possibly
∼ 130 M⊙. Within these two extremes, the stellar structure
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Fig. 2 The region above the first left line (R) is radiation pressure-dominated; the region between the first left line and the second
line (G) is gas pressure-dominated; the pressure of non-relativistic degenerate electrons (NRDe) is dominant in the region between the
second line and the first vertical line; the region between the two vertical lines is dominated by the pressure of the relativistic degenerate
electrons (RDe); the region to the right of the second vertical line is dominated by the pressure of degenerate neutrons (Dn). The other
two lines, the ones crossing the first vertical line, define a change in the regime of the specific heats of the ions inside white dwarfs
due to crystallization. Regarding entropy, in the darkest regions the entropy is dominated by the entropy of the Boltzmann gas; in the
second darker region the entropy is dominated by the entropyof a hot lattice of ions; in the third darker region the entropy is dominated
by the entropy of a cold crystallized ionic lattice; in the lightest grey region of the WD box the entropy is dominated by the entropy of
degenerate electrons; and finally, in the region of the NS boxthe entropy is dominated by the entropy of degenerate neutrons.

varies and the entropy characterizing the star is subject to
a quite different behavior. Generally speaking, it is well-
known that a stellar core or shell may transport energy in
theradiative mode (diffusion of photons driven by a small
temperature gradient, the so-called local thermodynamic
equilibrium condition, LTE) or, when the stability criterion
formulated in terms of the size of the temperature gradi-
ent dT

dr is violated, in theconvective mode, in which large-
scale motions of the fluid itself are involved (Kippenhahn
& Weigert 1994). The latter regime is difficult to model
since a variety of scales and complex phenomena (i.e. tur-
bulence) play a crucial role. Therefore, simple approaches
ignoring the multi-scale dimension in favor of a represen-
tative “bubble” are employed, with the most popular being
the mixing length theory which parametrizes a number of
physical effects with a single dimensionless quantityα, ex-
pected to beO(1). Even the plain substitution of the true
temperature gradient by the adiabatic temperature gradi-
ent dT

dr

∣

∣

ad
has been employed many times for calculations

based on the fact that the actual value of the gradient can-
not be large on physical grounds, since convection is very
efficient and there is little room for a large build-up of dif-
ferences in temperature values (see the textbooks in Carroll
& Ostlie 2006; Kippenhahn & Weigert 1994).

The behavior of entropy in both cases (diffusive vs.
convective) is very different, and an additional condition,
that of virial equilibrium, is the determinant for its value,
at least as long as the balance is dominated by the ideal gas

component and not by degenerate electrons or radiation, as
we shall see in a moment.

The virial relation states that, in equilibrium, the grav-
itational and thermal energies satisfy3

5
GM2

R = 2 3
2NkT =

3 M
µmH

kT , whereN is the total number of particles,µ is the
mean molecular weight of the gas andmH is the hydrogen
mass. If we assume a constant value of density, a simple
manipulation of the relation yieldsT ∼

GµmH

k M2/3ρ1/3.
In such a case, the expression for an ideal gas shows that
the entropy decreases with increasing temperature, in com-
plete agreement with the Second Law when subject to the
virial equilibrium condition. It sometimes has been said
that the star digs an entropy hole along its evolutionary
path, but this behavior ceases as long as some other compo-
nent (i.e. degenerate electrons) dominates the entropy bal-
ance.

The observation that large-scale motion of the fluid
is the dominating transport mechanism beyond a certain
value of the temperature gradient (the convective regime)
leads to a variety of situations along the stellar evolu-
tion for a given mass, and also to different configura-
tions for stars with different masses. However, another im-
portant feature of the stellar interior will be relevant for
an overview of the entropy. It is related to the condition
in which nuclear energy is released by fusion reactions.
Simple calculations show that around∼ 2 M⊙ the main
reactions from the CNO catalytic cycle overcome the so-
called p-p channel, and therefore the heavier stars burn
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hydrogen in a much more dramatic way, since the latter
is very dependent on the temperature (in contrast with the
former which is very mildly dependent onT ).

Thus, stars below this “great divide” threshold develop
a steep gradient only at the outer layers, whereas above
it the steep gradient is present in the core. Therefore, the
structure of stars in the first regime (termedLower MS)
is radiative on the inside, and convective outside, all the
way to the photosphere. Those in theUpper MS, in turn,
become convective inside and keep a radiative envelope.

If we consider stars of lower and higher masses away
from the threshold, there are two important boundaries to
be noticed in the mass parameter: stars below∼ 0.3 M⊙

are totally convective as the result of the systematic in-
wards advance of the convective envelope from∼ 2 M⊙

towards the lowest values. In addition, the convective core
grows with mass at the other end, i.e.,Mconvective/Mtotal

grows from∼ 50% for a 20 M⊙ star up to∼ 80% for a
100 M⊙ star. Those stars in between present both convec-
tive and radiative regions, as discussed above.

Given these features and considering the homogeniza-
tion provided by convection, the entropy profile of any star
residing on the MS can be depicted as in Figure 3. More
massive solar type stars, up to around∼ 2 M⊙, are repre-
sented by the upper right panel of the same figure, featur-
ing a radiative core and a convective envelope. Still more
massive ones, up to∼ 20M⊙ or so, correspond to the pro-
file shown in the lower left panel; and those stars above this
value are again represented by a constant value ofS (upper
left panel).

From the point of view of the entropy, similar be-
havior occurs when stars leave the MS evolving towards
the right of the HR diagram. Low-mass stars develop an
increasingly massive helium core, mostly degenerate for
solar-mass stars and below. The envelope expands and be-
comes convective inwards (the reverse of the Hayashi track
in the stellar formation process), and the entropy distribu-
tion resembles the one in Figure 3 (lower right panel). Note
that degenerate cores, by their own nature, donot diminish
their entropies with increasing temperature. In contrast,up-
per MS stars develop normal, non-degenerate cores and,
depending on their exact value, end their lives as white
dwarfs (those up to around8 M⊙) or ignite further nu-
clear reactions. The full sequence of available nuclear cy-
cles (including true fusion reactions and photodisintegra-
tion rearrangements, yielding net energy) is achieved for
masses beyond∼ 10 M⊙. For the range8 − 10 M⊙ it is
expected that a degenerate O-Mg-Ne core is formed, but
the conditions would not be enough to go beyond the car-
bon cycle. Since when each of the combustion cycles is
no longer possible, the inert core contracts and the reac-
tions formerly at the center migrate to a shell around it
and the so-called onion structure develops for the more
massive stars, in particular, in those withM ≥ 10 M⊙

which would complete the ignition of all available nuclear
reactions. The entropy, in turn, adopts a constant value in-
side convective cores, but given that the virial condition

must be maintained, its valuedecreases for each new cy-
cle. Meanwhile, the radiative shells adopt the entropy dis-
tribution growing from the inner to the outer edge of the
shell in each case. Thus, the entropy distribution for any
given stage of massive stars is qualitatively similar to that
shown in the lower right panel of Figure 3. This process
of decreasing the entropy per baryon at the center is more
pronounced for the lighter range of massive stars, since the
relation T ∼

GµmH

k M2/3ρ1/3 leads toT 3

ρ ∝ M2, and
the ideal gas entropy then increases with increasing mass,
being much higher for the range15 − 20 M⊙ and beyond.
Since the end of these stars as core collapse supernovae de-
pends on the binding energy of the core, directly related to
the entropy per baryon, the low entropy per baryon in the
∼ 10 M⊙ range was considered as a favorable condition
for the explosions to succeed, although many other factors
seem to be at play in this process (Murphy et al. 2013).

Finally a remark should be made regarding actual stars
and systems of stars. Binary evolution channels are very
important for the formation and evolution of compact ob-
jects, but introduce new complications to the entropy con-
siderations which lie beyond the scope of the present ap-
proach. For comprehensive considerations of a possible
common envelope phase we refer to Ge et al. (2010a,b).

4 CONCLUSIONS

We have seen that the gravitational compactification of
stellar matter makes the thermodynamic entropy of mat-
terdecrease from MS stars to their corresponding compact
stars in an ordered, monotonic sequence. This decrease of
thermodynamic entropy of matter is not at all in contradic-
tion with the Second Law since the gravitational contrac-
tion releases high-entropy radiation (and even neutrinos)in
a way that more than compensates the decrease in the mat-
ter entropy of the object. Thus, it is the ability to radiate
away entropy that keeps the entropy of stars decreasing.

Starting with the condensations in a molecular cloud,
as the collapse continues, the core of the object is heated
by the contraction up to the point that fusion reactions of
protons into helium begins. At this moment, the processes
in the core balance gravity and the contraction halts, but
the thermodynamic entropy of matter remains lower than
it was in its initial state. Later on, as the nuclear fuel of the
star is exhausted, a new contraction begins, being halted
only when the heat capacity becomes positive again when a
phase transition of matter occurs. After a few billion years,
a white dwarf is formed with a still lower thermodynamic
entropy.

In other words, the entropy decrease of matter with
gravitational contraction is at the expense of an increase in
the entropy of the immediate environment due to the re-
lease of very high-entropy radiation/neutrinos during the
life of stars in the MS and beyond. There is a delicate
balance between two processes. The fusion reactionsper
se can be thought to lower the entropy because the num-
ber of particles diminishes. However, this process is highly
exothermic, and increases the local entropy due to local
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Fig. 3 Entropy regimes (arbitrary units). For plotting purposes we used the same scale for all plots.

heating. Which effect dominates depends on the local tem-
perature: at low temperature (relative to nuclear scales),
the entropy gain from the exothermic reactions is favored.
When the temperature of the core reaches a threshold, the
reactions become entropically unfavored and stop. This co-
incides with the jump to the next stage of the evolution
of the objects. In the white dwarf and neutron star stages,
the entropy budget suffers a stronger influence from cool-
ing processes, since the structure of these objects will re-
main unchanged for timescales which are infinite in prac-
tice. However, the injection of entropy in the environ-
ment is never too extreme, for example, a type II super-
nova (the explosion of a massive star) will produce around
3×1042 erg K−1 of entropy mainly in neutrinos. A hundred
times this figure will be injected due to the dissipation of
the massive ejecta, ultimately leading to dust heating of the
interstellar medium. These numbers are still lower than the
total entropy introduced by the heating of dust due to the
absorption of ordinary radiation from stars (Bousso et al.
2007; Frampton et al. 2009).

Gravity plays a major role in all these contractions
and entropy changes, driving stellar evolution towards its
end. Gravity is responsible, again, for the formation of a
black hole. As seen above, collapse under gravity causes
entropy to increase enormously; however here the black
hole itself “cools down” to a very low Hawking temper-
ature (for a solar-mass or so black hole), much smaller
than the external temperature whereas its entropy increases
astonishingly. Because black holes have negative heat ca-
pacity, they absorb radiation faster than they can emit by

the Hawking mechanism. We face a very special case: the
environment iscooled by the collapse (differently than in
normal stars) while the entropy of matter in the black hole
is very high (Wallace 2010).

As mentioned earlier, the gravitational field itself may
carry and store entropy. This entropy has been related
to the curvature inside stars, but it is negligible from
Newtonian objects like molecular clouds, MS stars and
white dwarfs. For a neutron star, constructed under the
framework of General Relativity, the entropy of gravity
is expected to be larger, but still does not significantly al-
ter the entropy budget of this very compact star. However,
things change considerably when a massive MS star col-
lapses to form a black hole. Black holes are “pure grav-
ity,” a singular point in the metric in which the curvature
term goes to infinity, forming an object from which no mat-
ter can ever escape. That is why this collapse actuallyin-
creases the entropy stored in this object. There is consider-
able activity in the community to construct and character-
ize gravitational entropy. A definite recent example is the
proposal of Clifton et al. (2013) in which “gravitational
entropy” has been suggested based on the Bel-Robinson
tensor which makes use of the Weyl part of the curva-
ture tensorCabcd (see Sussman & Larena (2014) for ap-
plications). Thus, such a proposal attaches increasing en-
tropy to the gravitation which is related to the increasing
curvature value. As a particular example, the gravitational
entropy reduces to the Bekenstein-Hawking value for the
case of a Schwartzchild black hole. Therefore, if this pro-
posal stands, the origin of the huge entropy associated with
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a black hole could be thought of as the limiting case of ac-
tion of gravity in stars; not only by forcing the change of
state of matter (discussed above), but also leading to the
highest available found in nature.

The evolution of a black hole in a cosmological en-
vironment has been considered before. At some point the
background becomes as cool as the black hole itself, driven
by the expansion of the Universe, but further evolution can-
not preserve the thermal equilibrium (Custódio & Horvath
2003). Rather, the black hole begins to evaporate and even-
tually disappears (Hawking 1975) or leaves a tiny quantum
residual, meaning that most of its entropy eventually re-
turns to the environment.

We have seen in this work that entropy in its multifar-
ious forms plays an important role in stellar evolution the-
ory. We discussed how gravitational contraction/collapse,
although irreversible in nature, lowers the entropy of mat-
ter relative to its initial state. However, we still have a long
journey towards a complete understanding of the role of
entropy in the fate of stars. We conjecture, however, that
there is a synthesis to be made from the study of entropy
in stars from a totally general point of view.
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