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Abstract We determine the proportions of two mixed crater populations distinguishable by size dis-

tributions on the Moon. A “multiple power-law” model is built to formulate crater size distribution

N(D) ∝ D−α whose slope α varies with crater diameter D. This model is then used to fit size distributions

of lunar highland craters and Class 1 craters. The former is characterized by α = 1.17± 0.04, 1.88± 0.07,

3.17± 0.10 and 1.40± 0.15 for D ranges ∼ 10− 49, 49− 120, 120− 251 and ∼ 251− 2500km, while the

latter has a single slope α = 1.96 ± 0.14 for about 10 − 100 km. They are considered as Population 1 and

2 crater size distributions, whose sum is then fitted to the global size distribution of lunar craters with D
between 10 and 100 km. Estimated crater densities of Population 1 and 2 are 44×10−5 and 5×10−5 km−2

respectively, leading to the proportion of the latter being 10%. This result underlines the need for more

thoroughly investigating Population 1 craters and their related impactors, the primordial main-belt aster-

oids, which dominated the late heavy bombardment.
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1 INTRODUCTION

Crater records of the Moon and terrestrial planets are help-

ful in understanding the evolution of the solar system.

The size distribution of craters has been used to infer the

properties of impactors that generated them. Strom et al.

(2005, 2015) examined crater size distributions of various

regions on the Moon, Mars, Venus and Mercury and iden-

tified two crater populations related to two impactor popu-

lations in the inner solar system. Population 1 craters with

wavy size distributions were found on heavily cratered sur-

faces, while Population 2 craters with smooth size dis-

tributions were primarily found on lightly cratered and

younger plains. After the size distributions of impactors

were derived from those of craters, apparent matches were

identified between the Population 1 impactors and con-

temporary main-belt asteroids (MBAs) and between the

Population 2 impactors and near-Earth objects (NEOs).

Since the main-belt size distribution changed little after the

first ∼ 100 Myr (Bottke et al. 2005), Strom et al. (2005,

2015) suggested the primordial MBAs and the current

NEOs were Population 1 and 2 impactors, respectively.

They further indicated that the former impactor population

dominated during the late heavy bombardment (LHB), a

sudden planetesimal bombardment to the inner solar sys-

tem triggered by the migration of giant planets ∼ 4.1 Gyr

ago (Morbidelli et al. 2012; Marchi et al. 2013a,b), while

the latter followed and dominated until present, being con-

stantly resupplied from the main belt by Yarkovsky and

YORP effects. Marchi et al. (2009) supported those sug-

gestions by computing the lunar crater size distribution

based on modeled impactor flux and comparing the com-

putations to observations. The crater size distributions of

the highlands and Nectaris Basin, the oldest regions on the

Moon, were found to be best fitted with the MBAs being

impactors. Head et al. (2010) also confirmed the difference

in size distribution between two lunar crater populations

on the pre- and post-mare regions, which are older and

younger than Orientale Basin respectively.

What should be mentioned is that Marchi et al. (2012)

implied the possibility of another impactor population

dominating the pre-LHB epoch, which had half the mean

impact speed of Population 1 as well as the size distribu-

tion of the main belt. Still, this work is based on the as-

sumption that the major lunar impactors are Population 1

and 2, following Strom et al. (2015).

Different crater populations probably have different

cratering distributions. At present, there have been more

studies on lunar cratering by Population 2 impactors

(Gallant et al. 2009; Ito & Malhotra 2010; Le Feuvre

& Wieczorek 2011; Kawamura et al. 2011; Oberst et al.

2012) than Population 1 (Wang & Zhou 2016), and the

revised cratering chronology methods have usually been
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based only on cratering asymmetry of the current im-

pactors (Morota et al. 2005; Le Feuvre & Wieczorek 2011).

However, according to Strom et al. (2015), for craters

larger than 10 km, the density of Population 1 exceeds that

of Population 2 by more than one order of magnitude. That

emphasizes the importance of the former population. We

will further examine this point by quantitatively determin-

ing the proportions of two crater populations on the Moon.

In Section 2, using our “multiple power-law” model, the

global size distribution of lunar craters is fitted, resulting in

the fitted densities of the mixed crater populations. Section

3 presents discussion about cratering asymmetry and cra-

tering chronology, and Section 4 is our conclusion.

2 METHODS AND RESULTS

2.1 Multiple Power-law Model

The cumulative crater size distribution is commonly as-

sumed to be N(D) ∝ D−α, where D is crater diameter,

N(D) is number of craters with diameters larger than D
per unit area and α is the power-law slope. We propose

a “multiple power-law” model, which is inspired by the

“broken power-law” model of Ivezić et al. (2001), to for-

mulate crater size distributions that have complex shapes.

The model assumes a crater size distribution can be

divided into n parts by transition diameters D0,1,··· ,n so

that in each interval [Di, Di+1] the relevant αi is invariant

(i = 0, 1, · · · , n − 1). Thus, the cumulative size distri-

bution (CSD) N(D), differential size distribution (DSD)

N ′(D) = |dN/dD| and relative size distribution (RSD)

R(D) = N ′(D)D3 are described as

N(D) = CiD
−αi + Ii , (Di ≤ D ≤ Di+1) , (1)

N ′(D) = αiCiD
−αi−1 , (Di ≤ D ≤ Di+1) , (2)

R(D) = αiCiD
−αi+2 , (Di ≤ D ≤ Di+1) . (3)

Expressions of coefficients C0,1,··· ,n−1 and I0,1,··· ,n−1 are

derived as follows.

When D = Di and i 6= 0, Equation (2) leads to

N ′(Di) = αiCiD
−αi−1
i = αi−1Ci−1D

−αi−1−1
i (4)

⇒
Ci

Ci−1
=

αi−1

αi

D
αi−αi−1

i (5)

⇒
Ci

C0
=

i
∏

j=1

Cj

Cj−1
=

α0

αi

i
∏

j=1

D
αj−αj−1

j . (6)

Thus, C0,1,··· ,n−1 are expressed as

Ci =











C0 (i = 0) ,

C0
α0

αi

i
∏

j=1

D
αj−αj−1

j (i = 1, 2, · · · , n − 1) .
(7)

When D = Dn, Equation (1) leads to

N(Dn) = Cn−1D
−αn−1

n + In−1 (8)

⇒ In−1 = N(Dn) − Cn−1D
−αn−1

n , (9)

while when D = Di+1 and i 6= n − 1,

N(Di+1) = CiD
−αi

i+1 + Ii = Ci+1D
−αi+1

i+1 + Ii+1 (10)

⇒ Ii − Ii+1 = Ci+1D
−αi+1

i+1 − CiD
−αi

i+1 (11)

⇒ Ii − In−1 =

n−2
∑

j=i

(Ij − Ij+1) (12)

= − CiD
−αi

i+1 +

n−1
∑

j=i+1

Cj(D
−αj

j − D
−αj

j+1 ) + Cn−1D
−αn−1

n . (13)

Substituting Equation (9) into (13) gives

Ii = −CiD
−αi

i+1 + Gi+1 + N(Dn) (i = 0, 1, · · · , n − 1) , (14)
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where

Gi =











n−1
∑

j=i

Cj(D
−αj

j − D
−αj

j+1 ) (i = 0, 1, · · · , n − 1) ,

0 (i = n) .

(15)

Rewriting Equation (1) by including (14), we derive the general formulation of CSD

N(D) = Ci(D
−αi − D−αi

i+1 ) + Gi+1 + N(Dn) (Di ≤ D ≤ Di+1) . (16)

Coefficients C0,1,··· ,n−1 and G0,1,··· ,n (Eqs. (7) and (15)) are completely determined by power-law slopes α0,1,··· ,n−1

and transition diameters D0,1,··· ,n as well as C0.

Furthermore, we show that C0 will vanish when Dn = +∞ and N(D) is normalized. The normalized CSD is defined

as

N̄(D) =
N(D)

N(D0)
, (17)

where N(D0) = G0 + N(Dn). If Dn = +∞, i.e., N(Dn) = 0, then

N̄(D) =
C̄i(D

−αi − D−αi

i+1 ) + Ḡi+1

Ḡ0
(Di ≤ D ≤ Di+1) , (18)

where

Ḡi =











n−1
∑

j=i

C̄j(D
−αj

j − D
−αj

j+1 ) (i = 0, 1, · · · , n − 1) ,

0 (i = n) ,

(19)

C̄i =











1 (i = 0) ,

α0

αi

i
∏

j=1

D
αj−αj−1

j (i = 1, 2, · · · , n − 1) .
(20)

Thus, once α0,1,··· ,n−1 and D0,1,··· ,n are given, N̄(D) can be obtained directly.

The general formulations of CSD, DSD and RSD (Eqs. (16), (2) and (3) respectively) can always be applied no matter

what value the number of intervals n is (including n = 1). Additionally, this “multiple power-law” model can not only be

applied to craters but also to small bodies such as the MBAs whose size distribution also shows power-law breaks (Ivezić

et al. 2001; Parker et al. 2008).

2.2 Size Distributions of Population 1 and 2 Craters

Here, the size distributions of two crater populations will be fitted to derive their power-law slopes and transition diameters.

The observational data are from Strom et al. (2005). The lunar highland craters and lunar Class 1 craters (fresh craters with

pristine morphologies and well-defined ejecta blankets) are taken as typical of Population 1 and Population 2 respectively.

It is seen in Figure 1 that the former has an RSD with a complex shape characterized by three transitions over about 10–

2500 km, while the latter has a smooth shaped RSD over about 10–100 km. Therefore, the size distributions of Population 1

and 2 are assumed to be four connected power laws and simply a single one, respectively.

Hereafter the parameters and variables involved in the multiple power-law model can have an extra initial subscript

p = 1 or 2 that refers to Population 1 or Population 2 respectively. Equation (3) leads to

lg Rp = lg(αpiCpi) + (2 − αpi) lg Dp (Dpi ≤ Dp ≤ Dp(i+1)) , (21)

where according to Equation (7),

lg(αpiCpi) =











lg(αp0Cp0) (i = 0) ,

lg(αp0Cp0) +
i

∑

j=1

(αpj − αp(j−1)) lg Dpj (i = 1, 2, · · · , n − 1) .
(22)

Therefore, regarding lg Dp and lg Rp as independent and dependent variables respectively, parameters αp(0,1,··· ,n−1) and

Cp0 can be estimated by linear least-squares fitting with Dp(0,1,··· ,n) given.

The number of intervals for the size distribution of Population 2 is n2 = 1, since it is modeled as a single power law,

and the transition diameters D20 and D21 are simply defined as the minimum and maximum of variable D2 respectively.

The fit of RSD for lunar Class 1 craters results in α20 = 1.96 ± 0.14 and C20 = (6.41 ± 3.60)× 10−3.
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The number of intervals for Population 1 is set to n1 =
4. The first and last transition diameters, D10 and D14, are

also the minimum and maximum of D1 respectively, but

D11, D12 and D13 cannot be directly determined. Our so-

lution is to attempt combinations of D11 ∈ (D10, 100] km,

D12 ∈ [50, 300] km and D13 ∈ [100, 600] km exclud-

ing those that do not satisfy D11 < D12 < D13 and

record every χ2 (weighted sum of squared errors) so as

to find the combination leading to the best fit. Specifically,

D1(1,2,3) are all attempted in a step of lg D1 = 0.05 cross-

ing the above ranges at first, and then attempted repeat-

edly in a halved step crossing their halved ranges that are

centered at the temporary best-fit-leading values, until the

step is less than lg D1 = 0.001 (so that the uncertainties in

D1(1,2,3) are only ∼ 0.1 km). It turns out that only given

D11 = 49 km, D12 = 120 km and D13 = 251 km can the

fitted parameters α10 = 1.17 ± 0.61, α11 = 1.88 ± 0.88,

α12 = 3.17 ± 0.80, α13 = 1.40 ± 0.15 and C10 =
(7.29± 15.16)× 10−3 lead to the minimized χ2. Note the

poor statistics of large craters contributes most of the un-

certainties. With observational data of D1 > D13 excluded

and n1 = 3 assumed, approximately the same optimal val-

ues of parameters are still found when the same values of

D1(1,2) are given, but the uncertainties are much smaller:

α10 = 1.17± 0.04, α11 = 1.88± 0.07, α12 = 3.17± 0.10
and C10 = (7.29 ± 1.11)× 10−3.

The apparent agreements between the fitted and ob-

served RSDs for every crater population are shown in

Figure 1. Also, the derived slopes α1(0,1,2,3), α20 and tran-

sition diameters D1(1,2,3) are found to be very consistent

with Strom et al. (2015), who estimated α1 = 1.2, 2 and

3 for D1 . 50 km, 50 km . D1 . 100 km and 100 km

. D1 . 300 km in turn and α2 = 2 for 0.02 km . D2 .

100 km. However, it should be pointed out that how many

intervals a crater size distribution is divided into and where

its transitions roughly are are both decided visually. The

way it is modeled does not necessarily generate a mathe-

matically best fit. For example, if every data point is taken

as a power-law transition, χ2 = 0 will certainly be ob-

tained but this does not represent a meaningful solution.

Therefore, we consider our fitted Population 1 and 2 size

distributions to be empirical compromises between fitting

preciseness and physical meaning. In addition, we caution

about the potential uncertainties that result from the slight

dependence of observed RSDs on the bin size of D.

Theoretically, fits of α1(0,1,2,3) and α20 are also valid

for the crater size distributions of terrestrial planets, but

D1(1,2,3) are not because the crater size is determined by

both properties of the target and impactor. As Strom et al.

(2015) indicated, there is a systematic rightward shift in

peak diameter of Population 1 RSD from Mars to the Moon

and then to Mercury, which is consistent with the increase

in mean impact speed of asteroids that originate from the

main belt when these targets are in the same order.

Fig. 1 RSDs of the lunar highland craters (red) and lunar Class 1

craters (blue), typical of those of Population 1 and 2 craters re-

spectively. For each population, the observed size distribution

(Strom et al. 2005) is plotted with diamonds, while its best-fit

is the associated curve in the same color. The power-law transi-

tions of the fitted Population 1 size distribution are signified with

vertical dashed lines in red.

2.3 Separation of Mixed Crater Populations

On the assumption that there have been two impactor pop-

ulations in the inner solar system, the craters in every unit

area on the lunar surface can be regarded as a mixture of

Population 1 and 2 craters. Ignoring erosion and saturation,

the older the lunar area is, the greater the crater density

of each population is (assuming that this area was formed

in the dominant epoch of the relevant impactors). In the

R plot, this corresponds to a higher vertical position of

the RSD, while the RSD shape of each crater population

is invariant. Ignoring cratering asymmetry (Sect. 3.1), the

horizontal position of the RSD is also invariant, regardless

of the geographic location of every lunar area. Therefore,

each crater population on the whole lunar surface has ex-

actly the same RSD shape as the typical one determined

in Section 2.2, and we can model the global size distribu-

tion of lunar craters as a sum of Population 1 and 2 crater

size distributions. By fitting the model to observations, we

will see that the relative sizes of the two crater populations

reveal great disparity.

LU60645GT is a uniform lunar crater catalog com-

plete up to ∼ D ≥ 8 km (Salamunićcar et al. 2012). The

CSD and RSD of all the 60 645 craters listed there are

shown with unfilled diamonds in Figure 2.

Figure 3 shows a total of 18 054 craters with diameters

from 10 to 100 km selected from LU60645GT. The lower

limit of 10 km is set to avoid contamination of secondary

craters and to ensure completeness of this lunar crater sam-

ple, while the upper limit of 100 km is set by considering

the maximum diameter of the observed lunar Population 2

craters (lunar Class 1 craters). The CSD and RSD of this

part of craters are also shown in Figure 2 with filled dia-

monds. The clear similarity of the latter to the Population 1

RSD implies the dominance of Population 1 craters.
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Directly applying Equation (16), the CSDs of Population 1 and 2 craters on the Moon are formulated as

N1(D) =







C10(D
−α10 − D−α10

11 ) + C11(D
−α11

11 − 100−α11) + N1(100) (10 ≤ D ≤ D11) ,

C11(D
−α11 − 100−α11) + N1(100) (D11 ≤ D ≤ 100) ,

(23)

N2(D) = C20(D
−α20 − 100−α20) + N2(100) (10 ≤ D ≤ 100) , (24)

where α10 = 1.17, α11 = 1.88, α20 = 1.96 and D11 = 49 km according to Section 2.2 but C10, C11 and C20, now

relevant to the craters on the whole lunar surface, are not the same as previous values. Their sum N(D) = N1(D)+N2(D)
is the CSD of the mixture of crater populations. Because unknowns N1(100) and N2(100) that are in the term N(100) =
N1(100) + N2(100) cannot be decoupled through fitting, we exclude lunar craters larger than 100 km. To describe the

size distribution of that 10–100 km crater sample, ∆N(D) = N(D) − N(100) is defined and thus

∆N(D) =







C10(D
−α10 − D−α10

11 ) + C11(D
−α11

11 − 100−α11) + C20(D
−α20 − 100−α20) (10 ≤ D ≤ D11) ,

C11(D
−α11 − 100−α11) + C20(D

−α20 − 100−α20) (D11 ≤ D ≤ 100) .
(25)

Non-linear least-squares fitting is performed when

Equation (25) is fitted to ∆Nobs (Fig. 2). Given α1(0,1),

α20, D11 and dependence of C11 on C10 (Eq. (7)), we

derive the best fit ∆Nfit together with estimates C10 =
(7.07±0.01)×10−3 and C20 = (4.55±0.10)×10−3. Now

the comparison between different crater populations that

are mixed on the lunar surface is possible (for the craters

with diameters of 10–100 km). This is what can hardly be

done by morphologic classification in observations.

Using estimates of C10 and C20 and Equations (23)

and (24), ∆N1(D) = N1(D) − N1(100) and ∆N2(D) =
N2(D) − N2(100) are obtained. It is seen in Figure 2 that

∆N1 almost completely overlaps ∆Nfit, indicating the in-

significance of Population 2 craters. The nearly undistin-

guishable difference is a little more clear between R1 and

Rfit. (An R plot can illustrate more details than an N plot.)

The global densities of the craters with diameters of 10–

100 km are calculated to be ∆N1(10) = (43.8 ± 0.1) ×
10−5 km−2 and ∆N2(10) = (5.0± 0.1)× 10−5 km−2 for

Population 1 and 2, respectively, i.e., Population 2 craters

only make up (10.2±0.2)% of this 10–100 km lunar crater

sample. Since Population 2 is deficient in larger craters, its

weight in all craters larger than 10 km should be even less,

i.e., N2(10)/N(10) . 10%, and it is probably true that

N1(10) exceeds N2(10) by more than one order of magni-

tude (Sect. 1).

Additionally, the uncertainties in α10, α11 (derived

when data points with large D1 are excluded) and α20 are

considered. The above results are derived from their op-

timal values determined in Section 2.2. Eight more cases

with each optimal value of α10, α11 and α20 added or sub-

tracted by corresponding uncertainty are generated follow-

ing the same fitting procedure. The maximum weight of

Population 2 craters in the 10–100 km sample found when

α10, α11 and α20 are all the smallest is (20.0 ± 0.2)%,

while the minimum found when the slopes are all the great-

est is (2.1 ± 0.2)%. Thus, the dominance of Population 1

craters remains.

We point out that the geological variation is ignored in

our calculation. Lunar craters that we consider can be influ-

enced by the erasing effect, which tends to make the small

end of CSD flatter for older lunar terrains (Marchi et al.

2009), and cratering asymmetry, which can bias the crater

size distribution because of varying geographic locations.

We will discuss the latter influence in Section 3.1.

3 DISCUSSION

3.1 Influence of Cratering Asymmetry

Cratering asymmetry appears as nonuniformity in the cra-

tering distribution. A synchronously locked satellite en-

counters more impactors with higher mean impact speed

on its leading side than its trailing side, leading to the

leading/trailing asymmetry. Meanwhile, its primary may

shield the satellite’s near side from impactors or gravita-

tionally focus impactors onto it, leading to near/far asym-

metry. In addition, anisotropy of impactors gives rise to the

pole/equator asymmetry. Lunar cratering asymmetry has

been confirmed both in theory (Le Feuvre & Wieczorek

2008, 2011; Gallant et al. 2009; Ito & Malhotra 2010;

Wang & Zhou 2016) and in observations (Kawamura et al.

2011; Oberst et al. 2012).

How does cratering asymmetry influence the size dis-

tribution of craters? Taking the leading/trailing asymmetry

for example, on one hand, enhancement (diminishment)

of impact probability near the lunar apex (antapex) point

leads to increase (decrease) in crater number, and on the

other hand, enhancement (diminishment) of impact speed

there leads to increase (decrease) in crater size. That cor-

responds to the upward and rightward (downward and left-
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Fig. 2 CSD (left) and RSD (right) of lunar craters. The size distribution of all 60 645 craters in catalog LU60645GT (Salamunićcar et al.

2012) and the 18 054 selected craters with diameters between 10 and 100 km are plotted with unfilled and filled diamonds, respectively.

The fit of the latter and its two constituents, size distributions of Population 1 and 2 craters, are plotted with black, red and blue curves

in turn. The vertical dashed lines signify the range of diameters for selected craters.

Fig. 3 Global distribution of lunar craters with diameters between 10 and 100 km, reproduced with catalog LU60645GT (Salamunićcar

et al. 2012). The center of the near side is at (0◦, 0◦). Every crater is considered to be a circle with its rim plotted.

ward) shift in the apex (antapex) RSD in the R plot (as-

suming the impactor size distribution is globally invariant).

The vertical shift of local RSD alone does not change the

shape of global RSD, but the horizontal shift does if the

size distribution is not a single power law. An RSD involv-

ing power-law transitions like that of Population 1 will be

extended by horizontal shift and to what degree it is ex-

tended is determined by the difference in impact speed be-

tween the apex and the antapex. Note that if both vertical

and horizontal shifts exist, the RSD shape will be more

twisted than just extended.

Our work has not taken cratering asymmetry into ac-

count. If we do, the slope of the Population 2 crater size

distribution is still valid since it is assumed to be a sin-

gle power law. However, even if the variation in the bias

degree of crater density on the lunar nearside highland

(Strom et al. 2015) area is neglected, i.e., the fitted RSD

of lunar highland craters is exactly a local Population 1

RSD, the global Population 1 RSD cannot be directly de-

rived. It should be a sum of every local RSD with varying

shifts. The horizontal shifts can be determined by local ge-

ographic positions only if the degree of cratering asymme-
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try generated by Population 1 impactors is known, and the

vertical shifts can be obtained only if the ages of geologic

units and thus proportion of Population 1 craters obscured

by volcanic resurfacing are known. Both these precondi-

tions are not easy, especially considering that the latter is

dependent on the cratering asymmetry itself (Sect. 3.2).

Fortunately, the influence of lunar cratering asymme-

try on this work seems negligible, because the lunar orbital

speed vM ∼ 1 km s−1 is much lower than the encounter

speed with the Earth-Moon system for both Population 1

and 2 impactors, venc ∼ 20 km s−1 (Gallant et al. 2009;

Ito & Malhotra 2010; Le Feuvre & Wieczorek 2011; Wang

& Zhou 2016). Applying the Pi-group crater scaling law

D ∝ v0.44 where v is the impact speed (Schmidt & Housen

1987), the maximum-to-minimum ratio of crater diameter

is ∼ [(venc + vM)/(venc − vM)]0.44, equivalent to a negli-

gible D variation of ∼ 5%. Alternatively, we can directly

adopt the leading/trailing asymmetry amplitude of crater

diameter AD
1 ∼ 0.02 determined by Wang & Zhou (2016),

which means the crater diameter near the apex (antapex)

is statistically 2% greater (smaller) than the global aver-

age. Taking the average diameter of lunar highland craters,

∼ 30 km, as that of global Population 1 craters, the right-

ward shift from antapex RSD to apex RSD is estimated to

be ∼ 1 km. The twist of Population 1 RSD is thus negligi-

ble and the conclusion in this paper still holds.

3.2 Revision of Cratering Chronology

The cratering chronology method is a technique of age-

determination for geologic units on planetary and lunar

surfaces by counting craters on them. Its foundation is

an empirical relationship between geologic age and crater

density, which was established using radiometric ages of

rock samples from the Apollo and Luna missions (e.g.,

Hartmann et al. 1981; Neukum 1984; Neukum et al. 2001).

Classical cratering chronology has been deduced on the

assumption that lunar crater density is globally uniform.

Not considering cratering asymmetry can lead to overesti-

mation and underestimation of the age of a geologic unit

where crater density is enhanced and diminished, respec-

tively.

Morota et al. (2005) and Le Feuvre & Wieczorek

(2011) have revised cratering chronology using cratering

asymmetry generated by the current impactors. The for-

mer estimated the maximum error in age due to cratering

asymmetry to be over 20%. The latter also found that age

error could be ∼ 25% for those geologic units formed in

the past ∼ 3.5 Gyr, an epoch when the impact flux has

been nearly constant. For older times, as Le Feuvre &

Wieczorek (2011) implied, the exponential relationship be-

tween crater density and geologic age results in a moder-

ate influence by cratering asymmetry. However, Morbidelli

et al. (2012) provided evidence of a weaker LHB which oc-

curred ∼ 4.1 Gyr ago and declined slowly, in other words,

it is possible that the error in age estimation for geologic

units older than ∼ 3.5 Gyr is also obvious. Given that

Population 1 craters (which are on the oldest regions) make

up almost all lunar craters larger than 10 km (Sect. 2.3),

and that their leading/trailing asymmetry degree is likely to

be greater than that of the other population (Wang & Zhou

2016), it is worth considering including cratering asymme-

try generated by Population 1 impactors in revising crater-

ing chronology.

4 CONCLUSIONS

Proportions of Population 1 and 2 craters on the Moon are

quantitatively determined. The main results are as follows.

(1) A multiple power-law model capable of describing the

crater size distribution with a varying power-law slope

is built.

(2) Typical Population 1 and 2 crater size distributions are

fitted, resulting in slopes of the former being α10 =
1.17 ± 0.04 for D from ∼10 to 49 km, α11 = 1.88 ±
0.07 for D from 49 to 120 km, α12 = 3.17 ± 0.10 for

D from 120 to 251 km, α13 = 1.40± 0.15 for D from

251 to ∼2500 km and a single slope of the latter being

α20 = 1.96 ± 0.14 for D from ∼10 to ∼100 km.

(3) The size distribution of a 10–100 km lunar crater sam-

ple is fitted, leading to the proportion of Population 2

craters in this sample being 10% without uncertainties

in α1(0,1) and α20 considered, and from 2% to 20%

with them considered.

Our calculation emphasizes the importance of

Population 1 craters and the lunar cratering distribution

generated by their impactors, i.e., the primordial MBAs

that dominated during the LHB. The twist of Population 1

crater size distribution due to the cratering asymmetry

is noted, but estimated to be too small to influence our

conclusion.
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175, 111



185–8 N. Wang & J.-L. Zhou

Gallant, J., Gladman, B., & Ćuk, M. 2009, Icarus, 202, 371
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Parker, A., Ivezić, Ž., Jurić, M., et al. 2008, Icarus, 198, 138
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