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Abstract We investigate plane symmetric spacetime filled with perfect fluid in the C-field cosmology of

Hoyle and Narlikar. A new class of exact solutions has been obtained by considering the creation field C
as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of

matter-energy density is proportional to the strength of the existing C-field energy density. Several physical

aspects and geometrical properties of the models are discussed in detail, especially showing that some of

our solutions of C-field cosmology are free from singularity in contrast to the Big Bang cosmology. A

comparative study has been carried out between two models, one singular and the other nonsingular, by

contrasting the behaviour of the physical parameters. We note that the model in a unique way represents

both the features of the accelerating as well as decelerating universe depending on the parameters and thus

seems to provide glimpses of the oscillating or cyclic model of the universe without invoking any other

agent or theory in allowing cyclicity.
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1 INTRODUCTION

It is generally accepted that spatial anisotropy and the

lack of homogeneity would have important consequences

in the very early universe. Therefore the study of a cre-

ation field cosmological model that relaxes the FRW as-

sumptions is well motivated and is not only a viable al-

ternative to the standard big-bang model but is also theo-

retically superior to that model (Narlikar & Padmanabhan

1985). As additional support for this superiority, Narlikar

& Rana (1983) earlier showed that the theoretical curve

of relic radiation in the G-varying Hoyle-Narlikar cosmol-

ogy provides an acceptable fit to the observations at long

as well as short wavelengths. A similar problem was also

studied by Narlikar et al. (2003) to calculate the expected

angular power spectrum of the temperature fluctuations in

the microwave background radiation generated in the quasi

steady state cosmology and was able to obtain a satisfac-

tory fit to the observational band power estimates of the

CMBR temperature fluctuation spectrum. An exhaustive

review on the steady state cosmology and C-field may be

helpful in this research area (Hoyle & Narlikar 1995).

However, alternative theories have been proposed

from time to time - the most well known being the steady

state theory of cosmology proposed by Bondi & Gold

(1948). In this approach the universe neither has any sin-

gular beginning nor an end on the cosmic time scale. It has

been postulated that the statistical properties of the large

scale features of the universe do not change.

Narlikar & Padmanabhan (1985) earlier found a so-

lution of Einstein’s equations which admits radiation and

a negative-energy based massless scalar creation field as

a source. They have shown that the cosmological model

connected to this solution satisfies all of the observa-

tional tests. The model obtained by them was very im-

portant, specifically being free from singularity and it

could provide a natural explanation for the flatness prob-

lem. Motivated by this fundamental work, in the present

work we have studied the Hoyle-Narlikar C-field cosmol-

ogy in plane symmetric spacetime. We have assumed that

C(x, t) = C(t); i.e., the creation field C is a function of

time only. We have extended the method used by Narlikar

& Padmanabhan (1985) to the plane symmetric model.
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In this regard we note that cosmological models ex-

hibiting plane symmetry have attracted much attention

from several scientists. It was Taub (1951, 1956) who first

discussed a plane symmetric perfect fluid distribution in

which the flow was taken to be isentropic in general rel-

ativity. Later on, as a particular case of the plane sym-

metric models for cosmology, the Bianchi type spacetime

was extensively studied by Heckmann et al. (1962), Thorne

(1967), Jacobs (1968), Singh & Singh (1992).

More elaborately, in connection with plane symmet-

ric spacetime, Smoot et al. (1992) argued that the earlier

predictions of the Friedman-Lemaı̂tre-Robertson-Walker

(FLRW) type models do not always exactly explain the ob-

served results. Some peculiar outcomes regarding the red-

shift from extragalactic objects continue to contradict the

theoretical explanations given from the FLRW model. It is

further known that symmetry plays an important role in un-

derstanding the structure of the universe because such dis-

tance measurements are usually thought to probe the back-

ground metric of the universe. But in reality, the presence

of perturbations will lead to deviations from the result ex-

pected in an exactly homogeneous and isotropic universe,

which suggests considering the cases where perturbations

are plane symmetric (Adamek et al. 2014). Although most

stars are believed to have spherical symmetry, cylindrical

and plane symmetries may be useful to investigate gravita-

tional waves which have been detected very recently. So in

literature, many authors consider plane symmetry, which

is less restrictive than spherical symmetry and provides an

avenue to study inhomogeneities in the early as well as late

universe in different physical contexts by da Silva et al.

(1998), Anguige (2000), Nouri-Nouri-Zonoz & Tavanfar

(2001), Pradhan & Pandey (2003), Pradhan et al. (2007)

and Yadav (2010). All these have inspired us to study the

model of the universe with plane symmetry.

However, as background of creation field cosmology,

we would like to present here some of the relevant works

which will provide a thread for our investigation. In their

paper on Mach’s principle and the creation of matter,

Hoyle & Narlikar (1963) used experimental evidence that

the local inertial frame is the one with respect to which the

distant parts of the universe are non-rotating. They intro-

duced a scalar ‘creation field’ into the theory of relativity

to improve the situation and showed that this explains the

observed remarkable degree of homogeneity and isotropy

in the universe.

It has also been shown via a C-field that steady-state

cosmology appears as an asymptotic case of the cosmolog-

ical solutions of Einstein’s equations. The source equation

has been treated in terms of discrete particles instead of

the macroscopic case of a smooth fluid (Hoyle & Narlikar

1964). In this sequel of works on steady-state cosmology,

Hoyle & Narlikar (1966) also showed that it is possible

to interpret that (i) the expansion rate of fluctuation from

the steady-state situation follows the Einstein-de Sitter re-

lations, (ii) the natural scale set by the new steady-state

corresponds to the masses of clusters of galaxies 1013 M⊙
for the ‘observable universe’, and (iii) it is suggested that

elliptical galaxies were formed early in the development

of a fluctuation. Some other works on C-field cosmology

are available in the literature (Hoyle & Narlikar 1964b,a;

Narlikar 1973) for further study.

Very recently, a study has been carried out (Ghate &

Mhaske 2014) in the Hoyle-Narlikar creation field theory

of gravitation under plane symmetric and LRS Bianchi

type V cosmological models. The work is on varying grav-

itational constant G for the barotropic fluid distribution.

The solutions of the field equations have been obtained by

assuming that G = Bm, where B is a scale factor and m is

a constant. Besides this, Ghate and his collaborators (Ghate

& Salve 2014c,a,b) have published a series of works under

C-field cosmology with different physical systems. Some

other recent works on C-field cosmology are also avail-

able in the literature (Chatterjee & Banerjee 2004; Singh

& Chaubey 2009; Adhav et al. 2010, 2011; Bali & Saraf

2013).

The plan of our study is as follows: In Section 2 we

have given an overall view of the creation field theory in

cosmology whereas in Section 3 and Section 4 the ba-

sic mathematical details of the model and exact solutions

of the model have, respectively, been provided. A spe-

cial section has been added thereafter in Section 5 for the

non-singular solution. We have discussed several physi-

cal features of the models in Section 6. In Section 7 we

have provided some concluding remarks based on com-

parative studies between two models, one singular and the

other nonsingular, by contrasting the behaviour of different

physical parameters.

2 THE CREATION FIELD THEORY

Einstein’s field equations are modified by introducing a

massless scalar field called a creation field, viz. C-field

(Hoyle & Narlikar 1963; Hoyle & Narlikar 1964; Hoyle

& Narlikar 1964b,a, 1966; Narlikar 1973; Narlikar et al.

2003). The proposed modified field equations have been

provided in the form

Rij −
1

2
gij R = −8 π

(

mTij + cTij

)

, (1)

where mTij is the matter tensor of the Einstein theory and
cTij is the matter tensor due to the C-field which is given

by

cTij = −f2
(

Ci Cj −
1

2
gij Ck Ck

)

, (2)

where f2 is a coupling constant, Ci = ∂C
∂xi and C is the cre-

ation field function. It is not necessary to take a small value

of coupling constant f . However, it is not large enough and

hence one can assume the value of f in such a way that all

the solutions have finite values.
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Because of the negative value of T 00, the C-field has

negative energy density producing a repulsive gravitational

field which causes the expansion of the universe. Hence,

the energy conservation equation reduces to

mT ij
;j = − cT ij

;j = f2 Ci C;j . (3)

Here the semicolon (;) denotes covariant differentiation,

i.e. matter creation through the non-zero left hand side is

possible while conserving the overall energy and momen-

tum.

3 THE MODELS: MATHEMATICAL BASICS

The spatially homogeneous and anisotropic plane symmet-

ric spacetime is described by the line element

ds2 = dt2 − A2
(

dx2 + dy2
)

− B2 dz2, (4)

where A and B are the cosmic scale factors and functions

of cosmic time t only (non-static case).

The proper volume of the model (4) is given by

V =
√
−g = A2 B. (5)

The matter tensor for perfect fluid is

mT ij = diag(ρ,−p,−p,−p), (6)

where ρ is the homogeneous mass density and p is the

isotropic pressure. We have assumed here that the creation

field C is a function of time t only; i.e., C(x, t) = C(t).
For the line element (4) the Einstein field equation (1)

can be written as

8 π ρ = 4 π Ω + Ȧ2

A2 + 2 Ȧ Ḃ
A B , (7)

8 π p = 4 π Ω − ȦḂ
A B − B̈

B − Ä
A , (8)

B̈
B − Ä

A = Ȧ
A

(

Ȧ
A − Ḃ

B

)

, (9)

where dot (.) indicates the derivative with respect to t and

Ω = f2 Ċ2. From (5), we can write B = V
A2 . Equation (9)

transforms to

V̈
3 V − Ä

A = Ȧ
A

(

V̇
V − Ȧ

A

)

. (10)

The general solution of the above equation is

A(t) = a1 V 1/3(t) exp
[

a2

∫

dt
V (t)

]

, (11)

where a1 and a2 are constants of integration. Therefore,

the coefficient B, the homogeneous mass density ρ and the

isotropic pressure become

B(t) = V 1/3(t)
a2
1

exp
[

− 2 a2

∫

dt
V (t)

]

, (12)

8 π ρ(t) = 4 π Ω(t) − 3 a2
2

V 2(t) + V̇ 2(t)
3 V 2(t) , (13)

8 π p(t) = 4 π Ω(t) − 3 a2
2

V 2(t) + V̇ 2(t)
3 V 2(t) −

2 V̈ (t)
3 V (t) . (14)

In order to obtain a unique solution, one has to specify

the rate of creation of matter-energy (at the expense of the

negative energy of the C-field). Without loss of generality,

we assume that the rate of creation of matter energy den-

sity is proportional to the strength of the existing C-field

energy-density; i.e., the rate of creation of matter energy

density per unit proper-volume is given by

d
dV

(

ρ V
)

+ p = f2 α2 Ċ2, (15)

where α is a constant of proportionality.

The above equation can be written in the following

form

V ρ̇ +
(

p + ρ − α2 Ω
)

V̇ = 0. (16)

By substituting Equations (13) and (14) in

Equation (16), we get

Ω̇
Ω = 2 (α2 − 1) V̇

V . (17)

By integrating the above equation we have

Ω(t) = Ω0

4 π V 2 (α2−1) , (18)

where Ω0 is an arbitrary constant of integration. Inserting

(18) into (13) and (14) we have

8 π ρ(t) = Ω0 V 2 (α2−1)(t) − 3 k2
2

V 2(t) + V̇ 2(t)
3 V 2(t) , (19)

8 π p(t) = Ω0 V 2 (α2−1)(t) − 3 k2
2

V 2(t) + V̇ 2(t)
3 V 2(t)

− 2 V̈ (t)
3 V (t) .

(20)

Now, we consider the equation of state of matter as

p = γ ρ. (21)

Here γ varies between the interval 0 ≤ γ ≤ 1, whereas

γ = 0 describes the dust universe, γ = 1/3 represents

the radiation universe, 1/3 ≤ γ ≤ 1 describes the hard

universe and γ = 1 corresponds to stiff matter.

By substituting Equations (21) and (18) in

Equation (16), we get

V ρ̇ +
[

(1 + γ)ρ − Ω0 α2 V 2(α2−1)
]

V̇ = 0, (22)

which yields

8 π ρ(t) = 2Ω0 α2 V 2(α2
−1)

2 α2+γ−1 + ρ0 V −1−γ , (23)

where ρ0 is an arbitrary constant of integration.

By subtracting Equation (23) from Equation (19), we

get

(2 α2 + γ − 1)
[

9 a2
2 + 3 ρ0 V 1−γ − V̇ 2

]

+3 Ω0 (1 − γ)V 2 α2

= 0.
(24)

The above equation can be written in the following

form
∫

dV
√

9 a2
2+k0 V 2 α2+3 ρ0 V 1−γ

= t − t0, (25)

where k0 = 3Ω0 (1−γ)
2 α2+γ−1 and t0 is an arbitrary constant of

integration.



188–4 A. K. Yadav et al.

4 THE MODELS: A CLASS OF EXACT

SOLUTIONS

To obtain the class of exact solutions in terms of cosmic

time t, we consider the following cases and their respective

plots. We have used geometrical units, i.e. G = c = 1.

The figures provide information on the natural variation of

physical parameters with respect to time only. Usually the

units are as follows: energy density → gm cm−3, pressure

→ dyne cm−2, creation field C = density → gm cm−3,

volume → cm3, and time → Gyr.

4.1 ρ0 = 0

4.1.1 a2 = 0

In this case, we can obtain the following solution:

V (t) =
[

k1 (1 − α2)T
]

1

1−α2

,

ρ(t) =
α2

12 π (1 − γ) (1 − α2)2 T 2
,

p(t) =
γ α2

12 π (1 − γ) (1 − α2)2 T 2
, (26)

C(t) = C0 +
1

2 f (1 − α2)

√

2 α2 + γ − 1

3 π (1 − γ)
ln[T ],

A(t) = a1

[

(1 − α2)T
]

1

3 (1−α2)
,

B(t) =
1

a2
1

[

k1 (1 − α2)T
]

1

3 (1−α2)
,

where C0 is an arbitrary constant, k0 = k2
1 and T = t− t0.

4.1.2 a2 6= 0

(i) For the α = 0 case we can obtain the following solution:

V (t) = k2 T,

ρ(t) = p(t) = 0,

C(t) = C0 +
1

2 f k2

√

9 a2
2 − k2

2

3 π
ln[T ],

A(t) = a1 k
1/3
2 T

1
3+

a2
k2 , (27)

B(t) =
k

1/3
2

a2
1

T
1
3−

2 a2
k2 ,

where C0 is an arbitrary constant, k2
2 = 9 a2

2 − 3 Ω0 and

T = t − t0.

(ii) For the α = 1√
2

case we can obtain the following

solution:

V (t) = k0

4

(

T 2 − k2
3

)

,

ρ(t) = 1

6 π (1−γ)

(

T 2−k2
3

) ,

p(t) = γ

6 π (1−γ)

(

T 2−k2
3

) ,

C(t) = C0 + 1
f

√

γ
3 π (1−γ) ln

[

2
(

T +
√

T 2 − k2
3

)]

,

A(t) = −a1

(

k0

4

)1/3(

T − k3

)2/3

,

B(t) = 1
a2
1

(

k0

4

)1/3 (

T + k3

)(

T − k3

)−1/3

,

(28)

where C0 is an arbitrary constant, k2
3 =

36 a2
2

k2
0

and T =

t − t0.

(iii) For the α = 1 case we can obtain the following

solution:

V (t) = k−1
4 sinh

[

3 a2 k4 T
]

,

ρ(t) =
3 a2

2 k2
4

4 π (1−γ) ,

p(t) =
3 γ a2

2 k2
4

4 π (1−γ) ,

C(t) = C0 + a2 k4 T
2 f

√

3 (1+γ)
π (1−γ) ,

A(t) = a1 k
−1/3
4 tanh1/3

[

3 a2 k4 T
2

]

× sinh1/3
[

3 a2 k4 T
]

,

B(t) = a−2
1 k

−1/3
4 coth2/3

[

3 a2 k4 T
2

]

× sinh1/3
[

3 a2 k4 T
]

,

(29)

where C0 is an arbitrary constant, k0 = 2 a2
2 k2

4 and

T = t − t0.

4.2 ρ0 6= 0

4.2.1 a2 = Ω0 = 0

We can obtain the following solution:

V (t) =
[k5 (1 + γ)T

2

]
2

1+γ

,

ρ(t) =
1

6 π (1 + γ)2 T 2
,

p(t) =
γ

6 π (1 + γ)2 T 2
, (30)

C(t) = C0,

A(t) = a1

[k5 (1 + γ)T

2

]
2

3(1+γ)

,

B(t) =
1

a2
1

[k5 (1 + γ)T

2

]
2

3(1+γ)

,
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where C0 is an arbitrary constant, k2
5 = 3 ρ0 and T =

t − t0.

4.2.2 a2 6= 0

When Ω0 6= 0, γ = 0 and p(t) = 0.

(i) For the α = 0 case we can obtain the following

solution:

V (t) = 3 ρ0

4

(

T 2 − k2
6

)

,

ρ(t) = 1

6 π

(

T 2−k2
6

) ,

C(t) = C0 + 1
f ρ0 k6

√

4 a2
2−ρ2

0 k2
6

3 π ln
[

k6+T
k6−T

]

,

A(t) = a1

[

3 ρ0 (T 2−k2
6)

4

]1/3 [
k6−T
k6+T

]

2 a2
3 ρ4 k6

,

B(t) = 1
a2
1

[

3 ρ0 (T 2−k2
6)

4

]1/3 [
k6+T
k6−T

]

4 a2
3 ρ0 k6

,

(31)

where C0 is an arbitrary constant, 4 Ω0−12 a2
2 = −3 ρ0 k2

6

and T = t − t0.

(ii) For the α = 1 case we can obtain the following

solution:

V (t) = 1
4 k2

7
e−k7 T

[(

ek7 T − 3 ρ0

)2

− 36 a2
2 k2

7

]

,

ρ(t) =
k2
7

12 π

[

1 − 6 ρ0 ek7 T

e2 k7 T +9 ρ2
0−36 a2

2 k2
7

]−1

,

C(t) = C0 + k7 T
2 f

√
3 π

,

A(t) = −a1

(

1
2 k7

)2/3

e−
k7 T

3

[

ek7 T − 3 ρ0 − 6 a2 k7

]2/3

,

B(t) = 1
a2
1

(

1
2 k7

)2/3

e−
k7 T

3

×
[

ek7 T − 3 ρ0 + 6 a2 k7

]

×
[

ek5 T − 3 k4 − 6 k2 K5

]−1/3

,

(32)

where C0 is an arbitrary constant, 3 Ω0 = k2
7 and T =

t − t0.

4.2.3 a2 6= 0

When Ω0 > 0, 3 ρ0 + 9 a2
2 = k2

8 and γ = 1. In this case

we can obtain the following solution:

V (t) = k8 T,
ρ(t) = p(t)

= 1
24 π k2

8 T 2

[

k2
8 − 9 a2

2 + 3 ρ0

(

k8 T
)2 α2

]

,

C(t) = C0 +
√

ρ0

2 f k8 α2
√

π

(

k8 T
)2 α2

,

A(t) =
k
1/3
8

a2
1

T
1
3−

2 a2
k8 , B(t) = a1 k

1/3
8 T

1
3+

2 a2
k8 ,

(33)

where C0 is an arbitrary constant and T = t − t0.

5 NON-SINGULAR SOLUTIONS IN THE C-FIELD

COSMOLOGICAL MODELS

Here we assume γ = 0, α2 = 1, a2 = 0 and 3ρ0 = −k0l,
so that

V (t) = l +
1

4e2k1T

(

e2k1T − l
)2

, (34)

where k0

4 = k1
2 and (t − t0) = T . Also, we obtain the

following set of non-singular solutions:

ρ(t) =
k0

12π

[

1 − l

2l + 1
2e2k1T (e2k1T − l)

2

]

, (35)

A(t) = a1

[

l +
1

4e2k1T

(

e2k1T − l
)2
]

1
3

, (36)

B(t) =
1

a2
1

[

l +
1

4e2k1T

(

e2k1T − l
)2
]

1
3

, (37)

C(t) = C0 +
1

fα

√

k0

12π
T. (38)

6 THE PHYSICAL PROPERTIES OF THE

MODELS

The expansion scalar is given by θ = 3 H , H = ȧ
a =

1
3

∑3
i=1 Hi is the Hubble parameter in our anisotropic

models, a = V 1/3 is the average scale factor, and H1 = Ȧ
A ,

H2 = Ḃ
B and H3 = Ḃ

B are the directional Hubble fac-

tors in the directions of x, y and z respectively. The mean

anisotropy parameter is defined by

∆ =
1

3

3
∑

i=1

(Hi

H
− 1
)2

.

The shear scalar is given by

σ2 =
1

2

3
∑

i=1

(

H2
i − 3H2

)

=
3

2
∆ H2.

The deceleration parameter is defined by q = −( Ḣ
H2 + 1).

It is evident that for all the cases discussed above, the

shear scalar is a decreasing function of time and finally

diminishes for sufficiently larger time except for the sub-

cases (4.1.1) and (4.2.1). For sub-cases (4.1.1) and (4.2.1),

the shear scalar is found to be zero which is proposed for

the model of a non-shearing universe with an isotropic dis-

tribution. However, the decreasing behaviour of a shear

scalar corresponds to the isotropisation of the universe with

passage of time. It should be noted here that the directional

Hubble parameter measures the different rate of expansion

along different spatial directions at the same time which

governs the anisotropy of the universe (Kristian & Sachs

1966; Collins et al. 1980; Saha & Yadav 2012; Yadav et al.

2012).
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6.1 The Model (4.1.1)

In this case the solution corresponds to

θ = 1
(1−α2) T , ∆ = σ2 = 0, q = 2 − 3 α2. (39)

6.2 The Model (i) of (4.1.2)

In this case the solution corresponds to

θ = 1
T , ∆ =

18 a2
2

k2
2

, σ2 =
3 a2

2

k2
2 T 2 , q = 2. (40)

6.3 The Model (ii) of (4.1.2)

In this case the solution corresponds to

θ = 2 T
T 2−k2

3
,

∆ =
2 k2

3

T 2 ,

σ2 =
4 k2

3

3

(

T 2−k2
3

)2 ,

q = 1
2 (1 +

3 k2
3

T 2 ).

(41)

6.4 The Model (iii) of (4.1.2)

In this case the solution corresponds to

θ = a a2 k4 coth
[

3 a2 k4 T
]

,

∆ = 2 sech2
[

3 a2 k4 T
]

, (42)

σ2 = 2 a2
2 k4

4 csch2
[

3 a2 k4 T
]

,

q = 3 sech2
[

3 a2 k4 T
]

− 1.

6.5 The Model (4.2.1)

In this case the solution corresponds to

θ = 2
(1+γ) T , ∆ = σ2 = 0, q = 1+3 γ

2 . (43)

6.6 The Model (i) of (4.2.2)

In this case the solution corresponds to

θ = 2 T
T 2−k2

6
,

∆ =
8 a2

2

ρ2
0 T 2 ,

σ2 =
16 a2

2

3 ρ2
0

(

T 2−k2
6

)2 ,

q = 1
2 (1 +

3 k2
6

T 2 ).

(44)

6.7 The Model (ii) of (4.2.2)

In this case the solution corresponds to

θ = k7

(

e2 k7 T−a3

e2 k7 T −6 ρ0 ek7 T +a3

)

,

∆ =
8 (9 ρ2

0−a3) e2 k7 T

(

e2 k7 T −a3

)2 ,

σ2 =
4 k2

7 (9 ρ2
0−a3) e2 k7 T

3

(

e2 k7 T −6 ρ0 ek7 T +a3

)2 ,

q = −
e4 k7 T −18 ρ0 e3 k7 T +2 a3

(

5 e2 k7 T −9 ρ0 ek7 T

)

+a2
3

(

e2 k7 T−a3

)2 .

(45)

where a3 = 9 ρ2
0 − 36 a2

2 k2
7 .

6.8 The Model (4.2.3)

In this case the solution corresponds to

θ = 1
T , ∆ =

18 a2
2

k2
8

, σ2 =
3 a2

2

k2
8 T 2 , q = 2. (46)

6.9 The Model (5)

In this case the solution corresponds to

θ =
k1

(

e2k1T − l
)

l + 1
4e2k1T (e2k1T − l)

2 ,

∆ =

(

e2k1T − l
)2

4e4k1T
,

σ2 =
k2
1

(

e2k1T − l
)4

24e4k1T
[

l + 1
4e2k1T (e2k1T − l)

2
]2 ,

q =
3l
(

l2e−2k1T − 3e2k1T − 2l
)

2 (e2k1T − l)
2 − 1. (47)

7 DISCUSSIONS AND CONCLUSIONS

In the present work, plane symmetric spacetime filled with

perfect fluid in the Hoyle-Narlikar C-field cosmology has

been investigated. By considering (i) the creation field is

a function of time alone, and (ii) the rate of creation of

matter energy-density is proportional to the strength of the

existing C-field energy-density, we have found a new class

of exact solutions.

We have, in general, discussed several physical fea-

tures and geometrical properties of the models. However,

as a special case, the most notable aspects of the solution

set that have been studied are non-singular in nature. These

aspects have been shown through several plots which con-

sist of two kinds: Figures 1–10 for singular cases and

Figures 11–12 for the non-singular case. All figures depict

interesting features of the present cosmological model in

terms of C-field and other physical parameters.
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Fig. 1 Variation of volume (left panel) and density (right panel) for sub-case 4.1.1.

Fig. 2 Variation of volume V and scale factors A and B: upper left panel for sub-case 4.1.1 when ρ0 = 0 and a2 = 0, upper right

panel for sub-case 4.1.2 (i) when ρ0 = 0 and a2 6= 0, α = 0, lower left panel for sub-case 4.1.2 (ii) when ρ0 = 0 and a2 6= 0,

α = 1/
√

2, and lower right panel for sub-case 4.1.2 (iii) when ρ0 = 0 and a2 6= 0, α = 1.
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Fig. 3 Variation of volume V and scale factors A and B: upper left panel for sub-case 4.2.1 when ρ0 6= 0 and a2 = 0, upper right

panel for sub-case 4.2.2(ii) when ρ0 6= 0, a2 6= 0, γ = 0, p(t) = 0 and α = 1, and lower panel for sub-case 4.2.3 when ρ0 6= 0,

a2 6= 0, γ = 1.

Fig. 4 Variation of pressure (upper left panel) and creation field (upper right panel) for sub-case 4.1.1 when ρ0 = 0 and a2 = 0
whereas variation of volume (lower left panel) and creation field (lower right panel) for sub-case 4.1.2 (i) when ρ0 = 0 and a2 6= 0,

α = 0.



C-field Cosmology 188–9

Fig. 5 Variation of volume, density, pressure and creation field for sub-case 4.1.2 (ii) when ρ0 = 0, a2 6= 0, α = 1/
√

2.

Fig. 6 Variation of volume, density, pressure and creation field for sub-case 4.1.2 (iii) when ρ0 = 0, a2 6= 0, α = 1.
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Fig. 7 Variation of volume (upper left panel), density (upper right panel) and pressure (lower left panel) for sub-case 4.2.1 when

ρ0 6= 0, a2 = 0, Ω0 = O, and variation of volume (lower right panel) for sub-case 4.2.2. (i) when ρ0 6= 0, a2 6= 0, Ω0 6= 0, γ = 0,

p(t) = 0 and α = 0.

Fig. 8 Variation of creation field (left panel) for sub-case 4.2.2 (i) when ρ0 6= 0, a2 6= 0, Ω0 6= 0, γ = 0, p(t) = 0 and α = 0 whereas

variation of volume (right panel) for sub-case 4.2.2 (ii) when ρ0 6= 0, a2 6= 0, Ω0 6= 0, γ = 0, p(t) = 0 and α = 1.

However, as one possible improvement to the present

investigation we would like to perform a comparative study

between the singular and non-singular solutions of the two

models. In this regard we draw a few specific plots to show

variation of C, θ, ∆, σ2 and q for singular and non-singular

cases in Figure 13. Here, we are basically doing a com-

parison of the singular case 4.1.2 (ii) with non-singular

case 5. One can observe that in the model of the singu-

lar case the deceleration parameter q gets a positive value

whereas a non-singular model gives an accelerating uni-

verse. Comparing C in both the cases we note that initially

the creation field in the singular case assumes a higher

value than the non-singular one; however, after a certain

time has lapsed, the creation field in the non-singular case
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Fig. 9 Variation of creation field (left panel) for sub-case 4.2.2 (ii) when ρ0 6= 0, a2 6= 0, Ω0 6= 0, γ = 0, p(t) = 0 and α = 1 whereas

variation of volume (right panel) for sub-case 4.2.3 when ρ0 6= 0, a2 6= 0, Ω0 > 0, 3ρ0 + 9a2

2 = k2

8 and γ = 1.

Fig. 10 Variation of pressure and creation field for sub-case 4.2.3 when ρ0 6= 0, a2 6= 0, Ω0 > 0, 3ρ0 + 9a2

2 = k2

8 and γ = 1.

Fig. 11 Variation of volume V and scale factors A and B for non-singular case 5 when γ = 0, a2 = 0, α2 = 1 and 3ρ0 = −k0l.
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Fig. 12 Variation of volume, density, deceleration parameter and creation field for non-singular case 5

when γ = 0, a2 = 0, α2 = 1 and 3ρ0 = −k0l.

Fig. 13 Variation of C, θ, ∆, σ2 and q for singular and non-singular cases as a comparative study.
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Fig. 13 — Continued.

acquires a higher value than the singular one. In a simi-

lar way one can continue comparison for other parameters,

which is also quite evident from the contrasting behaviour

of other parameters in Figure 13.

As a final comment, we note from the above compara-

tive study that the present model in a unique way represents

both the features of the accelerating as well as decelerating

universe depending on the parameters and thus seems to

provide glimpses of the oscillating or cyclic model of the

universe (see Frampton 2006 and refs. therein). However,

it can be noted that our model is based on Hoyle-Narlikar

type C-field cosmological theory and does not invoke any

other agent or theory, e.g. dark energy (Khoury et al. 2001;

Steinhardt & Turok 2002a,b; Boyle et al. 2004; Steinhardt

& Turok 2006), branes (Randall & Sundrum 1999b,a;

Csáki et al. 2000; Binetruy & Langlois 2000; Brown et al.

2008), modified gravity (Frampton & Takahashi 2003,

2004), etc. in allowing cyclicity.
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