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Abstract The nature of random errors in any data set is Gaussian, which is a well established fact according

to the Central Limit Theorem. Supernovae type Ia data have played a crucial role in major discoveries in cos-

mology. Unlike in laboratory experiments, astronomical measurements cannot be performed in controlled

situations. Thus, errors in astronomical data can be more severe in terms of systematics and non-Gaussianity

compared to those of laboratory experiments. In this paper, we use the Kolmogorov-Smirnov statistic to test

non-Gaussianity in high-z supernovae data. We apply this statistic to four data sets, i.e., Gold data (2004),

Gold data (2007), the Union2 catalog and the Union2.1 data set for our analysis. Our results show that in

all four data sets the errors are consistent with a Gaussian distribution.
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1 INTRODUCTION

The light curves of Type Ia supernovae (SNeIa) have

been used as cosmological distance indicators (Riess et al.

1998; Perlmutter et al. 1999) to trace the expansion history

and detect cosmic acceleration. The overall picture of the

Universe is consistent with a model known as ΛCDM, con-

sisting of around one quarter baryonic and dark matter and

three quarters dark energy. The dark energy can be treated

as a cosmic-fluid with equation of state P = wρ, where

the pressure (P ) is allowed to be negative. The SNIa data

can be used to constrain the equation of state parameter

(w) which is the key to study dark energy (Freedman et al.

2009; Hicken et al. 2009; Rest et al. 2014; Scolnic et al.

2014).

However, many alternative explanations exist for dark

energy and its exact nature is also unknown. For instance,

a classical fixed cosmological constant, Λ, yields w = −1,

whereas other models (e.g. quintessence) yield values of

w > −1 (Huterer & Turner 2001). To overcome this dif-

ficulty, precise enough data are required to detect fluctua-

tions in the dark energy. The data should also cover a wide

range of redshifts to constrain the detailed behavior of dark

energy with time. Presently, data fulfilling the above crite-

ria are obtained by observations of SNeIa. Determination

of supernova (SN) distances having high precision and tiny

systematic errors is crucial for the above purpose; and we

would like to be certain that their statistics are well un-

derstood. Furthermore, if the Central Limit Theorem holds

(Kendall & Stuart 1977), then statistical uncertainties in

SNIa data should follow a normal distribution. The sys-

tematics, if present, have to be identified and removed sep-

arately. Treatment of the errors becomes more important

in astronomy since it is hard to repeat or perform the re-

lated experiments in a controlled way, unlike laboratory

experiments in other fields. In the present paper, we use the

Kolmogorov-Smirnov test (hereafter KS test) in an elegant

way to detect non-Gaussian uncertainties in SNIa data.

This paper aims to address the above mentioned prob-

lems. The rest of the paper is structured as follows: In

Section 2, we illustrate the different data sets used for our

analysis, while Section 3 contains a detailed description of

methodology used. In Section 4, we continue and put for-

ward our results for various data sets and lastly Section 5

is reserved for conclusions.

2 DATA

The Gold data GD04 (Riess et al. 2004) containing 157

SNe, GD07 (Riess et al. 2007) consisting of 182 SNe

along with the more recent and larger data sets Union2

(Amanullah et al. 2010) and Union2.1 (Suzuki et al. 2012)

composed of 557 and 580 SNe respectively are used to

carry out our investigation. The redshift z and distance

modulus µ are the measured quantities in the data. If m is

the apparent magnitude and M is the absolute magnitude,

then distance modulus is defined as

µ(z) = m(z) − M . (1)

The apparent magnitude m(z) and hence distance modu-

lus µ(z) depend on the intrinsic luminosity of an SN, its
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redshift z and the cosmological parameters. The distance

modulus µ(z) and luminosity distance dL are related by

µ(z) = 5 log (dL(z)) + 25 , (2)

where the luminosity distance is measured in Mpc and fol-

lows

dL(z) =
c(1 + z)

H0

∫ z

0

dx

h(x)
, (3)

where h(z; ΩM, ΩX) = H(z; ΩM, ΩX)/H0; hence it is in-

dependent of H0 and only depends on densities of dark

matter (ΩM) and dark energy (ΩX). The variation of ΩX

with redshift is already encoded in the associated cosmo-

logical models; for instance ΩX is a constant in the ΛCDM

model. Although the nature of the relation between µ and

M is linear, that with luminosity distance is logarithmic.

This also implies the logarithmic dependence of µ on the

Hubble parameter H0.

3 METHODOLOGY

We now give an introduction to the method used in our

analysis. Originally, this method was described in Singh

et al. 2015 (hereafter GS15) to find non-Gaussianity in the

HST Key Project Data.

If the correct theoretical value of the distance modu-

lus of the ith supernova at redshift z is µth
i

(z), then the

observed value µobs
i

will be

µobs

i = µth

i (z) ± σi, (4)

where σi is the error in the measurement of distance modu-

lus. We expect these errors to be completely random; how-

ever, there could be some undesired contribution from sys-

tematic effects. For the time being we assume that the sys-

tematic part in the errors is zero. We show in the next para-

graph that the presence of systematic errors will not affect

our analysis. Furthermore, the Central Limit Theorem sug-

gests that the random part of the errors should be Gaussian

in nature with mean value zero. Now we define a quantity

χi such that

χi =
µobs

i
− µth

i
(z)

σi

. (5)

Clearly χi should follow the standard normal distribution

N(0, 1), i.e., a Gaussian distribution with zero mean and

unit variance. The effect of random errors is to scatter the

data around the true value and that of systematics is to

shift the average away from the true value. If systematics

are present then they will just shift the average, hence one

should subtract the best-fit value rather than the true theo-

retical value in Equation (5). Thus Equation (5) takes the

following form for a given SN

χi =
µobs

i
− µbestfit

i
(z)

σi

, (6)

where µbestfit
i

(z) is calculated using the best-fit values of

cosmological parameters. Statistical independence among

SNe in our analysis is an obvious assumption. χi defined in

Equation (6) should follow a standard normal distribution,

i.e., Gaussian with zero mean and unit standard deviation.

We use the flat ΛCDM cosmology in our analysis,

since it fits the SNe data well. However, other cosmological

models could also be investigated using a similar approach.

In order to get best-fit values of cosmological parameters,

we minimize χ2 which is defined as

χ2 = ΣN

i=1

[

µi
− µΛCDM

σi

]2

. (7)

Once again, we emphasize that Equation (7) is used to find

the best-fit values of cosmological parameters and it is then

used in Equation (6) to calculate χi.

As argued earlier, χi should follow the standard nor-

mal distribution. To check this, we use the KS test to de-

termine whether or not a given sample follows a Gaussian

distribution (Press 2007). For this we define our null hy-

pothesis as: “The errors in the SNe data are drawn from

a Gaussian distribution.” Thus χi values in Equation (6)

would follow the standard normal distribution. We apply

the KS test to calculate the test statistic and the p value

which is the probability of attaining the observed sample

results when the null hypothesis is true.

For this, we use the Matlab function kstest [h, p, k, Cv]
where p represents the probability of the data errors be-

ing drawn from a Gaussian distribution, k is the maximum

distance between the two cumulative distribution functions

(CDFs), and Cv is the critical value which is decided by the

significance level α. Different values of α indicate differ-

ent tolerance levels for a false rejection of the null hypoth-

esis. For instance, α = 0.01 means that we allow 1% of

repeated trials to reject the null hypothesis when it is true.

Cv is the critical value of the probability to obtain/generate

the data set in question given the null hypothesis; and it can

be compared with p. A value of h = 1 is returned by the

test if p < Cv and the null hypothesis is rejected. However

for p > Cv, h remains 0 and the null hypothesis is not

rejected.

4 RESULTS

We apply the statistic discussed in Section 3 to various

SNe data sets and present the results here. Similar analysis

was presented in Gupta & Saini 2010 (hereafter GS10) and

in Gupta & Singh 2014 (hereafter GS14) using a different

method (∆χ2) based on extreme value theory.

As a first check, we calculate the best-fit values of

cosmological parameters for all four data sets by mini-

mizing χ2 which are presented in Table 1. It is clear that

both Gold data sets favor higher matter density (ΩM) and

consequently smaller expansion rate (H0) compared to the

Union2 and Union2.1 data sets. One important fact is that

the χ2 per degree of freedom generates the smallest value

for GD07 while it is the largest for GD04, indicating the

overestimation and underestimation of errors in GD07 and

GD04 respectively.

We calculate χi values as defined in Equation (6) for

each data set using the best-fit values presented in Table 1.
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Fig. 1 Histograms of χi for various data sets are compared with those of a standard normal distribution.

Furthermore, we generate four sets of random numbers fol-

lowing a Gaussian distribution with zero mean and unit

standard deviation. Figure 1 presents a comparison of his-

tograms of Gaussian random numbers with those of χi val-

ues for each data set.

Secondly, the results of the KS test, which are arrived

at by comparing the calculated CDFs for χi values with

those of Gaussian distributions, are presented in Table 2.

The second, third and fourth columns in Table 2 denote

values of p, k and Cv respectively. Since p > Cv in all

cases gives h = 0, this means that we cannot reject the

null hypothesis that the errors are drawn from a Gaussian

distribution. This is shown explicitly by Figure 2.

5 CONCLUSIONS

We have used the method presented in GS15 to detect non-

Gaussianity in the error bars in SNe data. Our main con-

clusions for this part of our work are as follows: (a) The

errors are probably underestimated in GD04 and overes-

timated in GD07. In this sense, both of the sets represent

extreme positions. (b) For a flat ΛCDM cosmology, GD07

favors slightly higher matter density and this can be ver-

ified by the fact that in GD07 the distances are smaller

compared to those in the GD04 set for common SNe. (c)

Table 1 The Best-fit Values for Various Data Sets

Data Set # SNe ΩM H0 χ2/dof

(1) (2) (3) (4) (5)

GD04 157 0.30 64.5 1.143

GD07 182 0.33 63.0 0.883

Union2 557 0.27 70.0 0.975

Union2.1 580 0.28 70.0 0.973

Table 2 Results of the KS Test for Various Data Sets

Data Set p value k Cv

(1) (2) (3) (4)

GD04 0.9280 0.0425 0.1073

GD07 0.7872 0.0475 0.0997

Union2 0.7328 0.0288 0.0572

Union2.1 0.6764 0.0296 0.0561

In comparison with GS10 and GS14, GD04 was shown to

have a non-Gaussian component for errors while the KS

test shows the highest probability of being consistent with

a Gaussian distribution. (d) The hypothesis that the errors

are drawn from a Gaussian distribution cannot be rejected

for all of the data sets discussed in the present paper.
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Fig. 2 Comparison of CDF of χi for different data sets with their corresponding Gaussian CDF. The smooth curve represents the

Gaussian CDF.
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