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Abstract Due to the low spatial resolution of images taken from the Chang’e-1 (CE-1) orbiter, the details

of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained

by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high-

resolution (HR) images. SR reconstruction is important for the application of image data to increase the

resolution of images. In this article, a novel example-based algorithm is proposed to implement SR recon-

struction by single-image analysis, and the computational cost is reduced compared to other example-based

SR methods. The results show that this method can enhance the resolution of images using SR and recover

detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological

features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained

by other imaging systems.
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1 INTRODUCTION

Because they are affected by imaging conditions, alias-

ing, noise, etc, imaging systems are unable to obtain all of

the information contained in an original scene. The imag-

ing process is influenced by deformation, aliasing, mo-

tion blur, downsampling, noise, etc, leading to deteriora-

tion in image quality. Therefore, how to effectively en-

hance the quality of an image has always been a major

issue. Possible hardware-based approaches to this problem

include decreasing the pixel size and increasing the sensor

size (Nasrollahi & Moeslund 2014). The former approach

reduces the amount of light that reaches the associated

pixel on a sensor, resulting in an increase in shot noise and

more sensitivity to diffraction effects. The latter solution

increases the capacitance of the system, which slows down

the charge transfer rate (Nasrollahi & Moeslund 2014).

Therefore, algorithmic-based approaches are suggested.

Super-resolution (SR) algorithms obtain one high-

resolution (HR) image from one or more low-resolution

(LR) images. They have been applied to many real-world

problems in different fields, such as remote sensing (Zhang

et al. 2014; Shen et al. 2009), medical image processing

(Wang et al. 2014), facial recognition (Liu et al. 2007;

Tappen & Liu 2012), image compression and video en-

hancement (Schultz & Stevenson 1996; Segall et al. 2004;

Liao et al. 2015), etc. In these applications, SR algorithms

can be broadly divided into two categories: frequency do-

main algorithms (Tsai & Huang 1984; Tao et al. 2003) and

spatial domain algorithms. Based on the number of LR im-

ages involved, spatial domain algorithms can be classified

into two classes: reconstruction-based algorithms (Peleg

et al. 1987; Irani & Peleg 1991; Stark & Oskoui 1989;

Schultz & Stevenson 1994) and learning-based algorithms

(Freeman et al. 2000, 2002; Yang et al. 2010).

Chang’e-1 (CE-1) operated in a circular orbit about

200 km away from the lunar surface (Li et al. 2010). On

2010 November 20 at 8:49:00 UTC, the first image of the

lunar surface taken by a Chinese probe was obtained from

the three-line-array CCD stereo camera mounted on CE-1

(Li et al. 2010). The CCD camera acquired a huge amount

of images of the lunar surface. The spatial resolution of

these images is 120 m. In order to obtain clearer images

and find more applications of CE-1 image data, an SR al-

gorithm is studied in this article.

2 METHODOLOGY

SR refers to the problem of obtaining HR images from LR

images. Example-based SR algorithms can be described

as nearest-neighbor-based (NN-based) estimation, for in-

stance, Freeman et al. (2000, 2002) defined SR as the task

of estimating high-frequency details by interpolating the

input LR image. This algorithm is implemented by the NN-

based estimation of high-frequency patches and improves

the resolution of output patches using a Markov network

(Geman & Geman 1984). For a given LR image, Freeman

et al. (2000, 2002) try to estimate the underlying HR im-
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Table 1 The processing time of 11 236 × 228-size images used

for testing. Experiments are performed on an i7-920 (2.67 GHz)

computer; the unit in the table is second (s).

Image Bilinear Bicubic Freeman et al. Yang et al. Proposed

Image1 0.017116 0.019505 1136.599401 1148.975499 104.790039

Image2 0.017361 0.019678 1165.148185 1161.528312 89.463206

Image3 0.023604 0.027330 1159.660434 1157.918911 77.175699

Image4 0.017889 0.020437 1156.180915 1157.503233 75.445608

Image5 0.017469 0.019405 1149.728817 1166.455011 143.737403

Image6 0.017527 0.019825 1145.306959 1166.806744 155.334632

Image7 0.017780 0.020343 1149.138912 1155.224978 143.801935

Image8 0.016720 0.019730 1151.012229 1150.720157 122.001211

Image9 0.016771 0.020261 1158.790603 1161.699256 145.777820

Image10 0.017794 0.020223 1144.350902 1157.647063 160.617616

Image11 0.018372 0.020642 1147.256916 1172.192948 117.642434

Average 0.018037 0.020671 1151.197661 1159.697465 121.435237

Fig. 1 Main steps in the proposed method.

age. They make the Markov assumption: divide both the

LR and HR images into patches, and assign one node of

a Markov network to each patch. They draw the network

as nodes connected by lines, which indicate statistical de-

pendencies. They connect each HR patch both to its corre-

sponding LR patch and to its spatial neighbors. Since LR

and HR are one-to-many mappings, example-based learn-

ing strategy with NN-based estimation easily leads to over-

fitting. Although sparse representation (Yang et al. 2010)

is able to compensate the disadvantage of NN-based esti-

mation to some extent, the computational complexity of a

large scale dictionary (training data set) is still very high.

The sparsity of the solution also depends on the training

data.

To solve the problems discussed above, the mapping

function between LR and HR images is learned by using

the method of regularized regression. Our method is re-

lated to kernel ridge regression (An et al. 2007), which has

been applied in machine learning and facial recognition,

by considering the SR problem as a regression problem.

For a given set of training image pairs, we minimize the

regularized cost function of the regressor. The time com-

plexity is reduced by finding the minimizer of the regres-

sor only within a sparse subset. A block diagram of the

proposed method is illustrated in Figure 1. The key to the

Fig. 2 SR results. (a) Original image (processing time /s). (b)

Image obtained by bilinear interpolation (0.016720). (c) Image

obtained by bicubic interpolation (0.019730). (d) SR image ob-

tained by Freeman et al.’s algorithm (1151.012229). (e) SR image

obtained by Yang et al.’s algorithm (1150.720157). (f) SR image

obtained by the proposed algorithm (122.001211).

proposed algorithm is the generated training set. At first,

the task seems impossible because high resolution data are

missing. In general, the collected images are used as HR

images. Then, the set of LR images is obtained by blurring

and downsampling the corresponding HR images. The LR

pixels are constructed by a weighted combination of HR

pixels.

Let us suppose that xi is an HR patch of size

M
(√

M ×
√

M
)

and yi is an LR patch of size

N
(√

N ×
√

N
)

. For a given set of training data
{

(x1, y1), . . . , (xl, yl)
}

⊂ RM × RN , we minimize the

following regularized cost function for the regressor f =
{f1, . . . , fM}

o(f) =
1

2

M
∑

i=1

(

l
∑

j=1

(

f i(yj) − xi
j

)2

+ λ‖f i‖2

H

)

, (1)

where H is a reproducing kernel Hilbert space. Due to the

reproducing property, the minimizer of the above function

is expanded in kernel functions

f i(·) =

l
∑

j=1

ai
jk(yj , ·), (2)

where k is the reproducing kernel for H . We selected a

Gaussian kernel

k(x, y) = exp

(

−‖x − y‖2

σk

)

. (3)
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Fig. 3 Results of first downsampling and then generating SR.

(a) Original image (PSNR/dB; SSIM; processing time /s). (b)

Image obtained by bilinear interpolation (PSNR: 30.8393; SSIM:

0.6136; processing time: 0.007). (c) Image obtained by bicubic

interpolation (PSNR: 31.2847; SSIM: 0.6583; processing time:

0.007). (d) SR image obtained by Freeman et al.’s algorithm

(PSNR: 24.9447; SSIM: 0.5392; processing time: 71.796). (e)

SR image obtained by Yang et al.’s algorithm (PSNR: 24.8333;

SSIM: 0.6529; processing time: 69.364). (f) SR image obtained

by the proposed algorithm (PSNR: 32.0686; SSIM: 0.7179; pro-

cessing time: 17.102).

Equation (1) is the sum of individual convex cost func-

tions for each scalar-valued regressor and can be mini-

mized separately. However, by relating the kernel k and

regularization parameter λ we can reduce the time com-

plexity of training and testing down to the case of scalar-

valued regression because in this case the evaluations of

kernel functions can be shared. Plugging Equation (2) into

Equation (1) and noting the convexity of Equation (1)

yields

A = (K + λI)−1X, (4)

where X = [xT
1 , . . . , xT

l ]T and [Ki,j ]ll = k(yi, yj).
The computational complexity of our approach mainly

focuses on finding the optimal sparse subset of the training

data set. To reduce the time complexity, a sparse solution is

discovered by kernel matching pursuit (KMP) (Vincent &

Bengio 2002; Popovici et al. 2005). The basis points of a

sparse subset are obtained by an incremental approach: for

the first m basis points, the (m + 1)th is obtained through

the regularized cost function of the regressor and the ma-

trix which is composed of the coefficients of the regressor.

Our algorithm needs a set of LR and HR image pairs

for training. First, we cut out a set of images from the dig-

ital orthophoto map (DOM) which is on the scale of 1:2.5

million and is produced by image data obtained from CE-

1’s CCD camera. Part of these images are used as the HR

images of the training set, and other images that belong to

the testing set are used as input LR images.

3 RESULTS

The training set has 80 images which have the same size

of 236 × 228, and the testing set has 11 images with the

same size. The two sets do not have any intersection. For

comparison, several different SR algorithms are applied,

Table 2 The average PSNR, SSIM and processing time for 11

59× 57-size images used for testing. Experiments are performed

on an i7-920 (2.67 GHz) computer.

Algorithm PSNR (dB) SSIM Time (s)

Bilinear 31.3263 0.6025 0.009003

Bicubic 31.7830 0.6478 0.008495

Freeman et al. 24.6515 0.5447 72.262962

Yang et al. 24.5428 0.6591 70.168818

Proposed 32.3815 0.7013 15.689127

which include the bilinear/bicubic interpolation algorithm,

Freeman et al.’s algorithm (Freeman et al. 2002) and Yang

et al.’s algorithm (Yang et al. 2010). In this paper, these al-

gorithms are run when the magnification factor is set to 4,

and the iterations and k-nearest neighbors are both set to

30. Experimental results are shown in Figure 2. The pro-

cessing time means the time needed to produce SR which

excludes the training time. The processing times of 11 test-

ing images for different algorithms are given in Table 1.

Peak signal-to-noise ratio (PSNR) and structural sim-

ilarity (SSIM) (Wang et al. 2004) are employed for quan-

titative comparison. The information loss can be quanti-

tatively assessed by PSNR. SSIM has been widely used

for evaluation of the quality of reconstructed images. The

value of SSIM is similar to the evaluation of visual inter-

pretation (Zhang et al. 2014; Wang et al. 2004).

PSNR = 10 × log10

(

2552

MSE

)

, (5)

MSE =
1

MN

M−1
∑

x=0

N−1
∑

y=0

|Is(x, y) − Io(x, y)|2 , (6)

where M and N are the length and width of the images

respectively. Is(x, y) and Io(x, y) are grey values of the

SR image and original image, respectively.

SSIM(x, y) =
(2uxuy + C1)(2σxy + C2)

(u2
x + u2

y + C1)(σ2
x + σ2

y + C2)
, (7)

C1 = (K1L)2, (8)

C2 = (K2L)2, (9)

where ux and uy are the mean values of the SR image and

the original image, respectively. σx and σy represent the

variance of the SR image and the original image, respec-

tively. σxy is the covariance between the SR image and the

original image. According to Wang et al. (2004) and Zhang

et al. (2014), we set: K1 = 0.01; K2 = 0.03; L = 255.

Compared to the above process of taking a 236× 228-

size image and generating a 944×912 one described above,

this experiment first downsampled a 236× 228-size image

to 59× 57 and then produces SR to 236× 228. The exper-

imental results are shown in Figure 3. The values of PSNR

and SSIM are between the original 236 × 228-size image

and the SR result of a 236 × 228-size image. The process-

ing time also means the time to yield SR, which excludes
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the training time. The average PSNR, SSIM and process-

ing time of 11 testing images for different algorithms are

given in Table 2.

4 DISCUSSION AND CONCLUSIONS

In the first set of experiments, the input image is the orig-

inal 236 × 228-size image, and only processing time is

employed for quantitative comparison. All the example-

based SR algorithms outperform the bilinear/bicubic inter-

polation algorithm (Fig. 2b and Fig. 2c) in terms of vi-

sual plausibility. Compared to Freeman et al.’s algorithm

(Fig. 2d) and Yang et al.’s algorithm (Fig. 2e), the proposed

algorithm improves visual quality of the image (Fig. 2f).

Moreover, the proposed algorithm requires much less pro-

cessing time: about 2 minutes for the proposed algorithm

and 19 to 20 minutes for Freeman et al.’s and Yang et al.’s

algorithm on the same computer with a 2.67 GHz proces-

sor (Table 1).

In the second set of experiments, the input image is the

59×57-size image that was downsampled from the original

236 × 228-size image. In terms of visual quality, the pro-

posed algorithm produces a less noisy image than the other

algorithms (Fig. 3). For quantitative comparison (Table 2),

the proposed algorithm outperforms the other algorithms

(except in terms of processing time when compared to the

interpolation algorithm). Freeman et al.’s algorithm and

Yang et al.’s algorithm produce low PSNR values, even

lower than the ones produced by the bilinear/bicubic inter-

polation algorithm. Furthermore, the SSIM of Freeman et

al.’s algorithm is also lower than that obtained by the bilin-

ear/bicubic interpolation algorithm. As expected, the pro-

posed algorithm requires much less processing time which

is about one-fifth the time cost of Freeman et al.’s and Yang

et al.’s algorithm.

This article gives an example-based SR algorithm for

a single-image from the CE-1 mission. The mapping func-

tion between LR and HR images is learned by using the

method of regularized regression, which enriches informa-

tion on details in images with the computational cost re-

duced compared to other example-based SR methods. This

algorithm is believed to be significant for SR reconstruc-

tion of remotely sensed images obtained by other imag-

ing systems. For example, we can select the landing area

for the CE-4 mission via SR reconstruction of image data

obtained by the Lunar Reconnaissance Orbiter Camera

(LROC), which consists of two Narrow Angle Cameras

(NACs) and one Wide Angle Camera (WAC). NACs are

designed to provide 0.5 meter-scale panchromatic images.
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