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Abstract By introducing the Dirac δ-function and Pauli exclusion principle in the presence of superstrong

magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron

fraction (CREF) of nuclides 56Fe, 62Ni, 64Ni and 68Ni in magnetars, which are powered by magnetic field

energy. We find that the magnetic fields have a great influence on the beta decay rates, and the beta decay

rates can decrease by more than six orders of magnitude in the presence of SMFs. The CREF also decreases

by more than seven orders of magnitude in the presence of SMFs.
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1 INTRODUCTION

Beta decay plays a very important role in presupernova

evolution, as well as in neutron star (NS) evolution. A

strong beta decay rate can contribute to the cooling rate

and a much larger value of lepton-to-baryon ratio due to

energy loss from antineutrinos. Some authors (e.g., Fuller

et al. 1982; Aufderheide et al. 1990, 1994; Langanke &

Martinez-Pinedo 1998) have done pioneering works on

thermonuclear reactions, such as beta decay and electron

capture, and Liu (2012, 2013a,b,c,d,e,f, 2015, 2016) per-

formed detailed studies of the weak interaction and re-

lated issues. However, they have lost sight of the influence

of superstrong magnetic fields (SMFs) in the relativistic

properties of magnetars, which are powered by magnetic

field energy. Radio pulsars have typical magnetic fields of

B ∼ 1012 G. Moreover, a high-B pulsar may possess an in-

tense magnetic field of B ∼ 1013 G (Lai 2001). For some

magnetars, their surface dipole magnetic fields can be as

high as 1014 ∼ 1015 G (Yakovlev et al. 2001; Peng & Tong

2007; Chamel & Haensel 2008; Gao et al. 2012, 2013a,b,

2015).

Recently, the properties and observations of magne-

tars have been extensively studied. For instance, Olausen &

Kaspi (2014) presented a catalog of the 28 currently known

magnetars and magnetar candidates and discussed their

properties. They also investigated their observed emission

properties, particularly the spectral parameters of quiescent

X-ray emission. Using the partially screened gap model,

Szary et al. (2015) gave an explanation for magnetar radio

emission. Based on the estimated ages of their potentially

associated supernova remnants (SNRs), Gao et al. (2016)

estimated the values of the mean braking indices of eight

magnetars with SNRs. Their method provides an effective

way to constrain the braking indices of magnetars.

As is well known, NSs may have higher internal mag-

netic fields. The intensity of the crustal magnetic field of a

magnetar can be as high as B ∼ 1016 G. In such an SMF,

the properties of the outer crust of a magnetar will be dras-

tically modified. In particular, the Landau levels of elec-

trons are strongly quantized. By modifying the phase space

of relativistic electrons, an SMF can enhance the electron

number density ne and decrease the maximum number of

Landau levels for electrons, which results in their redis-

tribution. According to the Pauli exclusion principle, de-

generate electrons will fill quantum states from the lowest

Landau level to the highest Landau level. The enhanced ne

in an SMF means an increase in the electron Fermi energy

EF and an increase in the electron degeneracy pressure.

In the outer crust of a magnetar, the electron Fermi energy

may exceed 30 MeV ( Gao et al. 2013a; Li et al. 2016; Zhu

et al. 2016). As an extremely important and indispensable

physical parameter in the equation of state (EoS) of an NS,

the Fermi energy of electrons directly exerts impact on the

weak interaction processes, including modified Urca reac-

tions, beta-decay, electron capture, as well as the absorp-

tion of neutrinos and antineutrinos. They will in turn influ-

ence the intrinsic EoS, internal structure, thermal evolution

and even the overall properties of the star. Therefore, it is

of great significance to study EF and the magnetic effects

on the weak interaction in an NS.
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The weak interaction rates of nuclides 56Fe, 62Ni, 64Ni

and 68Ni are very important and dominant factors during

the process of supernova explosions. In pioneering works,

the weak interaction rates and some nuclear structure and

properties of these nuclides were investigated in detail by

some authors (e.g., Fuller et al. 1982; Aufderheide et al.

1990, 1994; Langanke et al. 2003; Domingo-Pardo et al.

2009). Based on works by Peng & Tong (2007) and Gao

et al. (2012, 2013a, 2015) in SMFs, we will discuss the beta

decay for nuclides 56Fe, 62Ni, 64Ni and 68Ni due to their

importance in the region surrounding a magnetar crust.

The remainder of this paper is organized as follows. In

the next section, we address the influence of an SMF on

beta decay. In Section 3 we present our results and some

discussions. In Section 4 the concluding remarks are given.

2 BETA DECAY IN THE CASE WITHOUT AND

WITH SMFS

2.1 Beta Decay in the Case without SMFs

Beta decay rates for the k-th nucleus (Z,A) in thermal

equilibrium at temperature T in the case without SMFs is

given by a sum over the initial parent states i and the fi-

nal daughter states f (Fuller et al. 1982; Aufderheide et al.

1990, 1994).

λ0
bd = ln2

∑ (2Ji + 1)e
−Ei
kB T

G(Z,A, T )

∑

f

ξ(ρ, T, Ye, Qij)

ftij
, (1)

where Ji and Ei are the spin and excitation energies of

the parent states and kB is the Boltzmann factor. ftij is

the comparative half-life connecting states of i and j, and

Qij is the nuclear energy difference between states i and j.
Q00 = Mpc

2 −Mdc
2, and Mp and Md are the masses of

the parent nucleus and the daughter nucleus, respectively.

Ei and Ej are the excitation energies of the i-th and j-th
nuclear state respectively. G(Z,A, T ) is the nuclear parti-

tion function, which is given by

G(Z,A, T ) =
∑

i

(2Ji + 1) exp
(

− Ei

kBT

)

. (2)

According to the level density formula (Aufderheide

et al. 1994), the nuclear partition function approximately

becomes

G(Z,A, T ) ≈ (2J0 + 1) +

∫ ∞

0

dE

∫

J,π

dJdπ(2Ji + 1)

×ϑ(E, J, π) exp
(

− Ei

kBT

)

, (3)

where the contribution from the excited states are taken into consideration. The level density ϑ(E, J, π) was discussed in

detail by Holmes et al. (1976).

The beta decay phase space integral ξ(ρ, T, Ye, Qij) is written as

ξ(ρ, T, Ye, Qij) =
c3

mec2

∫

√

Q2
ij
−m2

ec4

0

dpp2(Qij − εn)
2 F (Z + 1, εn)

1 + exp[(UF − εn)/kBT ]
, (4)

where p,me, UF and εe = εn are the electron momentum, mass, chemical potential and energy, respectively.F (Z+1, εn)
is the Coulomb wave correction, which is the ratio of the square of the electron wave function distorted by the Coulomb

scattering potential to the wave function of free electrons.

The electron chemical potential depends on the matter density ρ, the electron fraction Ye and the temperature T of

the medium. In the case without SMFs in the precollapse phase of a supernova, there is a reasonable approximation of

(Bludman & van Riper 1978)

U0
F = 1.11(ρ7Ye)

1/3

[

1 +
( π

1.11

) (kBT )2

(ρ7Ye)2/3

]−1/3

MeV . (5)

According to Aufderheide et al. (1994), the sum over the total beta decay rate of a parent state can be broken up

into two parts, one for the low energy region near the ground state and the other for the resonance region dominated by a

Gamow-Teller (GT) resonance transition. Thus, it becomes

λ0
bd = λ0

0 + λ0
GT, (6)

λ0
0 = ln 2

(2Ji + 1)

G(Z,A, T )
exp(−Epeak/kBT )

ξ(ρ, T, Ye, Epeak +Q00)

fteff
, (7)

λ0
GT = ln 2 exp(−EBGTR(0)/kBT )

G(Z + 1, A, T )

G(Z,A, T )

ξ(ρ, T, Ye, EBGTR(0) +Q00)

ft0→BGTR(0)
, (8)
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fteff = 6.060× 104, f t0→BGTR(0) =
103.596

|MBGTR(0)|2
, (9)

where J0 is the initial spin of the parent state and EBGTR(0) is the energy difference between the orbit that the new

neutron occupies in the GT resonance and the ground state. The total GT matrix element |MBGTR(0)|2 between the initial

parent state |ψP
i 〉 and the final daughter state |ψD

f 〉 is given by (Aufderheide et al. 1994)

|MBGTR(0)|2 = |〈ψD
f |

∑

n

σn(τ±1)|ψP
i 〉|2 = |〈jp||σn(τ±1)||jn〉|2

Nn

2jn + 1

(

1 − Np

2jp + 1

)

(10)

where Nn and Np are the numbers of neutrons and protons within the jn and jp shell, respectively.

In the case of temperature Λ = kBT (in units of MeV) ranging from roughly 0.3 MeV to 0.8 MeV and electron

chemical potentials ranging from 0.5 MeV up to at least 8 MeV, Epeak is approximately given by (Aufderheide et al.

1994)

Epeak = 5Λ −Q00 + UF + δ(Λ, UF ), (11)

where

δ(Λ, UF ) = −0.6604 + 0.9429Λ− 0.02119UF − 0.9432ΛUF − 0.0009524U2
F + 0.06224ΛU2

F . (12)

If Epeak < 0, we will consider transitions from the ground state to the low excited state.

2.2 The Beta Decay in the Case with SMFs

For electron Fermi energy in SMFs, here we consider an SMF along the z-axis. By solving the relativistic electron Dirac

equation (e.g., Landau & Lifshit’s 1991), the positive energy levels of electrons in an SMF are given as (e.g., Peng & Tong

2007; Gao et al. 2012, 2013a)

εn
mec2

=

[

( pz

mec

)2

+ 1 + 2
(

n+
1

2
+ σ

)

b
]1/2

=
[( pz

mec

)2

+ Θ
]1/2

, (13)

where Θ = 1 + 2(n + 1
2 + σ)b, n = 0, 1, 2, 3..., b = B

Bcr
= 0.02266B12, B12 is the magnetic field in units of 1012 G,

Bcr =
m2

ec3

eh̄ = 4.414 × 1013 G is the electron critical magnetic field, pz is the electron momentum along the field and σ
is the spin quantum number of an electron; when n = 0, σ = 1/2, and when n ≥ 1, σ = ±1/2.

As is well known, in a weak magnetic field approximation B/Bcr ≪ 1, for the electron gas in the nondegenerate

limit (T −→ 0), the maximum Landau level number nmax −→ ∞. However, the maximum Landau level number nmax

is set by the condition pF
z (e) ≥ 0 or E2

F (e) ≥ m2
ec

4(1 + 2νB/Bcr) for a highly degenerate electron gas in an SMF (e.g.,

see Lai & Shapiro 1991). According to Gao et al. (2012, 2013a), the maximum Landau level number nmax should be re-

estimated. According to their discussions, the degeneracy of the n-th Landau level of electrons in a relativistic magnetic

field is given by

ωn =
1

h2
gn0

∫ 2π

0

dθ

∫

δ
( p⊥
mec

−
[

2
(

n+ σ +
1

2

)

b
]

1
2
)

p⊥dp⊥

=
2π

h2
gn0

∫

δ
( p⊥
mec

−
[

2
(

n+ σ +
1

2

)

b
]

1
2
)

p⊥dp⊥, (14)

where p⊥ is the electron momentum perpendicular to the magnetic field, θ = arctan py/px and gn0 = 2 − δn0 is the

electron spin degeneracy (when n = 0, g00 = 1 and when n ≥ 1, gn0 = 2) (Gao et al. 2012, 2013a).

The relationship between the Pauli exclusion principle and electron Fermi energy in SMFs has been discussed in

detail by Zhu et al. (2016). According to the Pauli exclusion principle, the electron number density should be equal to its

microscopic state density. Thus we have (Peng & Tong 2007, Gao et al. 2013a, 2015, Zhu et al. 2016)

Nphase = ne = 2π
(mec)

3

h3

∫

EF(e)

mec2

0

d
( pz

mec

)

nmax(pz,σ,b)
∑

n=0

∑

gn0

∫

EF(e)

mec2

0

δ

(

p⊥
mec

−
[

2
(

n+ σ +
1

2

)

b
]

1
2

)

p⊥
mec

d
( p⊥
mec

)

= NAρYe . (15)

Based on the above discussions and Equations (1)–(3), the Fermi energy of electrons is given by Zhu et al. (2016)

EF = UB
F = 59.1

( B

Bcr

)1/6( ρYe

ρ0 × 0.0535

)1/3

= 59.1
( B

Bcr

)1/6( ne

0.005647× ρ0NA

)1/3

MeV. (16)
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2.2.1 The beta becay in SMFs

As discussed above, the total beta decay rate over the sum in SMFs can be broken up into two parts, one for the low

energy region near the ground state and the other for the resonance region dominated by the GT resonance transition.

Thus it becomes

λB
bd = λB

0 + λB
GT, (17)

λB
0 = ln 2

(2Ji + 1)

G(Z,A, T )
exp(−Epeak/kBT )

ξB(ρ, T, Ye, Epeak +Q00)

fteff
, (18)

λB
GT = ln 2 exp(−EBGTR(0)/kBT )

G(Z + 1, A, T )

G(Z,A, T )

ξB(ρ, T, Ye, EBGTR(0) +Q00)

ft0→BGTR(0)
. (19)

In SMFs, the beta decay phase space integral ξB(ρ, T, Ye, Qij) is written as

ξB(ρ, T, Ye, Qij) =
b

2

∞
∑

0

ϑn, (20)

ϑn =
c3

(mec2)5
gn0

∫

√

Q2
ij
−Q2

n

0

dpp2(Qij − εn)2
F (Z + 1, εn)

1 + exp[(UB
F − εn)/kBT ]

, (21)

where gn0 = 2 − δno is the electron spin degeneracy and Qn = (m2
ec

4 − Θ)1/2. We assume that an SMF will have

no effect on F (Z, εn), which is only valid under the condition that the electron wave-functions are locally approximated

by plane wave functions (Dai et al. 1993). The condition requires that the Fermi wavelength λF ∼ h̄
pF

(pF is the Fermi

momentum without a magnetic field) is smaller than the radius of the cylinder
√

2ψ (where ψ = λe
Θ ) which corresponds

to the lowest Landau level (Baym & Pethick 1975).

Due to energy conservation, the electron, proton and

neutron energies are related to the neutrino energy and Q-

value for the capture reaction (Cooperstein & Wambach

1984)

Qi,f = εe − εν = εn − εν = εn
f − εp

i , (22)

and we have

εn
f − εp

i = ε∗if + µ̂+ ∆np, (23)

where µ̂ = µn − µp is the difference between the chem-

ical potentials of neutrons and protons in the nucleus and

∆np = Mnc
2−Mpc

2 = 1.293 MeV is the mass difference

between a neutron and a proton. Q00 = Mfc
2 −Mic

2 =
µ̂+ ∆np, with Mi and Mf being the masses of the parent

nucleus and the daughter nucleus, respectively; ε∗if corre-

sponds to the excitation energies in the daughter nucleus at

the states with zero temperature.

In order to compare the results (λB
bd) in SMFs with

those of the rates (λ0
ec) in the case without SMFs, we define

an enhancement factor C, which is given by

C =
λB

bd

λ0
bd

. (24)

On the other hand, the change rate of electron frac-

tion (CREF) is also an important parameter, which is de-

termined by each nucleus in the weak interaction reaction

in the process of stellar evolution. The CREF due to beta

decay of the k-th nucleus in SMFs is given by

Ẏe(k) =
dYe

dt
(k) =

Xk

Ak
λB

bd (25)

whereXk andAk are the mass fraction and the mass num-

ber of the k-th nucleus, respectively.

The k-th nucleus has charge and mass number Z and

A, respectively, and N = A− Z . The mass fraction of the

k-th nucleus is given by Xk. The distribution of the nuclei

must conserve mass of
∑

k Xk = 1 and the charge must

satisfy
∑

k ZkXk/Ak = Ye = (1 − η)/2, where η is the

neutron excess. The abundance for nuclei, which is related

to the neutrons and protons, is expressed by

Xk =
G(Z,A, T )

2

(ρNAλ
3

2

)A−1

×A5/2XN
n X

Z
p exp(Qk/kBT ), (26)

where λ = (h2/2πMHkBT )1/2 is the thermal wavelength,

andQk = (ZmH+Nmn−Mk)2 is binding energy, where

all masses are atomic.Xn andXp are the abundance for the

neutrons and protons, respectively.

3 NUMERICAL RESULTS AND DISCUSSIONS

Here we will focus on the outer crust of magnetars and

discuss the beta decay process. The outer crust extends

from the bottom of the atmosphere (the density can be
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Fig. 1 The beta decay rates of 56Fe, 62Ni, 64Ni and 68Ni as a function of electron density ρ7 when B12 = 10
1.5, 102, 102.5 and 10

3.5

at T9 = 0.3.

104 g cm−3) to the layer with a density of 4×1011 g cm−3

and the depth of the outer crust can be a few hundred me-

ters (Shapiro & Teukolsky 1983, Yakovlev et al. 2001).

From observations, the surface temperatures of magne-

tars cluster in the range of 106 ∼ 107 K. Their inter-

nal temperature Tin (including the crust temperature) will

be higher and the maximum of Tin can be estimated as

(1 ∼ 9) × 108 K (e.g., Mereghetti 2008; Olausen & Kaspi

2014; Li et al. 2016). It has been shown that in the mag-

netar outer crust, the matter density in which nuclides
56Fe, 62Ni, 64Ni and 68Ni exist is in the range of about

8 × 106 − 1.5 × 109 g cm−3 (e.g., Yakovlev et al. 2001),

corresponding to magnetic field B12 = 5 ∼ 104. Thus,

for convenience, we select several typical parameter sets

as follows: The density range is 0.1 < ρ7 < 103 (e.g.,

ρ7 = 4.17, 8.17, 14.17 and 34.17), and two typical tem-

perature points are T9 = 0.3 and 0.7. We also select the

parameters of the magnetic field strength, whose range is

5 < B12 < 104 (e.g., B12 = 101.5, 102, 102.5 and 103.5);

here ρ7 is the density in units of 107 g cm−3, and T9 is the

temperature in units of 109 K.

Figures 1 and 2 show that the beta decay rates of 56Fe,
62Ni, 64Ni and 68Ni are functions of ρ7 in different astro-

nomical conditions. One can find that the beta decay rates

decrease greatly as their matter density increases, and the

maximum beta decay rate can exceed five orders of magni-

tude. We also find that a stronger magnetic field has a larger

influence on the decay rates. For example, when T9 = 0.3
and ρ7 = 19.7, as B12 increases from 101.5 to 102, the

beta decay rates for 68Ni decrease from 1.225× 10−7 s−1

to 5.307 × 10−26 s−1. On the other hand, the lower the

temperature is, the larger the influence of SMFs on the beta
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Fig. 2 The beta decay rates of 56Fe, 62Ni, 64Ni and 68Ni as a function of electron density ρ7 when B12 = 10
1.5, 102, 102.5 and 10

3.5

at T9 = 0.7.

decay becomes. This happens because the electron energy

and electron chemical potential are so low at relatively low

temperatures (e.g., T9 = 0.3) that the SMFs can strongly

affect the rates. For example, the beta decay rates of 68Ni

are 8.206× 10−11 s−1 and 4.177× 10−8 s−1, correspond-

ing to T9 = 0.3 and 0.7, respectively, when B12 = 102.

The beta decay rates as functions of B12 are shown in

Figures 3 and 4. One can see that an SMF has a great in-

fluence on the beta decay rates at different densities and

temperatures. As an SMF increases, the rates decrease by

more than six orders of magnitude. For a given density and

SMF, the higher the temperature is, the larger the beta de-

cay rate becomes. A significant reason for this may be that

at a relativity higher temperature, the electron chemical po-

tentials are so high that the rates would be increased. For

example, when B12 = 103 and ρ7 = 4.17, the rate of 68Ni

is about 3.499 × 10−15 s−1 for T9 = 0.3, whereas the

rate is 1.017 × 10−9 s−1 for T9 = 0.7. On the other hand,

for a given temperature and SMF, the higher the density

is, the smaller the beta decay rate becomes. This is due

to the fact that at a relativity higher density, the influence

of an SMF on beta decay can be strongly weakened by

density and beta decay rates can be suppressed. For exam-

ple, when B12 = 102 and T9 = 0.7, the rate of 68Ni is

about 3.885 × 10−3 s−1 for ρ7 = 4.17, while the rate is

4.215 × 10−17 s−1 for ρ7 = 34.17. We also find that the

curve representing the rates shows some erratic fluctuation.

This is caused by the positive threshold energy (Q0) in

the decay process and contributions from the partial decay

rates due to different selected states in the parent nucleus.

On the other hand, according to previous work of Lai

& Shapiro (1991), the beta decay rate decreases due to the
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Fig. 3 The beta decay rates of 56Fe, 62Ni, 64Ni and 68Ni as a function of B12 when ρ7 = 4.17, 8.17, 14.17 and 34.17 at T9 = 0.3.
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Fig. 4 The beta decay rates of 56Fe, 62Ni, 64Ni and 68Ni as a function of B12 when ρ7 = 4.17, 8.17, 14.17 and 34.17 at T9 = 0.7.

decrease in electron chemical potential (i.e. electron Fermi

energy) with an increase in the magnetic field. However, in

our paper, based on the model of Gao et al. (2013a, 2015)

and Peng & Tong (2007), according to the Pauli exclu-

sion principle, degenerate electrons will fill quantum states

from the lowest Landau level to the highest Landau level.

The enhanced ne in an SMF means that there is an increase

in the electron Fermi energy EF and an increase in the

electron degeneracy pressure. For a given temperature and

density, the stronger the SMF is, the higher the electron

chemical potential becomes. Thus, the beta decay rate will

greatly increase.

The enhancement factor C of beta decay rates is a

function of B12, as shown in Figures 5 and 6. The re-

sults demonstrate that the enhancement factor C decreases

by more than six orders of magnitude as an SMF in-

creases. For example, when ρ7 = 8.17 and T9 = 0.3,

the factor C of 62Ni decreases from 2.892 × 10−3 s−1 to

2.094 × 10−9 s−1 as B12 increases from 102 to 103. This

happens because the beta decay rates greatly decrease as

the SMF increases.

CREF is one of the key parameters for describing the

evolution of magnetars. CREF strongly influences the elec-

tron degenerate pressure because a tremendous amount of

electrons will be emitted by beta decay. CREF for each of

the nuclides also influences the change in the equation of

state and composition in the evolution process of the mag-

netar due to the beta decay reaction.
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Fig. 5 The factor C for 56Fe, 62Ni, 64Ni and 68Ni as a function of B12 when ρ7 = 4.17, 8.17, 14.17 and 34.17 at T9 = 0.3.
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Fig. 6 The factor C for 56Fe, 62Ni, 64Ni and 68Ni as a function of B12 when ρ7 = 4.17, 8.17, 14.17 and 34.17 at T9 = 0.7.

Figure 7 demonstrates that CREF is a function of

magnetic field at different sets of temperature and mat-

ter densities. The results show that CREF decreases by

more than seven orders of magnitude. For example, when

ρ7 = 4.17 and T9 = 0.7, the CREF of 68Ni decreases

from 2.834 × 10−17 s−1 to 3.758 × 10−22 s−1 as B12

increases from 30.54 to 394.4. In contrast, when ρ7 =
34.17 and T9 = 0.7, the CREF of 68Ni decreases from

3.097× 10−25 s−1 to 2.902× 10−37 s−1 as B12 increases

from 30.54 to 394.4.

According to Zhu et al. (2016), the electron number

density ne will greatly increase due to the fact that an

SMF strongly modifies the phase space of relativistic elec-

trons and decreases the maximum of electron Landau level

number. Thus, it will cause a redistribution of electrons.

According to the Pauli exclusion principle, the electrons

are strongly degenerate, and more and more electrons will

occupy quantum states from the lowest Landau level (the

ground level) to the highest Landau level. However, as the

magnetic field strength increases, more and more electrons

will occupy the lowest Landau levels. The enhancement

of ne in an SMF means an increase in the electron Fermi

energy and an increase in electron degeneracy pressure.
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Fig. 7 The CREF for 56Fe, 62Ni, 64Ni and 68Ni as a function of B12 when ρ7 = 4.17, 8.17, 14.17 and 34.17 at T9 = 0.7.

Therefore, these are bound to lead to an increase in the

beta decay rate in SMFs.

In summary, by analyzing the effect of an SMF on the

beta decay rates for nuclides 56Fe, 62Ni, 64Ni and 68Ni,

one can see that an SMF will exert different effects on the

beta decay rates for different density and temperature in the

surrounding region. Based on the Dirac δ-function and the

Pauli exclusion principle, we have derived new results on

the rates and discussed in detail the electron Fermi energy

in the magnetar surface. Our results show that an SMF can

decrease beta reaction rates by more than six orders mag-

nitude when 10 ≤ B12 ≤ 104.

4 CONCLUDING REMARK

By introducing the Dirac δ-function and Pauli exclusion

principle in the presence of SMFs, we have carried out an

estimation on the influence of an SMF on electron Fermi

energy in magnetars. Based on the model of relativistic

SMF theory, we investigate the beta decay processes of
56Fe, 62Ni, 64Ni and 68Ni in magnetars. The results show

that the beta rates can decrease by more than six orders of

magnitude in the presence of SMFs. The CREF will also

decrease by more than seven orders of magnitude when

1.0 ≤ B12 ≤ 104.

As is well known, the beta decay rates in an SMF are

quite relevant for numerical simulations of thermal evolu-

tion and magnetic field evolution for magnetars. The an-

tineutrino energy loss by beta decay reaction also plays an

important role in the process of magneto-thermal evolution

of magnetars. Our conclusions may be helpful for investi-

gation of the associated thermal evolution, the nucleosyn-

theses of heavy elements and numerical calculations and

simulation of NSs and magnetars.
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