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Abstract Cosmic opacity and its spatial distribution have been constrained with a model independent

method. The average opacity of the universe is not zero, but can be zero in the 1σ error range. The best-

fit value of the spatial distribution of cosmic opacity is not a constant as the redshift varies, though a

homogeneous and transparent universe is favored in the 2σ error range.
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1 INTRODUCTION

Etherington found the distance duality relation

(Etherington 1933)

DL = DA(1 + z)2, (1)

where DL is the luminosity distance and DA is the an-

gular diameter distance. There are two assumptions about

this relation, Lorentz invariance and constant photon num-

ber. Equation (1) is very important in cosmic observa-

tion (Cunha et al. 2007; Komatsu et al. 2011) because it

is independent of any cosmological model. New physics

may exist if Equation (1) has been violated (Csáki et al.

2002).

One can test Equation (1) directly using observational

data (Avgoustidis et al. 2010; Liao et al. 2015). However,

different observational data may give different results. For

example, combining the Union2 Type Ia supernova (SNIa)

and the elliptical galaxy cluster data (De Filippis et al.

2005) indicates that Equation (1) is satisfied in the 1σ error

range. However, Equation (1) is in accord with the 3σ error

range (Li et al. 2011; Bonamente et al. 2006).

A very plausible reason for the violation of

Equation (1) is that the universe is opaque. Cosmic opac-

ity may account for reduction of an SNIa’s (Aguirre 1999)

photon number. It is worth testing the opacity of the uni-

verse by observations. For this reason, a transparent uni-

verse (Avgoustidis et al. 2010; More et al. 2009) has

been found by baryon acoustic oscillation data (Percival

et al. 2007) and SNIa data (Davis et al. 2007), Hubble pa-

rameter (H(z)) data (Stern et al. 2010) and Union SNIa

data (Kowalski et al. 2008). In our previous work (Chen

et al. 2012), using the Union2 SNIa data (Amanullah et al.

2010) and the latest seven baryon acoustic oscillation data,

we discussed the transparency of the universe and found

that it might be spatially inhomogeneous, though the uni-

verse is still transparent in the 1σ error range. However, the

ΛCDM model must be assumed in our work, which means

that the result is model-dependent. Cosmic transparency is

also studied in Nair et al. (2012) and a result similar to ours

is obtained.

Recently, Holanda, Carvalho and Alcaniz (Holanda

et al. 2013) proposed a model-independent method to get

the true DL from Hubble data. Using the 12 Hubble param-

eter data and the Union2 SNIa data, they studied cosmic

transparency and found that a transparent universe is con-

sistent in the 2σ error range. We plan to examine the possi-

ble spatial variance of cosmic opacity using this model in-

dependent method. Since we use the latest 29 Hubble data

points (Zhang et al. 2014; Simon et al. 2005; Stern et al.

2010; Moresco et al. 2012; Gaztañaga et al. 2009; Jimenez

& Loeb 2002) and the latest Union2.1 SNIa data (Suzuki

et al. 2012), the constraint on cosmic opacity will also be

re-visited.

2 COSMIC OPACITY

It is well known that one can obtain observational DL from

SNeIa. Of course, the universe is supposed to be trans-

parent. So, the observational DL is equal to the true one

and can be used to probe cosmic expansion history (Suzuki

et al. 2012; Perlmutter et al. 1999; Riess et al. 1998).

However, in the universe there might be some reasons

for the photon number to decrease, which may make the

universe opaque. So, the true DL should be smaller than

the observed one. The relationship between the true DL

and the observed one (Chen & Kantowski 2009) is

D2
Ltrue

= D2
Lobs

e−τ(z). (2)

Here, DLobs
is obtained from SNeIa data. For a transpar-

ent universe, τ(z) is zero. Apparently, if one can deter-

mine DLtrue
, then cosmic opacity can be tested by SNeIa.

Because baryon acoustic oscillation is not affected by a

reduction in photon numbers, baryon acoustic oscillation

data have been used to test cosmic opacity and they found

that the transparent universe is constrained at the 2σ error
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range (More et al. 2009). Avgoustidis et al. used the Union

SNIa data and the Hubble parameter data to constrain cos-

mic transparency and found ∆τ < 0.012 at the 2σ error

level in 0.2 < z < 0.35 (Avgoustidis et al. 2010). But in

these works (Avgoustidis et al. 2010; More et al. 2009), a

ΛCDM model is required to derive DLtrue
.

We can obtain DL from the distance modulus data by

DL = e(µ−25)/5, (3)

and the true µ differs from the observed one

µtrue(z) = µobs(z) − (2.5 log e)τ(z). (4)

Recently, Holanda, Carvalho and Alcaniz (Holanda

et al. 2013) proposed a model-independent method to get

the true DL. Since the comoving distance Dc(z) is a direct

integration of 1/H(z′) with respect to z′ from 0 to z, they

obtained the Dc(z) data

Dc(z) ≈
c

2

N
∑

i=1

[

1

H(zi+1)
+

1

H(zi)

]

, (5)

where Hzi
is determined by the Hubble data. In Holanda

et al. (2013), 12 Hubble data points are used. The error is

si =
1

2
(zi+1 − zi)

(

σ2
Hi+1

H4
i+1

+
σ2

Hi

H4
i

)1/2

. (6)

Thus, the error associated with the integral described by

Equation (5) in the interval 0 − zn is
∑n

i=1 si. From 12

Hubble data, Holanda, Carvalho and Alcaniz obtained 12

corresponding values of Dc. Then, using DL = (1 + z)Dc

and the polynomial fit method, they obtained a smoothed

curve of DL. Since the Hubble data can be characterized

by

H(z) = −

dz
dt

1 + z
, (7)

they are independent of whether the universe is transpar-

ent or not. Thus, the obtained DL from the Hubble data

represents the true luminosity distance value. From the

smoothed curve of DL from the Hubble data, the corre-

sponding value of µtrue at a given SNIa data point can be

obtained. Using µobs from SNeIa and µtrue from Hubble

data, the constraint on ǫ (τ(z) = 2ǫz) can be determined.

For the Union2 SNIa sample, they find that a perfectly

transparent universe (ǫ = 0) is permitted in the 2σ error

range, with ǫ = 0.03 ± 0.02 at the 1σ confidence level.

Recently, 29 H(z) data points have been reported, so

we now have many more data points than what were con-

sidered in Holanda et al. (2013). With more Hubble data,

we hope to obtain a more precise curve of Dc.

In the left panel of Figure 1, we calculate DL

from the latest Hubble data, which are represented by

red stars. In the analysis, we take H0 = 73.8 ±

2.4 Mpc−1 km s−1 (Riess et al. 2011). For a comparison,

DL from the Union2.1 580 data sample is plotted. The

Union2.1 SNIa data set is an updated version of Union2.

Using the same method as used in Holanda et al. (2013),

we obtain a smoothed curve of DL and then get the corre-

sponding value of µtrue at the redshift of a given Union2.1

SNIa data point. By minimizing the following χ2 function

χ2 =
∑

zi

[

µobs(zi) − µtrue(zi) − 2.17ǫz
]2

σ2
µobs

+ σ2
µtrue

, (8)

we can estimate the likelihood distribution of ǫ. Here,

τ(z) = 2ǫz is considered, and σ2
µobs

and σ2
µtrue

are the er-

rors associated with the distance modulus from SNIa and

distance modulus from the Hubble data, respectively. The

result is displayed in the right panel of Figure 1. We find

ǫ = 0.0097± 0.0262± 0.0426 at the 1 and 2σ confidence

levels. Thus, perfect transparency is allowed at 1σ, which

means that the latest data support a transparent universe

more strongly.

3 SPATIAL HOMOGENEITY OF COSMIC

OPACITY

Although cosmic opacity as a whole is zero in the 1σ er-

ror range, a patchy spatial structure for cosmic opacity is

still possible. For example, using the seven baryon acous-

tic oscillations data and the Union2 data, we found that a

transparent universe is not preferred in 0.20 − 0.44 and

0.60 − 0.73 (Chen et al. 2012), although, at the 1σ con-

fidence level, the result supports a transparent universe.

However, the ΛCDM model is assumed since H(z) is un-

known when we derive DL from the baryon acoustic oscil-

lation data.

From the above results, one can see that the true value

of DL can be calculated in a model-independent way from

the H(z) data. Thus, if we use these data to reanalyze the

spatial homogeneity of cosmic opacity, a model indepen-

dent result can be obtained. This is what we are going to

do next.

Since the redshifts of some Hubble data are very close

to one another, we bin Dc if the redshift difference is less

than 0.01, by using the following method

Dc(z)bin =

∑

Dc(zi)/σ2
Dc(zi)

∑

1/σ2
Dc(zi)

, (9)

with σ2
Dc(z) being

σ2
Dc(z) =

1
∑

1/σ2
Dc(zi)

. (10)

In addition, Hubble data at redshift z = 1.43, 1.53 and

1.75 are discarded in our discussion because there are no

corresponding SNIa data at these redshifts. As a result, we

obtain 15 Dc data points and show their ratios in Table 1.

Here, the Union2.1 SNIa sample is used. To get the

Dc(z) data from µ(z), we bin all Union2.1 data in the re-

gion [z ± 0.005] and the formula used for calculation is

µbin
obs =

∑

µobsi/σ2
µobsi

∑

1/σ2
µobsi

, (11)
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Table 1 The Ratio of Comoving Distance Dc(z2)/Dc(z1)

Dc(0.12)
Dc(0.08)

Dc(0.175)
Dc(0.12)

Dc(0.2)
Dc(0.175)

Dc(0.24)
Dc(0.2)

Dc(0.275)
Dc(0.24)

1.5183 ± 0.2196 1.4465 ± 0.2755 1.1341 ± 0.2251 1.1853 ± 0.2120 1.1336 ± 0.1870

Dc(0.346)
Dc(0.275)

Dc(0.423)
Dc(0.346)

Dc(0.48)
Dc(0.423)

Dc(0.597)
Dc(0.48)

Dc(0.68)
Dc(0.597)

1.2333 ± 0.1956 1.1958 ± 0.1738 1.1128 ± 0.1668 1.2018 ± 0.2244 1.1222 ± 0.2243

Dc(0.73)
Dc(0.68)

Dc(0.781)
Dc(0.73)

Dc(0.885)
Dc(0.781)

Dc(1.3)
Dc(0.885)

1.0636 ± 0.2003 1.0571 ± 0.1923 1.0996 ± 0.1915 1.2692 ± 0.2029

Table 2 The SNIa Distance Modulus Difference

µobs(0.12) − µobs(0.08) µobs(0.175) − µobs(0.12) µobs(0.2) − µobs(0.175)

1.0699 ± 0.0668 0.8889 ± 0.0699 0.3003 ± 0.0855

µobs(0.24) − µobs(0.2) µobs(0.275) − µobs(0.24) µobs(0.346) − µobs(0.275)

0.2788 ± 0.1060 0.5028 ± 0.1033 0.5931 ± 0.0947

µobs(0.423) − µobs(0.346) µobs(0.48) − µobs(0.423) µobs(0.597) − µobs(0.48)

0.5877 ± 0.1213 0.2225 ± 0.1639 0.5420 ± 0.2042

µobs(0.68) − µobs(0.597) µobs(0.73) − µobs(0.68) µobs(0.781) − µobs(0.73)

0.6368 ± 0.2254 −0.1082 ± 0.2123 0.3800 ± 0.2031

µobs(0.885) − µobs(0.781) µobs(1.3) − µobs(0.885)

0.4679 ± 0.3033 0.7254 ± 0.3097

with σ2
µbin

obs

being

σ2
µbin

obs

=
1

∑

1/σ2
µobsi

. (12)

Here, σµobsi
is the uncertainty in the individual distance

modulus.

To find spatial distribution of the cosmic transparency,

we utilize the difference in distance modulus between red-

shifts z2 and z1

∆µobs = µobs(z2) − µobs(z1), (13)

rather than the distance modulus directly. Using

Equations (3) and (4), one has

∆µobs = ∆µtrue + 2.5∆τ log e, (14)

where

∆µtrue = 5 log
DLtrue

(z2)

DLtrue
(z1)

= 5 log
(1 + z2)Dc(z2)

(1 + z1)Dc(z1)
, (15)

and ∆τ = τ(z2) − τ(z1). If the transparency of the uni-

verse is homogeneous, ∆τ = 0. From the Union2.1 data

we find ∆µobs between different redshifts from the Hubble

data and show them in Table 2.

Now, we estimate the best-fit value for ∆τ by using

L ∝ e−χ2/2, with

χ2 = (∆µobs − ∆µtrue)
2/(σ2

obs + σ2
true). (16)

The obtained results are shown in Figure 2 and Table 3,

which demonstrate that in redshift regions 0.08 − 0.12,

Table 3 The Obtained ∆τ in Different Redshift Regions

Best fit value 1σ 2σ 3σ

∆τ0.08−0.12 0.077 0.207 0.495 0.785

∆τ0.12−0.175 0 0.326 0.653 0.918

∆τ0.175−0.2 0 0.346 0.694 0.917

∆τ0.2−0.24 0 0.264 0.572 0.857

∆τ0.24−0.275 0.157 0.230 0.537 0.762

∆τ0.275−0.346 0.018 0.266 0.575 0.839

∆τ0.346−0.423 0.072 0.234 0.521 0.805

∆τ0.423−0.48 0 0.254 0.555 0.836

∆τ0.48−0.597 0 0.346 0.713 0.937

∆τ0.597−0.68 0.255 0.254 0.602 0.734

∆τ0.68−0.73 0 0.265 0.593 0.898

∆τ0.73−0.781 0.181 0.268 0.634 0.798

∆τ0.781−0.885 0.128 0.321 0.687 0.835

∆τ0.885−1.3 0 0.306 0.653 0.919

0.24 − 0.423, 0.597 − 0.68 and 0.73 − 0.885, the best

fit value of ∆τ is larger than zero, while in other regions

∆τ = 0. Thus, the best-fit values of cosmic opacity are

not constant at different redshift, which is similar to our

previous result. In the 68% error range, ∆τ = 0 is in

accord with the observation except for the redshift region

0.597 − 0.68 where ∆τ = 0 is only permitted in the 95%
error range. Therefore, a homogeneous universe is still fa-

vored by observations.

Now we give a comparison with our previous results

obtained using the baryon acoustic oscillation data (Chen

et al. 2012) by finding ∆τ between redshift regions of the

baryon acoustic oscillation data, that is, 0.106− 0.2, 0.2−
0.35, 0.35− 0.44, 0.44− 0.57, 0.57− 0.6 and 0.6− 0.73.

The true values of DL and their corresponding errors at
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Fig. 1 Left: red stars show DL obtained from Hubble data. For a comparison, values of DL from the Union2.1 SNIa sample are plotted

as blue dots. The solid curve represents the second degree polynomial fit of red star points and the dashed curves are the corresponding

1σ errors. Right: likelihood function for ǫ.
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Fig. 2 The posterior probabilities of ∆τ .

these redshifts are obtained from the smoothed curves in

the left panel of Figure 1.

The results are given in Figure 3 and Table 4. We find

that a homogeneous universe is favored between redshift

ranges 0.106−0.2 and 0.44−0.6, while an inhomogeneous

one is favored at redshift ranges 0.2− 0.44 and 0.6− 0.73,

though in the 68% error range ∆τ = 0 is still permit-

ted. So, this conclusion is similar with that drawn from the

baryon acoustic oscillation data (Chen et al. 2012) and is

consistent with that given in Table 3.

4 CONCLUSIONS

In previous work (Chen et al. 2012), using the latest baryon

acoustic oscillation data and Union2 Ia SNIa data, we

Table 4 The ∆τ in Different Redshift Ranges of Seven Baryon
Acoustic Oscillation data

Best fit value 1σ 2σ 3σ

∆τ0.106−0.2 0 0.356 0.713 0.937

∆τ0.20−0.35 0.030 0.378 0.765 0.948

∆τ0.35−0.44 0.142 0.388 0.735 0.848

∆τ0.44−0.57 0 0.367 0.734 0.937

∆τ0.57−0.60 0 0.394 0.779 0.978

∆τ0.60−0.73 0.055 0.374 0.760 0.926

placed constraints on cosmic opacity between different

redshift regions. We find that the best-fit values of cosmic

transparency are not constant with redshift, although in the
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Fig. 3 The ∆τ in different redshift ranges of seven baryon acoustic oscillation data.

68% error range a transparent universe is still permitted.

However, a ΛCDM cosmological model is assumed, so the

results are model-dependent. Recently, Holanda, Carvalho

and Alcaniz (Holanda et al. 2013) proposed a model inde-

pendent method to obtain the true comoving distance from

12 Hubble data. Then they studied the constraint on cos-

mic opacity by assuming τ = 2ǫz using the Union2 SNIa

data and found that a transparent universe is allowed in the

95% error range.

We use the same model independent way as Holanda

et al. (2013) to obtain the true DL in this paper. Since we

now consider the latest 26 Hubble data and the Union2.1 Ia

supernova in our calculation, we first discuss the constraint

on cosmic opacity and find that ǫ = 0.0097± 0.0262 (1σ),

which means that the universe is transparent according to

observations in the 68% error range. Then we study the

spatial distribution of cosmic opacity. By binning the ob-

tained µ at the redshift of Hubble data within the redshift

ranges ∆z < 0.01 and discarding three high redshift co-

moving distance data points since the corresponding SNIa

data are absent, 14 different redshift regions are obtained.

The results in these redshift regions show that the cosmic

transparency’s best fit value also is not constant at differ-

ent redshift and ∆τ = 0 is still permitted in the 68% error

range except for the redshift region 0.597 − 0.68.

We then give a comparison with our previous results

obtained using the baryon acoustic oscillation data (Chen

et al. 2012) by finding ∆τ between redshift regions of the

baryon acoustic oscillation data. We first find the comov-

ing distance at the redshifts of baryon acoustic oscillation

data and then study cosmic transparency. A similar result

to that from the baryon acoustic oscillation data is found.

The cosmic transparency’s best fit value is not zero in the

redshift range 0.106−0.20 and 0.44−0.60, but it is zero in

0.20−0.44 and 0.60−0.73. In the 68% error range, the uni-

verse is homogeneous according to observational results.

Since the results obtained in this paper and our previous

work show that the best fit values for cosmic transparency

are not constant at different redshift, a patchy spatial struc-

ture for cosmic opacity seems to be allowed by current ob-

servations, although a homogeneous and transparent uni-

verse remains in accord with observational data in the 68%
error range.
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