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Abstract As the first step in relativistic time transfer for a Mars lander from its proper time to the time scale

at the ground station, we investigate the transformation between proper time and Areocentric Coordinate

Time (TCA) in the framework of IAU Resolutions. TCA is a local time scale for Mars, which is analogous

to the Geocentric Coordinate Time (TCG) for Earth. This transformation contains two contributions: inter-

nal and external. The internal contribution comes from the gravitational potential and the rotation of Mars.

The external contribution is due to the gravitational fields of other bodies (except Mars) in the Solar System.

When the (in)stability of an onboard clock is assumed to be at the level of 10−13, we find that the internal

contribution is dominated by the gravitational potential of spherical Mars with necessary corrections asso-

ciated with the height of the lander on the areoid, the dynamic form factor of Mars, the flattening of the

areoid and the spin rate of Mars. For the external contribution, we find the gravitational effects from other

bodies in the Solar System can be safely neglected in this case after calculating their maximum values.
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1 INTRODUCTION

For deep space missions, synchronization between the

clock onboard a space vehicle and a clock on the ground

plays a crucial role in control, navigation and scientific op-

eration. In such a procedure of time transfer, Einstein’s

general relativity (GR) has “long since passed from the

realm of theoretical physics to the realm of engineering

design” (Nelson 2011). It is worth mentioning that we are

now in the centenary of GR (e.g. Iorio 2015). According

to the principles of GR, different kinds of times, which are

proper times and coordinate times, should be used in or-

der to replace Newton’s absolute time (Misner et al. 1973;

Landau & Lifshitz 1975).

The proper time τ is defined by the readings of an ideal

clock. τ is an observable and is only associated with the

clock itself. Nevertheless, an atomic clock, which is widely

used on the ground and in space, departs from the ideal

case. The coordinate times cannot be measured directly,

but they might be used as variables in the equations of mo-

tion of celestial and artificial bodies and light rays. The co-

ordinate times are connected with the proper time through

a four-dimensional spacetime interval, which significantly

changes the method used for clock synchronization and

time transfer (Petit & Wolf 2005; Nelson 2007, 2011).

Experiments involving time/frequency transfer might also

be used for testing theories of gravity (Samain 2002;

Cacciapuoti & Salomon 2009; Wolf et al. 2009; Christophe

et al. 2009; Schiller et al. 2009; Christophe et al. 2012;

Deng & Xie 2013a,b, 2014; Zhang et al. 2014; Xie &

Huang 2015; Hees et al. 2014; Angélil et al. 2014; Delva

et al. 2015; Deng 2016). There are other performed or

proposed tests of GR and non-Newtonian gravity that use

existing or proposed orbiters (Iorio 2006, 2009, 2010;

Turyshev et al. 2010; Le Poncin-Lafitte 2011; Dirkx et al.

2016; Oberst et al. 2012).

Relativistic time transfers in various contexts, such as

in the vicinity of Earth (Klioner 1992; Petit & Wolf 1994;

Wolf & Petit 1995; Petit & Wolf 1997; Kouba 2002, 2004;

Petit & Wolf 2005; Nelson 2007, 2011; Xie 2016) and in

the Solar System (Nelson 2007; Minazzoli & Chauvineau

2009; Nelson 2011; Deng 2012; Hees et al. 2012; Pan

& Xie 2013, 2014, 2015; Deng 2015; Dirkx et al. 2015,

2016), have been intensively studied and discussed. In

those contexts, one clock is onboard a satellite or an or-

biter and the other one is on the ground. In the present and

following works, we will consider the time transfer from a

Mars lander to a ground clock and discuss its algorithm for

computation, where the relativistic effects are fully taken

into account.

In the procedure of time transfer for a Mars lan-

der, some reference systems and time scales are needed
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in light of the International Astronomical Union (IAU)

2000 Resolutions for general relativistic reference systems

(Soffel et al. 2003). The lander is locally in the grav-

itational field of Mars so that the Areocentric Celestial

Reference System (ACRS) has to be introduced to de-

scribe the motion and transmission of signals by the lan-

der. The time coordinate of the ACRS is the Areocentric

Coordinate Time (TCA). The ACRS and the TCA are re-

spectively analogous to the Geocentric Celestial Reference

System (GCRS) and the Geocentric Coordinate Time

(TCG) (Soffel et al. 2003), which are used to characterize

events that happen in the vicinity of Earth. In order to con-

nect these two local reference systems, we need a global

reference system, the Solar System Barycentric Celestial

Reference System (BCRS), and its time coordinate, the

Barycentric Coordinate Time (TCB), which can be used

to model light propagation and the motion of bodies in

the Solar System (Soffel et al. 2003). According to IAU

2006 Resolution B2 1, the BCRS is assumed to be oriented

according to the International Celestial Reference System

(ICRS) axes and the orientation of the GCRS is derived

from the ICRS-oriented BCRS. Following this resolution,

we also define that the orientation of the ACRS is derived

from the ICRS-oriented BCRS and the ACRS is kinemat-

ically nonrotating with respect to the BCRS. It means that

the orientation of the ACRS is the same as that of the ICRS

(BCRS).

For such a relativistic time transfer from the lander to

the ground station, several steps are involved:

(1) Transformation from the proper time τ of the clock

onboard a Mars lander to TCA;

(2) Transformation from TCA to TCB;

(3) Transformation from TCB to TCG;

(4) Transformation from TCG to the time scale of a clock

on the ground;

(5) Take the flight time of light into account for synchro-

nization of the clocks.

Steps 3 and 4 are well known and the standard proce-

dures under the framework of IAU 2000 Resolutions can

be found in Soffel et al. (2003) and references therein. In

this investigation, we will focus on step 1, which is related

to the transformation from τ to TCA. Steps 2 and 5 will be

left to our future works.

In addition to the principles of GR, limits of current

and near future techniques also have to be taken into ac-

count. One main factor is (in)stability of the onboard clock.

In the case of the two Voyager missions, the phase stabil-

ity of their onboard ultrastable oscillators (USOs) is σy =
5×10−12 at a 1 s time interval for Allan deviation (Marouf

et al. 1986). Cassini’s USO is over ten times better than

Voyager’s with an Allan deviation of σy = 2×10−13 at 1 s

(Kliore et al. 2004). The New Horizons spacecraft carries

two USOs, each of which is an ovenized crystal oscillator.

Its short-term frequency stability σy at 1-second and 10-

second intervals is respectively better than 3 × 10−13 and

1 https://www.iau.org/static/resolutions/IAU2006 Resol2.pdf

2 × 10−13 (Fountain et al. 2008). Based on these techni-

cal facts, we assume that the stability of the clock onboard

the Mars lander, which we consider in our investigation, is

at the level of 10−13 and we will neglect all contributions

smaller than this threshold.

The rest of this paper is organized as follows. Section 2

is devoted to modeling the time transfer between τ and

TCA. This transformation has two parts: internal and ex-

ternal contributions, which will be respectively examined

in Sections 3 and 4. Finally, in Section 5, we summarize

our results.

2 TRANSFORMATION BETWEEN τ AND TCA

In the framework of IAU 2000 Resolutions (Soffel et al.

2003), the ACRS needs to be constructed to describe events

in the vicinity of Mars and it has its own time coordinate

TCA. The underlying principles for such a construction

and the mathematical description of the reference system

are very similar to those of the GCRS and TCG (Soffel

et al. 2003). Following the standard procedure for time

transfer (Wolf & Petit 1995; Petit & Wolf 1997), we can

describe the transformation between the proper time τ of

the clock onboard a Mars lander and TCA, T
♂

, as

dτ

dT
♂

= 1 − ǫ2(F
♂

+ F̄
♂

) + O(ǫ4), (1)

where the internal contribution F
♂

and external one F̄
♂

are

F
♂

= U
♂

(X) +
1

2
V 2, (2)

F̄
♂

= Ū
♂

(x
♂

+ X) − Ū
♂

(x
♂

)

−X · ∇Ū
♂

(x
♂

) + X · Q
♂
. (3)

Here, ǫ = c−1 and c is the speed of light; U
♂

(X) is the

Newtonian gravitational potential of Mars evaluated at the

position of the lander, X; V is the velocity of the lander

in the ACRS; Ū
♂

(x) is the Newtonian gravitational po-

tential of external masses (except Mars) evaluated at the

coordinate x; x
♂

is the coordinate of the areocenter in the

BCRS; the Q
♂

term is related to the 4-acceleration of the

areocenter in the external gravitational field due to its mass

quadrupole.

For the internal contribution (2), F
♂

depends on the

gravitational potential of Mars U
♂

. Mars is not a spher-

ically symmetric body in the gravitational and geometric

senses. For the gravitational potential of Mars, its devia-

tion from the potential of a point mass can be character-

ized by the coefficients of the spherical harmonic expan-

sion of U
♂

. For the geometric position of an event close

to Mars’ surface, the deviation from a spherical body will

make its areodetic coordinates different from its areocen-

tric ones, which can be described by the flattening of the

areoid. F
♂

also depends on the local velocity of the lander

V . If we assume the lander stays at its landing site with-

out any motion, its velocity is mainly determined by the
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diurnal rotation of Mars. The velocity has small additional

contributions from precession, nutation and the change in

obliquity of Mars. Although the high-order non-spherical

parts of the gravitational potential and the areoid of Mars

are believed to be small and might be neglected, a detailed

assessment is required. This is also true for the small con-

tributions from the velocity of the lander; see Section 3 for

a detailed investigation.

For the external contribution (3) in the time trans-

fer, F̄
♂

depends on the gravitational fields of the exter-

nal bodies. It was shown by Wolf & Petit (1995) that, in

the case of time transfer for a satellite around Earth at

height 3× 105 km, the contributions of the Moon, Sun and

Venus can be greater than the level of 10−18. It was also

found (Kouba 2004) that, at a pico-second (ps) precision

level or an inaccuracy in frequency of 10−16, the effects

of external masses can be neglected in the time transfer

associated with the Global Positioning System (GPS). In

Section 4, we will calculate the effects of the Sun, other

planets, Pluto, the three most massive asteroids and the

Martian satellites on the external part of time transfer F̄
♂

.

3 INTERNAL CONTRIBUTION TO TIME

TRANSFER

The internal contribution can further be divided into two

parts: the gravitational potential of Mars and the local ve-

locity of the lander. If the lander is static with respect to

Mars’ surface, then its local velocity is totally determined

by the rotation of Mars, including the diurnal changes, pre-

cession, nutation and the change in obliquity of Mars.

3.1 Gravitational Potential of Mars

The gravitational potential of Mars U
♂

can be represented

as a spherical harmonic expansion, which reads as (e.g.

Torge 1991; Hofmann-Wellenhof & Moritz 2005)

U
♂

=
GM

♂

R
+
GM

♂

R

∞
∑

n=2

∞
∑

m=0

(

Re
R

)n

× P̄nm(sinϕ)

× [C̄nm cos(mλ) + S̄nm sin(mλ)].
(4)

Here,GM
♂

is the gravitational constant times the mass of

Mars; n is the degree,m is the order, P̄nm are the fully nor-

malized associated Legendre polynomials; C̄nm and S̄nm
are dimensionless Stokes coefficients which are fully nor-

malized; ϕ is the areocentric latitude, and λ is the longi-

tude (east positive); Re is the reference radius of a spher-

ical Mars; and R = |X | is the areocentric distance. The

fully normalized associated Legendre functions P̄nm can

be computed from the conventional associated Legendre

functions Pnm by (Torge 1991)

P̄nm =

√

k(2n+ 1)
(n−m)!

(n+m)!
Pnm,

where k =

{

1 for m = 0

2 for m 6= 0
.

(5)

In this work, the numerical values of the Stokes coeffi-

cients are taken from the Goddard Mars Model 3 (GMM-3)

(Genova et al. 2015, 2016a,b), which was recently released

and provides the static gravity field of Mars in spheri-

cal harmonics. It was calculated using the Deep Space

Network tracking data of the NASA Mars missions: Mars

Global Surveyor (MGS), Mars Odyssey (ODY) and the

Mars Reconnaissance Orbiter (MRO). GMM-3 shows im-

proved correlations with Mars topography up to 15% larger

at higher harmonics than previous solutions.

Table 1 lists the parameters and the leading Stokes co-

efficients of GMM-3 (Genova et al. 2016b); Table 2 shows

the parameters of the areoid derived from GMM-3 (Genova

et al. 2016b). The whole data set of GMM-3 can be ac-

cessed from the Planetary Data System (PDS) Geosciences

Node 2.

Since the lander is on the surface of Mars, its R is

very close to the semi-major axis of the areoid a so that

we define two quantities to evaluate contributions of the

leading Stokes coefficients in Table 1:

UC̄nm

≡ GM
♂

c2a
P̄nm(sinϕ)C̄nm cos(mλ), (6)

US̄nm

≡ GM
♂

c2a
P̄nm(sinϕ)S̄nm sin(mλ), (7)

where, based on the quantities given in Tables 1 and 2, we

use the relation that Re = a and we can have

GM
♂

c2a
= 1.40320941× 10−10. (8)

Table 3 shows the contributions of the leading Stokes co-

efficients. It can be easily found that only the contribution

of C̄20 in the time transfer can be larger than the threshold

of 10−13.

More specifically, the position of the lander can be

conventionally characterized by the areodetic coordinates:

the longitude λ, the areodetic latitude ϕg and the areode-

tic height h with respect to the areoid. When the flatten-

ing f of the areoid is taken into account, it is well known

that (Torge 1991; Hofmann-Wellenhof & Moritz 2005;

Kovalevsky & Seidelmann 2004)

R2 = a2

{(

C+
h

a

)2

cos2 ϕg+

[

C(1−f)2+
h

a

]2

sin2 ϕg

}

,

(9)

where the areocentric latitude ϕ is related to the areodetic

latitude ϕg by tanϕ = (1 − f)2 tanϕg , and the interme-

diate function C is

C =

[

cos2 ϕg + (1 − f)2 sin2 ϕg

]−1/2

. (10)

Considering that the flattening f is about 5 × 10−3

(see Table 2), we can safely ignore the Stokes coefficients

2 http://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-

v1/mrors 1xxx/
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Table 1 Parameters and Leading Stokes Coefficients of GMM-3

Parameter Value

Reference radius Re 3.3960 × 106 m

Gravitational constant times mass GM
♂

4.2828372854187757 × 10
13 m3 s−2

Dynamic form factor J2 ≡ −
√

5C̄20 1.9566067336935673 × 10
−3

Stokes coefficient C̄20 −8.7502113235452894 × 10
−4

Stokes coefficient C̄21 5.9031495993080755 × 10−10

Stokes coefficient S̄21 −4.9433617424482412 × 10
−11

Stokes coefficient C̄22 −8.4635903869414677 × 10−5

Stokes coefficient S̄22 4.8934625860229178 × 10−5

Stokes coefficient C̄30 −1.1896034897013901 × 10
−5

Stokes coefficient C̄40 5.1294072971513378 × 10−6

Stokes coefficient C̄50 −1.7266823981571990 × 10−6

Notes: The complete set of Stokes coefficients associated with GMM-3 can be accessed from the

PDS Geosciences Node.

Table 2 Areoid Derived from GMM-3

Parameter Value

Semi-major axis a 3.3960 × 106 m

1/Flattening 1/f 196.877360
Rotation rate ω 7.088218066303858 × 10

−5 rad s−1

Notes: A digital map of the areoid can be accessed from the PDS

Geosciences Node.

Table 3 Contributions of the Leading Stokes Coefficients UC̄nm

and US̄nm

Contribution Min Max

UC̄20
−2.74553 × 10

−13
1.37276 × 10

−13

UC̄21
−1.60406 × 10−19 1.60406 × 10−19

US̄21
−1.34326 × 10−20 1.34326 × 10−20

UC̄22
−2.29981 × 10

−14
2.29981 × 10

−14

US̄22
−1.32970 × 10−14 1.32970 × 10−14

UC̄30
−4.41645 × 10−15 4.41645 × 10−15

UC̄40
−9.25410 × 10

−16
2.15929 × 10

−15

UC̄50
−8.03584 × 10−16 8.03584 × 10−16

beyond C̄20 and keep f to its linear order for a time transfer

accuracy of 10−13 so that

U
♂

≈ GM
♂

a

[

1− h

a
+

1

2
J2(1− 3 sin2 ϕg) + f sin2 ϕg

]

,

(11)

where J2 is the dynamic form factor of Mars and J2 ≡
−
√

5C̄20. We also assume that h/a ∼ J2 ∼ f , which

means h can range between ±1.7 × 104 m.

The spherical harmonic expansion (4) and the above

calculations refer to the Mars-fixed reference frame whose

X ′ − Y ′ plane coincides with the true equator of Mars

and the Z ′ axis points along the planet’s symmetry axis.

This Mars-fixed reference frame is connected to ACRS by

the rotation model of Mars, which will be discussed in the

next subsection. Areocentric distances remain invariant in

these two reference systems. However, real data processing

should be performed in a coordinate system like ICRS by

employing the Earth’s equator at a reference epoch. Thus,

in principle, more general formulae should be adopted and

developed. This has been done partially so far for orbiting

bodies (Iorio et al. 2011; Renzetti 2013, 2014a). Following

these works, we can estimate the effect of departure from

alignment of Mars’ rotation axis with the coordinate axis

Z ′ by replacing ϕg with arccos(k̂ · R̂), where k̂ is the

unit vector representing the rotation axis of Mars, which

is not aligned along the Z ′ axis. The leading contribution

makes Equation (11) independent of the areodetic latitude

but keeps the numerical values unchanged. Furthermore,

the even zonal multipoles also have an impact in tests of

relativistic gravity with orbiters (Iorio et al. 2011, 2013;

Renzetti 2014b, 2015).

3.2 Rotation of Mars

Since the lander is assumed to be static with respect to the

surface of Mars, its local velocity is determined by the ro-

tation of Mars, which is described by the relation between

the Mars-fixed reference system and the ACRS. The Mars-

fixed reference system adopted in GMM-3 (Genova et al.

2016b) is described by Konopliv et al. (2006). The prime

meridian of the Mars-fixed coordinate is chosen so that it
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matches the prime meridian of the IAU 2000 coordinate

system to about 20 cm. The rotation from Mars body-fixed

position X ′ to the ICRS (ACRS) position X is (Konopliv

et al. 2006)

X = Rz(−N)Rx(−J)Rz(−ψ)Rx(−I)Rz(−φ)X ′,
(12)

where the angle N is from the vernal equinox (node of the

mean ecliptic plane or Earth mean orbit of J2000 and the

ICRS x− y plane) to the node of the Mars mean orbit and

ICRS x − y plane; J is the inclination of Mars’ mean or-

bit relative to the ICRS x − y plane; ψ is the angle from

the node of Mars’ mean orbit and the ICRS x − y plane

to the node of Mars’ true equator of date and Mars’ mean

orbit; I is the inclination of Mars’ true equator of date rel-

ative to Mars’ mean orbit; φ is the spin angle from the

node of Mars’ true equator of date and Mars’ mean orbit

to the prime meridian of Mars. It is worth mentioning that

the Barycentric Dynamical Time (TDB) is usually taken as

the time coordinate in the rotational elements for planets

and satellites in the Solar System, such as in the report of

the IAU Working Group on Cartographic Coordinates and

Rotational Elements (Archinal et al. 2011). Theoretically,

TDB has a different rate than TCA.

Like the fact that the orientation and rotation of the

Earth is changing due to its precession, nutation and obliq-

uity, the angles ψ and I are also directly affected by the

nutation of Mars. According to the rotation model of Mars

given by Konopliv et al. (2006), we can have

ψ(T ) = ψ0 + ψ̇0T + ψnut,

I(T ) = I0 + İ0T + Inut,
(13)

where T is the time past the J2000 epoch in TDB and the

overdot means derivative with respect to T ; the terms ψnut

and Inut are the nutation corrections of Mars; ψ0 and I0 are

constant angle values at the J2000 epoch, ψ̇0 is a constant

that equals the precession rate for Mars, and İ0 is a con-

stant equal to the secular change in the obliquity of Mars

(orbit inclination) relative to the mean orbit of Mars. The

nutation corrections in longitude and obliquity are given

by (Reasenberg & King 1979)

ψnut =
∑

m

ψm sin(αmT + θm), (14)

Inut = I00 +
∑

m

Im sin(αmT + θm), (15)

where I00 is a small constant correction to the nutation

in obliquity, αm is related to the mean motion of Mars,

and θm is associated with the mean anomaly of Mars and

the argument of perihelion of the Mars orbit relative to the

node defined by Mars’ equator and its mean orbit. Finally,

the spin angle φ is defined as (Reasenberg & King 1979)

φ(T ) = φ0 + φ̇0T − ψnut cos I, (16)

where φ0 is the constant value at epoch J2000 and φ̇0

is the spin rate of Mars. Values of the orientation angles

mentioned above are taken from the currently released

MRO120D solution (Konopliv et al. 2016) and are listed

in Table 4. It is obvious that the spin rate is much bigger

than the precession rate and the secular change of obliq-

uity, i.e.,

|φ̇0| ≫ |ψ̇0| ≫ |İ0|. (17)

With the rotation model of Mars (12), we can obtain

the velocity of the lander in the ACRS as

V ≡ dX

dT
= −(φ̇0Rφ + ψ̇0Rψ + İ0RI)X

′, (18)

where X ′ ≡ (X ′, Y ′, Z ′)T is the position of the lander
in the Mars-fixed reference system; the quantities Rφ, Rψ
and RI are defined as

Rφ ≡ Rz(−N)Rx(−J)Rz(−ψ)Rx(−I)D(Rz)(−φ), (19)

Rψ ≡ Rz(−N)Rx(−J)D(Rz)(−ψ)Rx(−I)Rz(−φ), (20)

RI ≡ Rz(−N)Rx(−J)Rz(−ψ)D(Rx)(−I)Rz(−φ), (21)

and the operator D is defined as

D(Ra)(A) ≡ d

dθ
Ra(θ)

∣

∣

∣

∣

θ=A

, a = x, y, z. (22)

Therefore, we can further have that

V 2 =V 2

φ̇2

0

+ V 2

φ̇0ψ̇0

+ V 2

φ̇0 İ0

+ O(ψ̇2

0 , İ
2

0 , ψ̇0İ0, φ̇
3

0, φ̇
2

0ψ̇0, φ̇
2

0İ0),
(23)

where only the leading terms containing the spin rate φ̇0

are kept and they are

V 2

φ̇2

0

= φ̇2

0(X
′2 + Y ′2), (24)

V 2

φ̇0ψ̇0

= 2φ̇0ψ̇0(cos I0X
′2 − sin I0 sinφ0X

′Z ′

+ cos I0Y
′2 − sin I0 cosφ0Y

′Z ′), (25)

V 2

φ̇0İ0
= 2φ̇0İ0(− cosφ0X

′ + sinφ0Y
′)Z ′. (26)

Here, V 2

φ̇2

0

is the pure contribution from the spin rate of

Mars; V 2

φ̇0ψ̇0

comes from the coupling between the spin

rate and the precession rate; and V 2

φ̇0İ0
is the coupling

between the spin rate and the secular change of obliq-

uity. Before detailed calculation, it can be expected that

|V 2

φ̇2

0

| ≫ |V 2

φ̇0ψ̇0

| ≫ |V 2

φ̇0İ0
|. Considering the flattening

of the areoid that gives (Torge 1991; Hofmann-Wellenhof

& Moritz 2005; Kovalevsky & Seidelmann 2004)

X ′ = a

(

C +
h

a

)

cosϕg cosλ, (27)

Y ′ = a

(

C +
h

a

)

cosϕg sinλ, (28)

Z ′ = a

[

C(1 − f)2 +
h

a

]

sinϕg, (29)

we can obtain explicit expressions for these three terms as

V 2

φ̇2

0

= φ̇2

0a
2 cos2 ϕg

(

1 + 2f sin2 ϕg + 2
h

a

)

, (30)
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V 2

φ̇0ψ̇0

= 2φ̇0ψ̇0a
2 cosϕg ×

{

g + 2f sinϕg[g sinϕg

+ sin I0 sin(λ+ φ0)] + 2g
h

a

}

, (31)

V 2

φ̇0İ0
= −φ̇0İ0a

2 sin 2ϕg cos(λ+ φ0)

×
(

1 − 2f cos2 ϕg + 2
h

a

)

, (32)

where we only keep the leading terms of f and h/a and we

define the quantity g as

g = cos I0 cosϕg − sin I0 sinϕg sin(λ + φ0). (33)

It can be easily found that the term φ̇2
0a

2 cos2 ϕg in V 2

gives the largest contribution due to the rotation of Mars so

that

1

2
V 2 ≈ 1

2
φ̇2

0a
2 cos2 ϕg

= 3.22548× 10−13 cos2 ϕg, (34)

which is the only term that can reach the level of 10−13

for the time transfer. In order to verify this, we define two

indicators to show the contribution of the other parts of V 2

to the time transfer: one is

δ ≡ 1

2
(V 2 − φ̇2

0a
2 cos2 ϕg), (35)

and the other is its cumulative contribution in one year

∆ ≡
∫ T2

T1

δdT, (36)

where T1 is the start time of the lander mission set as 2023

Jan 1; T2 is the end time set as 2024 Jan 1. Figure 1 shows

the color-indexed logarithmic values of |δ| (left column)

and |∆| (right column) for the ratio of h/a being −10−3

(top panels), 0 (middle panels) and 10−3 (bottom panels).

It is found that the largest value of |δ| is at the level of

about 10−15 and its cumulative contribution in a year is

about 10−8 s.

Finally, it is necessary to transform the time coordinate

of the rotation model from TDB to TCA. Following the

IAU 2000 Resolutions, we can have, up to the leading order

for the lander (Soffel et al. 2003; Yang et al. 2014),

dTCA

dTCB
= 1 − ǫ2

[

v2

♂

2
+ Ū

♂
(x

♂
) + a

♂
· X + v

♂
· V

]

+O(ǫ4). (37)

After a rough estimation, we obtain

dTCA

dTCB
≈ 1 − 1 × 10−8. (38)

A more detailed investigation on this transformation

will be left to our next work. According to IAU 2006

Resolution B3 3, it is defined that

dTDB

dTCB
≈ 1 − 1.5 × 10−8. (39)

3 https://www.iau.org/static/resolutions/IAU2006 Resol3.pdf

Combing them together, we can have an estimation of

dTDB

dTCA
≈ 1 − 5 × 10−9, (40)

so that the effect of the transformation from TDB to TCA

when using Equation (34) is much smaller than 10−13

since its leading term is just slightly above this threshold.

3.3 Summary of Internal Contribution

Collecting all terms bigger than the threshold of 10−13 for

the time transfer, we can write a practical expression for

the internal contribution as

F
♂

= U
♂

(X) +
1

2
V 2

≈
GM

♂

a

[

1 − h

a
+

1

2
J2(1 − 3 sin2 ϕg) + f sin2 ϕg

]

+
1

2
φ̇2

0a
2 cos2 ϕg, (41)

which is dominated by the gravitational potential of Mars

as a point mass and includes the leading term in the ratio of

height to semi-major axis of the areoid h/a, the dynamic

form factor J2, the flattening f and the spin rate φ̇0.

4 EXTERNAL CONTRIBUTION

For the external contribution in the time transfer, we

mainly follow the approach of Wolf & Petit (1995). Since

the distances from the external bodies to the lander are

much larger than their characteristic sizes, these bodies can

be approximated as point masses up to leading order so that

Ū
♂

=
∑

A6=♂

GMA

rA
, (42)

where MA is the mass of body A, rA is the coordinate dis-

tance between the lander and the center of mass of body

A, and the summation is over all celestial bodies of inter-

est. Therefore, the first three terms in Equation (3) can be

expressed as

F̄Ū
♂

≡ Ū
♂

(x
♂

+ X) − Ū
♂

(x
♂

) − X · ∇Ū
♂

(x
♂

)

=
∑

A6=♂

GMA

[

1

rLA

− 1

r
♂A

+
X · r

♂A

r3
♂A

]

, (43)

where rLA = rL − rA is the vector from body A to the

lander and rLA = |rLA|; r
♂A

= r
♂

− rA is the vector

from body A to Mars and r
♂A

= |r
♂A

|. Because of the

relation that

rLA = (rL−r
♂

)−(rA−r
♂

) = r
♂A

+X+O(ǫ2) (44)
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Table 4 Values of the Orientation Angles from MRO120D

Parameter Value Unit

N 3.37919183 deg

J 24.67682669 deg

ψ0 81.9683988 deg

ψ̇0 −7608.3 mas yr−1

I0 25.1893823 deg

İ0 −2.0 mas yr−1

φ0 133.386277 deg

φ̇0 350.891985307 deg d−1
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Fig. 1 Color-indexed logarithmic values of |δ| and |∆| are respectively shown in the left and right columns for the ratio of h/a being

−10−3 (top panels), 0 (middle panels) and 10−3 (bottom panels).
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Table 5 Estimation of Maximum Values of F̄A, |Q
♂
| and ǫ2X ·

Q
♂

for Solar System Bodies

Object max(F̄A) max(|Q
♂
|) (m s−2) max(ǫ2X · Q

♂
)

Sun 1.2 × 10−18 3.3 × 10−15 1.3 × 10−25

Mercury 4.9 × 10
−25

1.8 × 10
−21

6.7 × 10
−32

Venus 2.0 × 10−23 1.1 × 10−19 4.0 × 10−30

Earth 9.5 × 10−23 7.1 × 10−19 2.7 × 10−29

Mars — — —

Jupiter 8.4 × 10
−23

9.4 × 10
−20

3.5 × 10
−30

Saturn 2.4 × 10−24 1.2 × 10−21 4.7 × 10−32

Uranus 3.4 × 10−26 8.0 × 10−24 3.0 × 10−34

Neptune 9.5 × 10
−27

1.4 × 10
−24

5.2 × 10
−35

Pluto 5.9 × 10−40 6.4 × 10−38 2.4 × 10−48

Ceres 1.1 × 10−27 3.6 × 10−24 1.4 × 10−34

Vesta 1.0 × 10
−27

4.9 × 10
−24

1.8 × 10
−34

Pallas 2.4 × 10−28 8.0 × 10−25 3.0 × 10−35

Phobos 9.4 × 10−20 6.3 × 10−12 2.4 × 10−22

Deimos 8.1 × 10
−22

2.1 × 10
−14

8.0 × 10
−25

“Planet Nine” 3.8 × 10
−31

2.2 × 10
−30

8.6 × 10
−41

and |X| ≪ |r
♂A

|, we can have

1

rLA

=
1

|r
♂A

+ X| + O(ǫ2)

=
1

r
♂A

−
X · r

♂A

r3
♂A

+
1

2r3
♂A

[

3
(X · r

♂A
)2

r2
♂A

−X2

]

+O
(

ǫ2,
X3

r3
♂A

)

, (45)

where we neglect the terms of order higher than X2.

Substituting the above equation into Equation (43) and us-

ing Love numbers k2 and h2 to characterize the response

of Mars to the tidal potential (the solid Mars tide), we can

obtain that

F̄Ū
♂

= (1 + k2 − h2) ×
∑

A6=♂

[

GMA

2r3
♂A

X2

(3 cos2 θA − 1) + O
(

ǫ2,
X3

r3
♂A

)]

≤ (1 + k2 − h2)
∑

A6=♂

[

GMA

r3
♂A

X2

+O
(

ǫ2,
X3

r3
♂A

)]

, (46)

where X can be taken as the radius of Mars for the lander

and the angle θA is defined as

θA ≡ arccos

(

X · r
♂A

Xr
♂A

)

, (47)

and 1 + k2 − h2 = 0.86 (Konopliv et al. 2011).

In order to estimate the contribution of F̄Ū
♂

in the

time transfer of the lander, we define an indicator for body

A in the Solar System as

F̄A ≡ (1 + k2 − h2)
GMA

c2r3
♂A

a2, (48)

whose maximum values for the Sun, the other planets (ex-

cept Mars), Pluto, the three largest main-belt asteroids and

the Martian satellites are estimated and listed in the second

column of Table 5. In this table, we also include the contri-

bution of a putative trans-Plutonian super-Earth body, also

called “Planet Nine,” whose existence is currently a lively

debate (Batygin & Brown 2016; Brown & Batygin 2016;

Mustill et al. 2016; Iorio 2012, 2014). It is clear that none

of them can reach the level of 10−13.

The last term we need to take care of is the last term

in Equation (3). The Q
♂

term is associated with the accel-

eration of the areocenter in the external gravitational field

due to its mass quadrupole. For the Earth, its |Q⊕| term is

estimated to be on the order of 4× 10−11 m s−2 due to the

Moon (Kopejkin 1991). By making use of equation (22)

in Kopejkin (1991), we estimate the maximum values of

|Q
♂
| and ǫ2X · Q

♂
for the lander due to various bodies

in the Solar System, and these estimations are listed in the

third and fourth columns of Table 5 respectively. As we ex-

pect, their contributions in the time transfer are extremely

small.

In summary, for the time transfer of the Mars lan-

der from the proper time to TCA, if the threshold of

(in)stability is set as 10−13, then all of the contributions

from the external bodies can be safely neglected.

5 CONCLUSIONS

Currently, Einstein’s GR has become an inseparable aspect

of the procedure for computing time transfer and time syn-

chronization in deep space missions. In the framework of

the IAU Resolutions, we investigate the first step in calcu-

lating the time transfer for a Mars lander: from its proper

time to TCA. From the perspective of practice, we assume

that (in)stability of the clock onboard the lander is at the

level of 10−13 based on facts related to previous deep space

missions.

This relativistic time transformation can be divided

into two parts: internal and external. The internal one con-

tains the contributions of Mars itself, including its grav-

itational potential and rotation. Beyond the spherical ap-

proximation of Mars, we examine the effects of the non-

spherical gravitational potential and the flattened figure of

Mars. For the rotation of Mars, we also take the precession,

nutation and secular change of Mars obliquity into account.

It is found that, for the threshold of 10−13, we only need

to keep the following terms: the gravitational potential of

spherical Mars and corrections associated with the ratio of

the height of the lander on the areoid, the dynamic form

factor of Mars, the flattening of the areoid and the spin rate

of Mars; see Equation (41) for details.

The external contribution is caused by the external

gravitational field of Solar System bodies except Mars. We

estimate the maximum components in the external part for

the Sun, the other planets (except Mars), Pluto, the three

largest main-belt asteroids and the Martian satellites, and

find that none of them can reach a level bigger than 10−13;

see Table 5.
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Therefore, we can conclude that Equation (41) is suf-

ficiently accurate to describe the relativistic time transfer

from the proper time to TCA when the (in)stability of the

onboard clock is no better than 10−13. In our next investi-

gations, we will follow the roadmap outlined in Section 1

and work on the transformations from TCA to TCB and

from TCA to TCG.
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