
RAA 2016 Vol. 16 No. 1, 11 (12pp) doi: 10.1088/1674–4527/16/1/011
http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and
Astrophysics

Performance analysis of parallel gravitational N-body codes on large GPU
clusters

Si-Yi Huang1, Rainer Spurzem1,2,4 and Peter Berczik1,3,4

1 National Astronomical Observatories and Key Laboratory ofComputational Astrophysics, Chinese Academy of
Sciences, Beijing 100012, China;huang41@nao.cas.cn

2 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
3 Main Astronomical Observatory, Ukrainian National Academy of Sciences, 03680 Kiev, Ukraine
4 Astronomisches Rechen-Institut, Zentrum für Astronomie, Universität Heidelberg, 69120 Heidelberg, Germany

Received 2015 April 23; accepted 2015 August 7

Abstract We compare the performance of two very different parallel gravitationalN-body codes for as-
trophysical simulations on large Graphics Processing Unit(GPU) clusters, both of which are pioneers in
their own fields as well as on certain mutual scales -NBODY6++ andBonsai. We carry out benchmarks
of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure
decomposition and timing measurements. We find that both codes are heavily optimized to leverage the
computational potential of GPUs as their performance has approached half of the maximum single pre-
cision performance of the underlying GPU cards. With such performance we predict that a speed-up of
200 − 300 can be achieved when up to 1k processors and GPUs are employedsimultaneously. We discuss
the quantitative information about comparisons of the two codes, finding that in the same casesBonsai
adopts larger time steps as well as larger relative energy errors thanNBODY6++, typically ranging from
10 − 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built
for different astrophysical applications, in specified conditions they may overlap in performance at certain
physical scales, thus allowing the user to choose either oneby fine-tuning parameters accordingly.

Key words: methods: analytical — methods: data analysis — methods: numerical

1 INTRODUCTION

Algorithms for gravitationalN-body simulations, which
are widely used tools in astrophysics nowadays, have
mainly evolved into two categories over previous decades.
Traditionally, by computing the pairwise force among par-
ticles, the direct summation method has been employed as
the core idea of the so-called “directN -body code.” High
accuracy can be archived by choosing smaller time steps,
with higher computational costs. Some of the best-known
examples are theNBODY series of codes developed by
Aarseth (1999) and theStarlab environment developed
by Hut, McMillan, Makino, Portegies Zwart, et al. (Hut
2003). Alternatively, the force calculation can be approx-
imated with certain assumptions. In the late 1960s, some
approximation algorithms such as tree-code or mesh-code
were developed in an attempt to reduce the computational
complexity so that larger simulations could be scaled on
limited hardware with acceptable time. One of the most
prominent approximation algorithms, namely the Barnes-
Hut tree (Barnes & Hut 1986), also has many implemen-
tations such asGADGET developed by Springel (2005)

andPEPC developed by Gibbon, Winkel and collaborators
(Winkel et al. 2012) .

Since direct summation methods use an all-to-all par-
ticle force direct summation method, they have a raw com-
putational complexity ofO(N2). Additional algorithms
have been developed to cut the absolute wall-clock time
down in spite of the prohibitive asymptotic complexity. On
the other hand, approximation schemes reduce complexi-
ties toO(N log N) or evenO(N) thanks to the approx-
imate treatments of force computations and some special
structures such as octrees or grids. However, such intelli-
gent approximation algorithms may not be very suitable
for the simulation of certain astronomical systems such as
dense star clusters, e.g. globular clusters or nuclear star
clusters with or without central massive black holes. This is
because in these systems two-body relaxation is important,
which can only be correctly modeled by following pair-
wise particle interactions with high precision at large dis-
tances. They require the use of direct summation methods,
which have so far experienced great difficulties reaching
even one million particles (but see Wang et al. 2015). As
such, the only practical approach at present to handle simu-



2 S. Huang, R. Spurzem & P. Berczik

lations with ultra-high particle numbers (e.g. cosmological
structure formation) is through the employment of approx-
imation methods, despite their lack of resolution at small
scales (Shin et al. 2014; Genel et al. 2014; Vogelsberger
et al. 2014).

Consequently, parallel technologies are applied forN-
body simulations as a proper solution. With the help of
parallel hardware, simulations could theoretically be ac-
celerated multifold in accordance with the number of pro-
cessors that are invoked. In practice parallel schemes have
been implemented, and performance analysis of parallel
N-body codes on supercomputers or distributed systems
have been conducted, such as the work by Gualandris
et al. (2007). Supercomputer clusters have been used for
the parallelization ofN-body simulations, and special de-
vices were also added in order to process the computation-
ally intensive sections. In the beginning, special-purpose
architectures called GRAPE series (Makino et al. 2003)
were exclusively designed forN-body simulations, which
achieved speed-ups by putting the whole force calculations
into hardware that placed many pipelines on one chip; de-
tailed performance of GRAPE was measured by Harfst
et al. (2007). In recent years, with the rapid development of
innovative hardware manufacturing techniques, Graphics
Processing Units (GPUs) as general-purpose devices are
used more and more and play the same role as GRAPE.
Now architectures consisting of many processors that are
equipped with corresponding GPUs are prevalent in stud-
ies that useN-body simulations.

ParallelN-body simulation software running partially
or even entirely on GPUs was subsequently developed
(Berczik et al. 2011, 2013; Spurzem et al. 2012; Bédorf
et al. 2012a,b), but in practical applications the perfor-
mance would not measure up to ideal speed-up because
of some inevitable serial code in the code structure. The
actual speed-up is limited by sequential fractions in codes
and is not directly proportional to the number of pro-
cessor cores; the theoretical maximum value can be pre-
dicted by Amdahl’s law (Amdahl 1967). Moreover, this
peak value is unapproachable on account of communica-
tion overhead between multiple processors. The effective-
ness of either parallelization or GPU acceleration intro-
duced inN-body software is not intuitive but is still in-
teresting.

In this paper, we focus on the performance analysis
of two kinds ofN-body software, the directN-body code
NBODY6++ and the tree-codeBonsai, which can both
be executed in parallel and accelerated by GPUs. Section 2
describes an overview of the software and hardware we
used. Section 3 describes the performance models used to
analyze complicatedN-body codes, and provides detailed
measurements, performance results and reasonable predic-
tions. Section 4 describes the performance comparisons
and analysis, then makes a conclusion which gives us a bet-
ter reference regarding the choice of an opportune scheme
for software type and hardware scale inN-body simula-
tions.

2 SOFTWARE AND HARDWARE

2.1 Direct N-body Implementation: NBODY6++

In this subsection we provide a brief description of
NBODY6++, which we used for the performance analysis
of directN-body code.

NBODY6++, developed by Rainer Spurzem, is a paral-
lel version ofNBODY6 (Spurzem 1999; Khalisi et al. 2003;
Spurzem et al. 2008). The standardNBODY6 is the6th gen-
eration ofNBODY code initiated by Sverre Aarseth, who
has a lifelong dedication to the development of the family
of NBODY series of codes (Aarseth 1999). The first code
NBODY1 was a basic directN-body code with individual
time steps. The Ahmad-Cohen neighbor scheme (Ahmad
& Cohen 1973) that was used inNBODY2 andNBODY5
made it possible to treat larger systems. Kustaanheimo &
Stiefel (1965) two-body regularization and chain regular-
ization were applied inNBODY3 andNBODY5 to deal with
close encounters. By the timeNBODY6 had been devel-
oped, the code included both the neighbor scheme and reg-
ularizations, as well as applying the Hermite scheme in-
tegration method combined with hierarchical block time
steps.

NBODY6++ is a descendant of the standardNBODY6.
It kept those features of its predecessor mentioned
above as well as increased the efficiency by redesign-
ing the algorithms to be suitable for parallel hard-
ware.NBODY6++ used the Single Program Multiple Data
(SPMD) scheme to achieve parallelism. In this mode
multiple autonomous processors simultaneously start with
chunked local data and then communicate with each other
through thecopy algorithm (Makino 2002; Dorband et al.
2003), which is a parallelized algorithm that assumes each
processor has a local copy of the whole system and every
processor handles the subgroup of data itself then imme-
diately broadcasts the new data to all the other processors.
The parallelization scheme ofNBODY6++ is implemented
with the standard MPI library package.

The most major improvement ofNBODY6++ is the
parallelization of regular and irregular force computa-
tions, which were special concepts introduced from the
Ahmad-Cohen neighbor scheme that divided the full force
of each particle involved by all the other particles into
two parts: one part called irregular force that has fre-
quent but short time steps for interactions with adjacent
particles, and another one called regular force which has
longer time steps for full interactions. By assigning the
sections with the most expensive overhead to multiple
processors,NBODY6++ achieved the expected efficiency.
Moreover, the computationally heavier regular force calcu-
lation part was adapted for GPU acceleration using CUDA.
The performance of parallel accelerations is described in
Section 3.1.



Performance Analysis ofN-body Codes 3

2.2 N-body Tree-code Implementation: Bonsai

In this subsection we provide a brief description of
Bonsai, which we used for the performance analysis of
N-body tree-code.

The tree-code algorithm, a widely used method nowa-
days forN-body simulations, was originally introduced by
Barnes & Hut (1986). This algorithm reduces the compu-
tational complexity of anN-body simulation fromO(N2)
to O(N log N), therefore improving the simulation scale
compared to brute force methods. HereBonsai, a par-
allel GPU tree-code implementation developed by Jeroen
Bédorf, Evghenii Gaburov and Simon Portegies Zwart
(Bédorf et al. 2012a,b), is a suitable representative of the
gravitationalN-body tree-code that was developed in re-
cent years.

Certain schemes are introduced inBonsai to ensure
the high efficiency of the code (Bédorf et al. 2012a). A
sparse octree is used as the data structure, which means
the structure is the three-dimensional extension of a bi-
nary tree where tree-cells are not complete and equal, and
it is based on the underlying particle distribution. The tree
is constructed layer-by-layer from top to bottom, and in-
verted with respect to the direction in the traversal process.
Tree-cell properties are updated during the steps, and the
integration into the simulation process is advanced. The
depth of tree traversal crucially affects both accuracy and
time consumption, which is determined by the multipole
acceptance criterion (MAC) in the tree-code. The criterion
is described as follows,

d >
l

θ
+ δ, (1)

whered is the smallest distance between a group and the
cell’s center-of-mass,l is the length of the cell,δ is the dis-
tance between the cell’s center-of-geometry and the center-
of-mass, andθ is an opening angle parameter to control the
accuracy. If the inequality is satisfied then the traversal pro-
cess will be interrupted and the multipole moment will be
used.

Like other existingN-body codes,Bonsai uses a par-
allel technique to reach large scale or high resolution simu-
lations, and applies GPUs to speed up force computations.
In contrast to those GPU tree-codes,Bonsai executes all
parts of the algorithm on GPUs, to avoid the bottlenecks
generated from CPU-GPU communications. In Section 3.2
the performance of the main parts of the code is presented.

2.3 Hardware Environments and Initial Conditions

The supercomputer we mainly used for the tests of both
software presented above is an IBM iDataPlex Cluster
JUDGE named “The Milky Way System” partition pro-
vided and maintained by the Jülich Supercomputing Centre
in Germany, which is a dedicated GPU cluster using two
Intel Xeon X5650 6-core processors and two NVIDIA
Tesla M2050/M2070 GPU cards in every node, with 206
computing nodes and a peak performance of 239 Teraflops.

Our performance measurements involved two differ-
ent kinds of parallel gravitational GPU-acceleratedN-
body codes:NBODY6++ and Bonsai. The initial con-
ditions of all tests of both codes are consistent with each
other, starting with the Plummer model and running over
one standardN-body Time Unit. The number of particles
ranges fromN = 213(8k) to 220(1M), doubling the num-
ber over successive intervals. There are additional tests us-
ing larger numbers of particles, up toN = 224(16M) in
Bonsai code runs. The number of processors we chose
is a series of increasing numbersNp = 1, 2, 4, 8, 16, 32.
Other parameters which are necessary but specific only in
each code, such as the time step factor for regular/irregular
force polynomial and desired optimal neighbor number in
NBODY6++, or the accuracy control parameterθ and soft-
ening valueǫ in Bonsai, will be described in detail in
Section 3.

3 PERFORMANCE

In this section we evaluated the performance of these
two GPU-based parallelN-body simulation codes (i.e.
NBODY6++ and Bonsai) which we tested mainly on
the Jülich Dedicated GPU Environment described in
Section 2.3.

In spite of a vast difference between the two codes de-
rived from their own fundamental algorithms and specific
details, which makes it difficult to give a one-to-one com-
parison, there are some global values providing sufficient
information. Timing variables, speed-up and hardware per-
formance indicators like speed and bandwidth were mea-
sured and are described below for performance analysis of
the codes.

3.1 Performance of NBODY6++

NBODY6++, a parallel direct gravitationalN-body code, is
featured with a couple of elegant algorithms and schemes
developed and maintained over the past few decades. The
procedures that we used enabled more realistic size of
simulations running in achievable circumstances while in-
creasing sophistication as well. As a consequence, we
present a performance model for analyzing the overall
behavior as well as the main components of the code.
Through this model we will have a better idea about the
performance of a typical directN-body code and predic-
tions about the behavior of the code on larger scales.

3.1.1 Performance model

We measured running time directly for evaluating perfor-
mance and modeling. InNBODY6++, the total wall-clock
timeTtotal required to advance the simulation for a certain
integration interval can be written as

Ttot = Tforce + Tcomm + Thost, (2)

whereTforce = Treg + Tirr + Tpre is time spent on both
host and device involving force calculations; hereTreg, Tirr



4 S. Huang, R. Spurzem & P. Berczik

andTpre are time spent on force computations of regular
time steps, irregular time steps and prediction respectively;
Tcomm = Tmov +Tmci +Tmcr +Tsyn is time spent on data
moving for parallel components, MPI communications af-
ter regular and irregular blocks and synchronizations of
processors;Thost is time spent on the host side which is a
completely sequential process. All of the time variables are
measured directly by standard Fortran functionsETIME in
sequential mode andMPI WTIME in parallel mode. All of
the descriptions are listed in the glossary (Table 1).

According to the decomposition described above we
broke down the code structure and measured these main
sections which have heavy weights in the code. Owing
to a large amount of variables and the high complex-
ities, some insignificant components inNBODY6++ are
not counted. For every part to be analyzed we listed the
expected scaling and optimal fitting value in Table 2,
which are obtained from the structure of code implemen-
tation, chronograph and fitting functions. A python func-
tion scipy.optimize.curve fit is used to obtain
the optimal fitting value, which is based on non-linear least
squares.

The conception of speed-up is used for evaluating the
parallelism of the code. There are a couple of definitions of
speed-up with different ranges. The ideal maximum speed-
up Si = Np will never be achievable, whereNp is the
number of processors used. Unreachable as well, but a
more reasonable indicator to predict the theoretical max-
imum speed-up, is the so-calledAmdahl’s law, which is
defined as

Sa(Np) =
T (1)

T (Np)
=

1

(1 − X) + X
Np

, (3)

whereX is the fraction of the algorithm that can bene-
fit from parallelization. In practice there is another expe-
riential speed-up to be measured through timer recording,
which is given by

Se(Np) =
Ttot(1)

Ttot(Np)
, (4)

whereTtot(1) andTtot(Np) are both the measured values
of actual running time. By combining the fitting values into
the speed-up formula we will have a general overall behav-
ior of the code, by which we can make a prediction accord-
ingly about the code performance in larger scale simula-
tions.

The speed of force calculation is measured by the ex-
tent at which the program reaches the peak of comput-
ing devices. Here in our tests the computing device par-
ticularly refers to the NVIDIA Tesla M2050/M2070 GPU
cards, which feature up to 1030 Gigaflops of single preci-
sion floating point performance and 515 Gigaflops of dou-
ble precision floating point performance per card.

In NBODY6++, as the total force is divided into two
parts, we used two speed variablesPreg andPirr to repre-
sent regular and irregular force calculating speed respec-

tively, which are written as

Preg =
Nreg tot

Treg
=

Nreg × N × γh4

Treg
,

Pirr =
Nirr tot

Tirr
=

Nirr × 〈Nnb〉 × γh4

Tirr
, (5)

whereN[reg|irr] tot is the total floating point operations of
regular/irregular force computations,N[reg|irr] is the cumu-
lative number of regular/irregular time steps,〈Nnb〉 is the
average number of integrated “neighbor” particles, andγh4

defines the floating point operation counts of the fourth-
order Hermite scheme per particle per interaction per step,
from the work Nitadori & Makino (2008) which is a con-
stant value ofγh4 = 60.

Bandwidth is measured as a part of hardware perfor-
mance along with computing speed (P ). In NBODY6++,
we defined bandwidth (Breg, Birr) as

Breg =
Nmcr

Tmcr
=

8 × (41 + lmax) × N/Np

Tmcr
,

Birr =
Nmci

Tmci
=

8 × 19 × 〈Nact〉/Np

Tmci
, (6)

whereN[mcr|mci] is the number of bytes transferred during
MPI communication after regular/irregular blocks, con-
stant terms (in Eq. (6), i.e. 8, 41, 19) derived from the size
of datasets transferred, in whichlmax is the maximum size
of neighbor lists set manually. Detailed results of all these
performance indicators are presented in the next subsec-
tion.

3.1.2 Performance results

The measured total wall-clock time ofNBODY6++ is
shown in Figure 1.

On the whole, the result shows a good extensibility and
acceleration when using more numbers of processors. To
be specific, we assign a different weight to each part of the
code. Among all of the parts, the time spent for force com-
putations always has the highest value, therefore both reg-
ular and irregular force computations and prediction have
been implemented with the parallel algorithm and decrease
rapidly when code is run using multi-processors. Here in
the heaviest partTforce, the regular force computationTreg,
which takes the highest fraction of computing time in the
former versions of the code, has been accelerated and im-
plemented on the specific device (GPU), as a consequence
of causing a significant reduction of the whole running
time costs. Other parts are currently executed on the CPU
side.

Table 2 shows the main components ofNBODY6++ as
a function ofN andNp. As described above, for every part
the expected scaling is evaluated by the code structure, and
the fitting value is based on experimental data. The fitting
process includes two steps by fittingN and Np succes-
sively but independently. Firstly we used a minimum of
fixed Np to avoid the influence of processor number and



Performance Analysis ofN-body Codes 5

Table 1 Glossary

Variable Description

GENERAL

N total number of particles

Np number of processors

Sa theoretical maximum speed-up defined by Amdahl’s law

Si ideal maximum speed-up equal toNp

Se experiential speed-up equal to the ratio between measured time of single and multiple processor
numbers

P force computation speed of floating point operations per second

B bandwidth of bytes of data transfer per second

Ttot total wall-clock time

knx, kpx quantitative factors for fitting the result of certain parts; k[n|p] implies the factor only depends
onN |Np, subscriptx indicates different parts

∆E relative energy error

∆t time step interval of integration

NBODY6++

〈Nact〉 average number of integrated active particles

〈Nnb〉 average number of neighbors

Nirr cumulative number of irregular time steps

Nreg cumulative number of regular time steps

γh4 floating point operation counts per particle per interaction per step

Tcomm sum of communication time

Tforce sum of force computation time

Thost time spent on the host side

Tirr neighbor (irregular) force computation time

Tmci MPI communication after irregular blocks

Tmcr MPI communication after regular blocks

Tmov time spent on data moving for parallel runs

Tpre particle prediction time

Treg full (regular) force computation time

Tsyn interprocessor synchronization time

Bonsai

Nforce cumulative number of interactions

γt floating point operation counts per particle per interaction per step

Tbuild time spent on building tree structure

Tcomm sum of communication time

Tcorr particle correction time

Tdom time spent on updating the particle domain

Tene energy check time

Texch time spent on particle exchange

Tforce force computation time

Tgrp time spent on setting active groups

Tpre local tree prediction time

Tprop node properties computation time

Tsort sorting and data-reordering time

Tsyn interprocessor synchronization time

Ttree sum of the whole tree construction time

ǫ softening to diminish the effect of graininess

θ opening angle to control the accuracy

obtained the experimental scaling ofN . The fitting val-
ues withN are obtained under circumstances which use
increasing particle numbers and a fixed single processor
(Np = 1), while for cases of multi-processor-related val-
ues (i.e.Tmci, Tmcr andTsyn, which have no numbers in

single processor runs) the number of processors changed
to Np = 2. The fitting values withNp are obtained by the
second step. The datasets are grouped according toN , then
every group of data is divided by eachN dependent func-
tion to get the fitting values withNp. The fitting results of



6 S. Huang, R. Spurzem & P. Berczik

Table 2 Main Components ofNBODY6++

Description
Timing
variable

Expected scaling
Fitting value [s]

N Np

Regular force computation Treg O(Nreg × N) O(N−1
p ) (2.2 × 10−9 × N2.11 + 10.43) × N−1

p

Irregular force computation Tirr O(Nirr × 〈Nnb〉) O(N−1
p ) (3.9 × 10−7 × N1.76 − 16.47) × N−1

p

Prediction Tpre O(Nknp ) O(N
−kpp
p ) (1.2 × 10−6 × N1.51 − 3.58) × N−0.5

p

Data moving Tmov O(Nknm1 ) O(1) 2.5 × 10−6 × N1.29 − 0.28

MPI communication (Reg.) Tmcr O(Nkncr ) O(kpcr ×
Np−1

Np
) (3.3 × 10−6 × N1.18 + 0.12)(1.5 ×

Np−1

Np
)

MPI communication (Irr.) Tmci O(Nknci ) O(kpci ×
Np−1

Np
) (3.6 × 10−7 × N1.40 + 0.56)(1.5 ×

Np−1

Np
)

Synchronization Tsyn O(Nkns ) O(Nkps
p ) (4.1 × 10−8 × N1.34 + 0.07) × Np

Sequential parts on host Thost O(Nknh ) O(1) 4.4 × 10−7 × N1.49 + 1.23

Notes: Detailed descriptions of the symbols that are used are listed in Table 1.

1 2 4 8 16 32
Np

100

101

102

103

104

105

W
a
ll
−c

lo
ck

 T
im

e [
se
c]

N=8k
N=16k

N=32k
N=64k

N=128k
N=256k

N=512k
N=1M

Fig. 1 Total wall-clock time (Ttot) of NBODY6++ as a function ofN andNp. Solid lines are the measured values of running time,
and dashed lines are the ideal acceleration by increasing processor numbers. (The unit symbols in the legend have the magnitudes:
1k = 1024, 1M = 1k

2 and1G = 1k
3, and similarly hereinafter.)

1 2 4 8 16 32 64 128 256 512 1024
Np

100

101

102

103

S
p
ee
d
u
p

N=8k
N=16k
N=32k
N=64k
N=128k
N=256k

N=512k
N=1M
N=8M
N=16M
N=128M
N=1G

Fig. 2 The speed-up (S) of NBODY6++ as a function ofN andNp. Solid lines are the measured speed-up ratio between sequential and
parallel wall-clock time. Dashed lines are the predicted performance of larger scale simulations.



Performance Analysis ofN-body Codes 7

1 2 4 8 16 32102

103

104

105

S
p
ee
d
[G
fl
op
s]

2 4 8 16 32
Np

100

101

B
a
n
d
w
id
th

[G
B
]

N=8k
N=16k

N=32k
N=64k

N=128k
N=256k

N=512k
N=1M

Fig. 3 Hardware performance ofNBODY6++ running on the “Milky Way” GPU cluster. The upper panel corresponds to the regular
force computation speed (Preg), where two dashed lines refer to the peak single and double precision floating point performance. The
lower panel corresponds to the bandwidth of the regular part(Breg).

every main part are listed in the last column. Considering
the expected scaling value of the main parts, asTmov, Tsyn

and Thost have no significant and direct scaling withN
from the code structure whileTpre is made up of two pre-
diction branches that are determined byN in the next time
step, we expect these values to follow a simple exponen-
tial form for N . Nreg, Nirr and〈Nnb〉, which are used in
Treg andTirr, are values which are completely dependent
onN asNreg ∝ N1.18, Nirr ∝ N1.10 and〈Nnb〉 ∝ N2/3

respectively, so their fitting values are also combined to-
gether in an exponential form forN . At last, unified expo-
nent forms forN andNp are used in the last column rather
than other symbols used in the middle column.

By taking the fitting values into the definition of ex-
perimental speed-up, we give the prediction about the per-
formance ofNBODY6++, which is shown in Figure 2. As
a result, the optimal value ofNp needed for larger simula-
tions of different scales is shown clearly in the figure.

Figure 3 shows the hardware performance of
NBODY6++ in the actual environment on a real GPU ac-
celerated cluster. Because GPUs played the central role
in acceleration, we focus on parts related to GPUs in
NBODY6++, so Preg andBreg were drawn in the figure.
For the figure ofPreg, two dashed lines, i.e. peak single
and double precision floating point performance, are used
as the baseline, and the computation speeds of a differ-
ent group ofN runs are increasingly closer to the peak
whenN is doubled. In the wholeNBODY6++ data struc-
ture there are two types of precision used in the respec-
tive parts. Double precision type is used in main loops of
the code which is declared as the type “REAL*8” in the
global header file, while for the part that computes regu-
lar force which is accelerated by GPU, all of the data are
converted to the type “REAL*4” and single precision is

used in all relevant parts of the CUDA routine. Therefore
a mixed precision data structure is used in the regular part
of NBODY6++- double precision in the data moving pro-
cess and single precision in the data computation process.
As the process of computation in the GPU card domi-
nates the regular part, we use single precision to make a
comparison. As shown in the figure, the force computa-
tion speed of largeN runs exceeded over half of the max-
imum single precision performance (for instance,Preg for
1M particle runs has the values of530 ∼ 570 Gflops per
M2050/M2070 GPU card.) This proportion concurs with
the results of Berczik et al. (2011, 2013), who claimed the
speed performance of another directN-body code,φ-GPU,
reached the values∝ 550 Gflops per C2050 GPU card and
∝ 1.48 Tflops per K20 GPU card; both results approached
half of the single precision performance peak. Considering
the hardware architecture, as operations among various
registers and parts of the memory cause extra inevitable
time consumption, the proportion is acceptable in practi-
cal environments. For calculatingBreg when ignoring the
“dropping” points, others remained at the level of more
than80% of the maximum bandwidth performance.

3.2 Performance of Bonsai

3.2.1 Performance model

Similar to Equation (2), inBonsai the total wall-clock
timeTtot can be written as

Ttot = Ttree + Tforce + Tcomm + Tother , (7)

whereTtree = Tsort+Tbuild+Tprop+Tgrp is time spent on
tree building, which mainly includes sorting and reorder-
ing of the particles along a 1D number string mapped along



8 S. Huang, R. Spurzem & P. Berczik

1 2 4 8 16 32
Np

10-1

100

101

102

103

W
a
ll
−c

lo
ck

 T
im

e [
se
c]

N=8k
N=16k
N=32k

N=64k
N=128k
N=256k

N=512k
N=1M
N=2M

N=4M
N=8M
N=16M

Fig. 4 Total wall-clock time (Ttot) of Bonsai as a function ofN andNp. The legend is the same as Figure 1. Opening parameters
representing the initial conditions are set as∆t = 0.0625, ǫ = 0.01 andθ = 0.5.

a Space Filling Curve, tree structure construction, com-
putation of tree-node properties and setting active groups
for following steps;Tforce is time spent on force compu-
tations in tree-traversal;Tcomm = Tdom + Texch + Tsyn

is time spent on distributing or redistributing the parti-
cles between processors and synchronizations of proces-
sors;Tother = Tpre + Tcorr + Tene is time consumptions
for other mainly essential parts, like local-tree predictions
before tree construction, corrections after force computa-
tions and energy check. All of the time variables are mea-
sured by the CUDA C functioncuEventElapsedTime
from the CUDA Event Management Driver API and en-
tirely counted on the device (GPU). Trivial time consump-
tions on the host side are ignored. The entire descriptions
are listed in the glossary (Table 1).

In terms of hardware performance, different from
Equation (5), the force calculating speed inBonsai is
written as

Pforce =
Nforce tot

Tforce
=

Nforce × γt

Tforce
, (8)

whereNforce tot is the total number of floating point op-
erations;Nforce is the cumulative number of interactions;
γt is the number of operation counts for each interaction
in the tree-code, for which we used a constant value of
γt = 38 from the works Warren & Salmon (1992); Kawai
et al. (1999); Hamada et al. (2009); Hamada & Nitadori
(2010), and the resulting plot is shown in Figure 6. Note
that Bédorf et al. (2014) used other separate values for op-
eration counts, which are23 and65 for particle-particle

and particle-cell interactions respectively.

P =
Npp tot + Npc tot

Tforce

=
γpp × Npp + γpc × Npc

Tforce
, (9)

whereN[pp|pc] tot is the total number of floating point op-
erations ofp-p/p-c; N[pp|pc] is the cumulative number ofp-
p/p-c; γ[pp|pc] is the number of operation counts for eachp-
p/p-c which are constant values ofγpp = 23 andγpc = 65
from the work Bédorf et al. (2014). Herep-p andp-c re-
fer to particle-particle and particle-cell interactions respec-
tively.

3.2.2 Opening parameters in tree-code

Three opening parameters play important roles in running
the tree-code and consequently affect the performance with
different results.

θ: This is a dimensionless parameter defined in
Equation (1) that controls the accuracy. Our test results
showed that a smallerθ makes the running time increase
sharply, then stop rising in a certain range (θ ≈ 0.01 as
an experimental value); while a biggerθ (θ > 0.2 ∼ 0.35
influenced byN ) causes less accuracy in the simulations.

ǫ: The softening parameterǫ does not contribute to
the running time; on the other hand an optimalǫ could
lead to the best approach to the minimum error. For too
small of a softening the estimates of forces will be too
noisy, but for too large of a softening the force estimates
will be systematically misrepresented; in between there
is an optimal softening. The optimalǫ depends on both



Performance Analysis ofN-body Codes 9

Table 3 Main Components ofBonsai

Description
Timing
variable

Expected scaling
Fitting value [s]

N Np

Sorting and reordering Tsort O(N) O(N−1
p ) (1.5 × 10−6 × N + 2.45 × 10−4) × N−1

p

Tree construction Tbuild O(N) O(N−1
p ) (2.8 × 10−7 × N + 2.06 × 10−2) × N−1

p

Node properties Tprop O(N) O(N−1
p ) (9.1 × 10−8 × N + 5.78 × 10−3) × N−1

p

Set active groups Tgrp O(N) O(N−1
p ) (1.7 × 10−9 × N + 1.16 × 10−3) × N−1

p

Force computation Tforce O(N logN) O(N
−kpg1
p ) (2.5 × 10−6 × N logN − 0.10) × N−0.88

p

Domain update Tdom O(N logN) O(1) 5.4 × 10−10 × N logN + 2.96 × 10−3

Exchange Texch O(N logN) O(1) 2.1 × 10−9 × N logN + 1.16 × 10−2

Synchronization Tsyn O(Nkns ) O(kps1 × N
kps2
p ) (1.4 × 10−4 × N0.45 + 9.3 × 10−4)(0.5 × N0.49

p )

Prediction Tpre O(N) O(N−1
p ) (1.5 × 10−8 × N + 1.49 × 10−3) × N−1

p

Correction Tcorr O(N) O(N−1
p ) (3.8 × 10−8 × N + 7.88 × 10−4) × N−1

p

Energy check Tene O(N) O(N−1
p ) (8.8 × 10−9 × N + 7.14 × 10−4) × N−1

p

Notes: Detailed descriptions of symbols that are used are listed in Table 1.

Table 4 Comparison withBonsai andNBODY6++

N 8k 16k 32k 64k 128k 256k 512k 1M

Ttot [s] 8.06 22.48 60.92 192.31 629.4 2, 071.38 8, 010.08 28, 737.83

∆tbs 1.30 × 10−3 1.13 × 10−3 0.96 × 10−3 0.78 × 10−3 0.61 × 10−3 0.46 × 10−3 0.29 × 10−3 0.19 × 10−3

∆tnbi 6.05 × 10−5 4.29 × 10−5 3.25 × 10−5 2.48 × 10−5 1.89 × 10−5 1.49 × 10−5 1.41 × 10−5 1.31 × 10−5

∆Ebs 6.14 × 10−6 3.45 × 10−6 1.32 × 10−6 0.98 × 10−6 1.27 × 10−6 1.74 × 10−6 2.80 × 10−6 4.36 × 10−6

∆Enb 5.71 × 10−7 5.07 × 10−7 4.88 × 10−7 3.44 × 10−7 4.73 × 10−7 2.33 × 10−7 4.92 × 10−7 4.47 × 10−7

the number of particles and the size of time steps. From
the work Athanassoula et al. (2000) whenǫ has different
minimum values, the conditions of simulations are not the
same and there is a relationship betweenN and optimal
ǫ. Through a comparison of their conclusions with groups
of our test results ofBonsai code (using∆E instead of
MASE, θ = 0.5; ∆t = 0.0625), we conclude that the value
of ǫ leading to a minimum∆E is consistent with conclu-
sions of the reference.

∆t: The value of∆t affects both running time and en-
ergy error. On the running time side,∆t is noticeably lin-
early dependent with time as:t ∝ 1/∆t; on the relative
energy error side, the test results are more complex. Our
results show that∆Emin varies sensitively under the cho-
sen combinations of∆t andǫ, as well as differentN .

3.2.3 Performance results

The measured total wall-clock time ofBonsai is shown
in Figure 4.

In Figures 4 and 5 we do not use any data for the
case of the number of particles being smaller than the opti-
mal capacity of GPU nodes, because the performance goes
down and the GPUs are not fully loaded in this regime.

We decomposedTtot into main components as de-
scribed in Section 3.2.1. For every component we mea-
sured the running time separately, and obtained fitting for-
mulae as a function ofN andNp. The fitting procedures
were the same as in theNBODY6++ part described in
Section 3.1.1. The results are shown in Table 3.

Figure 5 shows the experimental speed-up of
Bonsai defined as Equation (4). Compared with the re-
sult of Figure 2,Bonsai has a tendency to yield a lower
peak but wider scope. Considering the weight factors of the
force computational part in Tables 2 and 3, quantitative in-
formation about the behavior of the code is revealed, while
the different weight of the communication part is the main
determinant for descendant lines.

Figure 6 shows the hardware performance of
Bonsai in a practical environment on a real GPU acceler-
ated cluster. The performance in floating point operations
per second is only given for the dominant part of the force
computations. The figure indicates that for a large enough
N we get nearly half of the peak single precision of our
M2050/M2070 GPU card and this increases steadily for
large scaleNp. This proportion is similar to the result of
NBODY6++ code discussed in Section 3.1. The utilization
of the GPU is quite good considering the tree-code struc-
ture.

4 DISCUSSION

In this paper, we analyze the performance of two very dif-
ferent kinds ofN-body codes, both of which are pioneers
in their fields and both are heavily optimized for GPU ac-
celeration and parallelization -NBODY6++ andBonsai.
There is always a question of what is the break-even point
for the codes, or how do they compare with each other.
Due to the very different natures of the two codes such a
comparison is inevitably unfair -NBODY6++ has few-body



10 S. Huang, R. Spurzem & P. Berczik

1 2 4 8 16 32 64 128 256 512 1024
Np

100

101

102

103

S
p
ee
d
u
p

N=8k
N=16k
N=32k
N=64k
N=128k
N=256k
N=512k

N=1M
N=2M
N=4M
N=8M
N=16M
N=128M
N=1G

Fig. 5 The speed-up (S) of Bonsai as a function of particle numberN andNp. The legend is the same as in Figure 2. Opening
parameters of initial condition are set as∆t = 0.0625, ǫ = 0.01 andθ = 0.5.

1 2 4 8 16 32
Np

102

103

104

105

S
p
ee
d
[G
fl
op
s]

N=128k
N=256k

N=512k
N=1M

N=2M
N=4M

N=8M
N=16M

Fig. 6 Hardware performance of force computation speed (Pforce) of Bonsai running on the “Milky Way” GPU cluster. Two dashed
lines in the figure refer to the peak single and double precision floating point performance.

regularizations and is aimed at high accuracy of both near
and more distant gravitational forces;Bonsai achieves
optimal performance if the opening parameterθ is rel-
atively large, providing rather less accurate gravitational
forces. But in certain ranges of parameters, both codes may
overlap in terms of performance, accuracy and efficiency.
It is the goal of this paper to provide quantitative informa-
tion about this.

We do this with the help of the four panels in Figure 7
– they show wall-clock time and energy accuracy as a
function of the average time step; the main curves are
for Bonsai as indicated in the caption, for two differ-
ent opening parameters. However, data forNBODY6++ are
shown for comparison: wall-clock time and accuracy as a

function of average time step. In addition, we show that for
a fixed particle number the time step ofBonsai results in
the same wall-clock time as forNBODY6++.

The following main conclusions can be drawn: at the
same wall-clock time and same particle number (andθ =
0.2) Bonsai typically runs with time steps of a factor that
are10 − 50 larger. In other wordsNBODY6++ provides
a much smaller time step and a factor of10 better accu-
racy (see lower panels of Fig. 7). Here energy error is used
as the criterion to compare the accuracy. In our case the
time evolution of the energy error contains two main parts.
One part comes from the machine accuracy of the poten-
tial and force calculations. This is in our cases close to the
single precision machine accuracy of order10−7 ∼ 10−8.



Performance Analysis ofN-body Codes 11

10-5 10-4 10-3 10-2100

101

102

103

104

105

T
im

e [
se
c]

10-5 10-4 10-3 10-2100

101

102

103

104

105

10-5 10-4 10-3 10-2

∆t

10-7

10-6

10-5

10-4

∆
E

10-5 10-4 10-3 10-2

∆t

10-7

10-6

10-5

10-4
N=8k
N=16k

N=32k
N=64k

N=128k
N=256k

N=512k
N=1M

Fig. 7 Comparisons of wall-clock time and relative energy error ofNBODY6++ andBonsai as a function of∆t. Opening parameters
of Bonsai are set asǫ = 0.01 andθ = 0.5 in the left column, and smaller values ofǫ = 0.001 andθ = 0.2 as the control group in
the right column. In each panel the left dashed line corresponds toNBODY6++ benchmark data, and solid lines areBonsai data. The
diamond symbols indicate junctions ofBonsai which have the same running time asNBODY6++ in the case of the sameN .

The other component of error comes from the numerical
integration process itself, which plays the dominant role in
total energy error. InNBODY6++we are using the complex
fourth-order Hermite individual block time step integration
combined with the Ahmad-Cohen neighbor scheme. We
have chosen the time step parameterη of the Aarseth time
step criteria (for regular and irregular time steps, the values
of which are set as 0.02 in the initial input files) such that
the energy error stays at the level of10−6 ∼ 10−7. How
the global energy error of our integrator inNBODY6++ be-
haves can be found in a comprehensive study by Makino
(1991). In the case of theBonsai, the code that uses the
simple leap-frog integration scheme, which (for a reason-
able computational speed to reach the1 N-body Time Unit)
has an average energy error at a level of10−5 ∼ 10−6.
So far we have not discovered anything unexpected; how-
everBonsai can reach surprisingly good accuracy in total
energy (like5 × 10−6) at wall-clock times comparable to
NBODY6++. With a larger opening angle (θ = 0.5) the
time step and wall-clock parameters approach each other
more (by a factor of two to three, for one million bodies).
In such a case, there is a quite considerable accuracy in en-
ergy of order10−5. It seems that levels of energy accuracy
arguably may be sufficient even for collisional gravother-
mal systems.

However, total energy conservation is not the only
criterion to judge the use of a code and its accuracy. In
NBODY6++ close encounters and interactions of compact
or hierarchical multiple systems are treated with regular-

ization methods and zero softening, whileBonsai uses
an artificial softening of the gravitational potential at small
distances. Reasonable energy conservation refers to arti-
ficial gravitational potential including softening, whichis
conservative as well, but not to the true few-body po-
tential. So, the additional numerical efforts necessary for
NBODY6++ go on one hand into the exact resolution of all
kinds of close interactions below the softening length used
in Bonsai. But also on the other hand, for long-range
interactions,Bonsai uses the standard tree-code proce-
dure of approximating forces from groups of particles by
forces from their centers of mass and multipoles. This fea-
ture needs to be tested by simulation of core collapsing star
clusters, where long range gravitational interactions deter-
mine the global evolution, which is beyond the scope of
this paper.

Acknowledgements We want to thankNBODY series
developer Sverre Aarseth for providing theNBODY6
code and lectures about how to use it. We thank Long
Wang for continuously developing the newest version of
NBODY6++ code. We also want to thankBonsai de-
velopers Jeroen Bédorf, Evghenii Gaburov and Simon
Portegies Zwart for providing theirN-body code. We
acknowledge support by Chinese Academy of Sciences
through the Silk Road Project at NAOC, through the
Chinese Academy of Sciences Visiting Professorship for
Senior International Scientists, Grant Number 2009S1-5
(RS), and through the “Qianren” special foreign experts
program of China.



12 S. Huang, R. Spurzem & P. Berczik

The special GPU accelerated supercomputer “Laohu”
at the Center of Information and Computing at National
Astronomical Observatories, Chinese Academy of
Sciences, funded by the Ministry of Finance of the
People’s Republic of China under the grant ZDY Z2008-2,
has been used for the simulations, as well as the supercom-
puter “The Milky Way System” at Jülich Supercomputing
Centre in Germany, built for SFB881 at the University of
Heidelberg, Germany.

PB acknowledges the special support by the NAS
Ukraine under the Main Astronomical Observatory
GPU/GRID computing cluster project.

References

Aarseth, S. J. 1999, PASP, 111, 1333
Ahmad, A., & Cohen, L. 1973, Journal of Computational

Physics, 12, 389
Amdahl, G. M. 1967, in Proceedings of the April 18-20, 1967,

Spring Joint Computer Conference, AFIPS’67 (Spring) (New

York: ACM), 483
Athanassoula, E., Fady, E., Lambert, J. C., & Bosma, A. 2000,

MNRAS, 314, 475
Barnes, J., & Hut, P. 1986, Nature, 324, 446
Bédorf, J., Gaburov, E., Fujii, M. S., et al. 2014, in

Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis,

SC’14 (Piscataway: IEEE Press), 54
Bédorf, J., Gaburov, E., & Portegies Zwart, S. 2012a, Journal of

Computational Physics, 231, 2825
Bédorf, J., Gaburov, E., & Portegies Zwart, S. 2012b, in

Astronomical Society of the Pacific Conference Series, 453,

Advances in Computational Astrophysics: Methods, Tools,

and Outcome, ed. R. Capuzzo-Dolcetta, M. Limongi, &

A. Tornambè, 325
Berczik, P., Spurzem, R., & Wang, L. 2013, in Third

International Conference ”High Performance Computing”,

HPC-UA 2013, 52
Berczik, P., Nitadori, K., Zhong, S., et al. 2011, in International

Conference on High Performance Computing, Kyiv, Ukraine,

October 8-10, 8
Dorband, E. N., Hemsendorf, M., & Merritt, D. 2003, Journal of

Computational Physics, 185, 484
Genel, S., Vogelsberger, M., Springel, V., et al. 2014, MNRAS,

445, 175
Gualandris, A., Portegies Zwart, S., & Tirado-Ramos, A. 2007,

Parallel Computing, 33, 159

Hamada, T., Narumi, T., Yokota, R., et al. 2009, in Proceedings of

the Conference on High Performance Computing Networking,

Storage and Analysis, SC’09 (New York: ACM), 62:1
Hamada, T., & Nitadori, K. 2010, in 2010 International

Conference on High Performance Computing, Networking,

Storage and Analysis (SC), 1
Harfst, S., Gualandris, A., Merritt, D., et al. 2007, New Astron.,

12, 357
Hut, P. 2003, in IAU Symposium, 208, Astrophysical

Supercomputing using Particle Simulations, eds. J. Makino, &

P. Hut, 331
Kawai, A., Fukushige, T., & Makino, J. 1999, in Proceedings of

the 1999 ACM/IEEE Conference on Supercomputing, SC’99

(New York: ACM)
Khalisi, E., Omarov, C., Spurzem, R., Giersz, M., & Lin,

D. 2003, in High Performance Computing in Science and

Engineering’03, ed. E. Krause, W. Jáger, & M. Resch

(Springer Berlin Heidelberg), 71
Kustaanheimo, P., & Stiefel, E. 1965, J. Reine Angew Math. 218,

204
Makino, J. 1991, ApJ, 369, 200
Makino, J. 2002, New Astron., 7, 373
Makino, J., Fukushige, T., Koga, M., & Namura, K. 2003, PASJ,

55, 1163
Nitadori, K., & Makino, J. 2008, New Astron., 13, 498
Shin, J., Kim, J., Kim, S. S., & Park, C. 2014, Journal of Korean

Astronomical Society, 47, 87
Springel, V. 2005, MNRAS, 364, 1105
Spurzem, R. 1999, Journal of Computational and Applied

Mathematics, 109, 407
Spurzem, R., Berczik, P., Zhong, S., et al. 2012, in Astronomical

Society of the Pacific Conference Series, 453, Advances in

Computational Astrophysics: Methods, Tools, and Outcome,

eds. R. Capuzzo-Dolcetta, M. Limongi, & A. Tornambè, 223
Spurzem, R., Berentzen, I., Berczik, P., et al. 2008, in Lecture

Notes in Physics, Berlin Springer Verlag, 760, The Cambridge

N-Body Lectures, eds. S. J. Aarseth, C. A. Tout, & R. A.

Mardling, 377
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, MNRAS,

444, 1518
Wang, L., Spurzem, R., Aarseth, S., et al. 2015, MNRAS, 450,

4070
Warren, M. S., & Salmon, J. K. 1992, in Proceedings

of the 1992 ACM/IEEE Conference on Supercomputing,

Supercomputing’92 (Los Alamitos: IEEE Computer Society

Press), 570
Winkel, M., Speck, R., Hübner, H., et al. 2012, Computer Physics

Communications, 183, 880


