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Abstract Classical Newtonianf andg series for a Keplerian two-body problem are extended for thecase
of a post-Newtonian two-body problem with parametersβ andγ. These two parameters are introduced to
parameterize the post-Newtonian approximation of alternative theories of gravity and they are both equal to
1 in general relativity. Up to the order of 30, we obtain all of the coefficients of the series in theirexact forms
without any cutoff for significant figures. Thef andg series for the post-Newtonian two-body problem are
also compared with a Runge-Kutta order 7 integrator. Although thef andg series have no superiority in
terms of accuracy or efficiency at the order of 7, the discrepancy in the performances of these two methods
is not quite distinct. However, thef andg series have the advantage of flexibility for going to higher orders.
Some examples of relativistic advance of periastron are given and the effect of gravitational radiation on the
scheme off andg series is evaluated.
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1 INTRODUCTION

In classical Newtonian celestial mechanics, thef andg se-
ries (the Taylor’s series in the time domain) can trace their
history back to Lagrange in 1782. He made use of them to
calculate the power series solution of Keplerian motion up
to fifth order. Since then, a large amount of studies have
been done on them and the series are widely used in orbit
determination, interpolation of states between time steps
and integration of the equations of motion for two bodies.

The radius of convergence of thef andg series for a
Keplerian two-body problem in time intervals was investi-
gated and given by Moulton (1903) and Taff (1985). The
series was explicitly expressed up to 8th order by Escobal
(1965). By developing a computer program which could
generate and manipulate symbolic mathematical expres-
sions, Sconzo et al. (1965) derived explicit expressions for
the coefficients of thef andg series for Keplerian motion
up to 27th order: the integer coefficients of terms up to 12th
are exact; beyond that order, the coefficients are obtained
in floating point form with eight significant figures. Bem
& Szczodrowska-Kozar (1995) gave a table of the coeffi-
cients of thef andg series up to the 20th order and paid
special attention to test the series in highly eccentric orbits.

Thef andg series are also extended to a more general
form. They could be utilized in studies on dynamics of the
restricted 3-body problem (Steffensen 1956, 1957; Rabe
1961; Deprit & Price 1965), theN -body problem (Broucke

1971; Black 1973; Papadakos 1983), motion of comets
(Sitarski 1979), the Solar System planets (Le Guyader
1993; Bem & Szczodrowska-Kozar 1995) and spacecrafts
(Soong & Paul 1971; Sharifi & Seif 2011; Pellegrini et al.
2014).

Recently, thanks to rapid developments in technology
of measurement and metrology, Einstein’s general relativ-
ity (GR) needs to be employed in some cases of astrom-
etry and celestial mechanics. Among them, the relativis-
tic gravitational two-body problem in the parameterized
post-Newtonian (PPN) formalism has been well studied.
In the PPN formalism, some specific parameters are intro-
duced to parameterize the post-Newtonian (PN) approxi-
mation of alternative theories of gravity (see Will 1993,
2006, for reviews). Therefore, as a natural step to gener-
alize the methodology in classic Newtonian celestial me-
chanics to relativistic celestial mechanics, we will try to
obtain thef and g series solutions to a PN two-body
problem with PPN parametersβ andγ. When these two
parameters are both equal to1, the series can return to
those series for a PN two-body problem in GR. We de-
rive the coefficients of these PPNf andg series for the
two-body problem up to the 30th order. All of the co-
efficients areexact and can be found onhttp://www.raa-
journal.org/docs/Supp/2318supplement.rar.

In Section 2, we will present the details of calculating
the f andg series for a PN two-body problem with PPN
parametersβ andγ. The recursion formulas of these series
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will also be given. Numerical validation will be checked by
testing the conservation laws of energy and angular mo-
mentum in the system in Section 3. The comparison be-
tween thef andg series and a Runge-Kutta order 7 (RK7)
integrator will be described as well. In Section 4, we give

some examples of relativistic advance of periastron and
evaluate the effect of gravitational radiation on the scheme
of f andg series for a realistic two-body system. The con-
clusions and discussion will be presented in Section 5.

2 f AND g SERIES OF THE PPN TWO-BODY PROBLEM

In the PPN formalism, the equations of motion for a two-body problem with point massesm1 andm2 can be written as
(Soffel et al. 1987; Brumberg 1991; Will 1993)

d2r

dt2
= aN + aPPN , (1)

wherer is the Euclidian vector fromm2 to m1. With the definitionG = 1 andǫ ≡ c−1, the Newtonian accelerationaN

and the PPN accelerationaPPN are, respectively,

aN = −
m

r3
r, (2)

aPPN = ǫ2
m

r3
r

[

(2β + 2γ + 2η)
m

r
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2
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m
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r

)

v , (3)

wherem = m1 + m2, µ = m1m2/m, η = µ/m andv = dr/dt.
In the accelerationaPPN, we take the PPN parametersβ andγ into account and leave other PPN parameters un-

touched. Within the PPN formalism (see Will 1993, 2006, for reviews),γ describes the amount of space-curvature pro-
duced by unit rest mass; andβ represents the nonlinearity in the superposition law for gravity. They are both equal to1 in
GR. Experiments show their deviations from1 are very small:|γ − 1| . 10−5 (Bertotti et al. 2003) and|β − 1| . 10−4

(Williams et al. 2004).
In the PN two-body problem with PPN parametersβ andγ, there exist integrals of motion: PPN energyE and angular

momentumL (Soffel et al. 1987; Brumberg 1991; Will 1993):
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and

L = µ(r × v)
{

1 + ǫ2
[1

2
v2(1 − 3η) + (2γ + η + 1)

m

r

]}

. (5)

These invariants will be used to check the accuracy of thef andg series (see Section 3.2 for details).
Because the accelerationaPPN only depends on two basis vectorsr andv, like the case in the Newtonian framework

of aN, we can also havef andg series as

r = fr0 + gv0 , (6)

v = ḟr0 + ġv0 , (7)

where dot means taking a derivative with respect to timet, τ ≡ t − t0, r0 = r(t0), v0 = v(t0) and

f =

∞
∑

n=0

1

n!
fn(t0; ǫ

2, β, γ)τn , (8)

g =

∞
∑

n=0

1

n!
gn(t0; ǫ

2, β, γ)τn . (9)

Here, we can see thatf andg must include the relativistic corrections.
The functions offn andgn satisfy the relation as

Dn(r) ≡
dn

dtn
r = fnr + gnv . (10)

For the order ofn + 1, we have
D(n+1)(r) = fn+1r + gn+1v , (11)
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which can also be obtained by taking the derivative as

D(n+1)(r) = D(Dn(r)) = D(fn)r + fnD(r) + D(gn)v + gnD(v) . (12)

With the notations that

u ≡
1

r
, p ≡

r · v

r
, q ≡ v2 , (13)

and with the help of Equation (1), which can be re-expressed as

D(v) = −mu3
r + ǫ2mu3

r

[

(2β + 2γ + 2η)mu − (γ + 3η)q +
3

2
ηp2

]

+ ǫ2(2γ + 2 − 2η)mu2pv , (14)

Equation (12) can also be written as

D(n+1)(r) =
[

D(fn) − mu3gn + ǫ2(2β + 2γ + 2η)m2u4gn − ǫ2(γ + 3η)mu3qgn +
3

2
ǫ2ηmu3p2gn

]

r

+
[

fn + D(gn) + ǫ2(2γ + 2 − 2η)gnmu2p
]

v . (15)

After comparing the above equation with Equation (11), we can work out the recursion formulas of the series as

fn+1 = D(fn) − mu3gn + ǫ2gnmu3
[

(2β + 2γ + 2η)mu − (γ + 3η)q +
3

2
ηp2

]

, (16)

gn+1 = D(gn) + fn + ǫ2(2γ + 2 − 2η)gnmu2p . (17)

By making use of these recursion formulas and the following relations

D(u) = −u2p, (18)

D(p) = −up2 + uq − mu2 + ǫ2mu2
[

(2β + 2γ + 2η)mu − (γ + 3η)q +
3

2
ηp2

]

+ ǫ2(2γ + 2 − 2η)mu2p2 , (19)

D(q) = −2mu2p + ǫ22mu2p
[

(2β + 2γ + 2η)mu − (γ + 3η)q +
3

2
ηp2

]

+ ǫ22(2γ + 2 − 2η)mu2pq , (20)

we calculate the coefficients of thef andg series with the help of the symbolic manipulator MAPLE 1. It is shown that
bothfn andgn can be expressed as

fn =

Kn
∑

k=1

(Akβ + Bkγ + Ckη + Dk)ǫakmbkuckpdkqek , (21)

gn =

K′

n
∑

k=1

(A′

kβ + B′

kγ + C′

kη + D′

k)ǫa′

kmb′
kuc′

kpdkqe′

k . (22)

All these coefficients are obtained in theirexact forms
without cutting at some significant figure. Tables 1 and
2 respectively show these coefficients forfn andgn with
n = 0, 1, · · ·6 as examples. The machine-readable files,
which contain coefficients up to 30th order, can be found
in the Supplementary Files.

EachKn, which is the number of terms in the sum-
mation of fn at the order ofn, has two contributions:
Newtonian partNn and PN partPn, i.e.Kn = Nn + Pn.
For the f series from 0 tonth order, we defineSn =
∑n

k Kk to count the total number of terms in the summa-
tion. It is also true forK ′

n = N ′

n + P ′

n andS′

n =
∑n

k K ′

k.
Figure 1 shows histograms for (1)Nn, Pn andKn (top

panel), (2)N ′

n, P ′

n and K ′

n (middle panel), and (3)Sn,
S′

n andSn + S′

n (bottom panel). They can tell how many
terms need to be calculated in the numerical implementa-
tion, which more or less reflects the runtime for a com-
puter. As a crude estimation, in 1-D motion, if we consider

thef andg series up to 7th order, the total number of the
terms needed to be collected will reach the level of∼ 102

(see the bottom panel of Fig. 1). As a comparison, an RK7
integrator roughly deals with about5×11 = 55 terms: five
terms in the equations of motion [see Eq. (1) or (14)] and
11 terms for calculating the equations of motion (e.g. see
Stoer & Bulirsch 2002, for details). It means that, for a PN
two-body problem, the efficiency of computingf andg se-
ries with the ordern & 7 will be lower than the one of an
RK7 integrator (see the next section for details). Although
the f andg series have this disadvantage, they can go to
high orders more easily than an RK integrator.

3 NUMERICAL EVALUATION

This section presents the results obtained by applying thef
andg series for orbital integration in some different cases.
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Table 1 PPNfn Series forn = 0, 1, · · · , 6 in the Form of Equation (21)

n Ak Bk Ck Dk ak bk ck dk ek

0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 –1 0 1 3 0 0
2 2 2 2 0 2 2 4 0 0
2 0 0 1.5 0 2 1 3 2 0
2 0 –1 –3 0 2 1 3 0 1
3 0 0 0 3 0 1 4 1 0
3 –8 –8 –3 –2 2 2 5 1 0
3 0 0 –7.5 0 2 1 4 3 0
3 0 3 12 0 2 1 4 1 1
4 0 0 0 –2 0 2 6 0 0
4 0 0 0 –15 0 1 5 2 0
4 0 0 0 3 0 1 5 0 1
4 10 12 3 4 2 3 7 0 0
4 48 54 6 24 2 2 6 2 0
4 0 0 52.5 0 2 1 5 4 0
4 –8 –14 –16 –4 2 2 6 0 1
4 0 –15 –82.5 0 2 1 5 2 1
4 0 3 12 0 2 1 5 0 2
5 0 0 0 30 0 2 7 1 0
5 0 0 0 105 0 1 6 3 0
5 0 0 0 –45 0 1 6 1 1
5 –170 –200 –15 –80 2 3 8 1 0
5 –384 –492 –15 –282 2 2 7 3 0
5 0 0 –472.5 0 2 1 6 5 0
5 144 252 225 102 2 2 7 1 1
5 0 105 787.5 0 2 1 6 3 1
5 0 –45 –225 0 2 1 6 1 2
6 0 0 0 –22 0 3 9 0 0
6 0 0 0 –420 0 2 8 2 0
6 0 0 0 –945 0 1 7 4 0
6 0 0 0 66 0 2 8 0 1
6 0 0 0 630 0 1 7 2 1
6 0 0 0 –45 0 1 7 0 2
6 176 220 22 88 2 4 10 0 0
6 2610 3180 –111 1500 2 3 9 2 0
6 3840 5550 210 3660 2 2 8 4 0
6 0 0 5197.5 0 2 1 7 6 0
6 –362 –538 –280 –208 2 3 9 0 1
6 –2304 –4212 –3204 –2112 2 2 8 2 1
6 0 –945 –9450 0 2 1 7 4 1
6 144 342 504 120 2 2 8 0 2
6 0 630 3937.5 0 2 1 7 2 2
6 0 –45 –225 0 2 1 7 0 3
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Fig. 1 Histograms on logarithmic scales for (1)Nn, Pn andKn of thef series (top panel), (2) N ′

n, P ′

n andK′

n of theg series (middle
panel), and (3)Sn of thef series,S′

n of theg series andSn + S′
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Table 2 PPNgn Series forn = 0, 1, · · · , 6 in the Form of Equation (22)

n A′

k B′

k C′

k D′

k a′

k b′k c′k d′k e′k
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
2 0 2 –2 2 2 1 2 1 0
3 0 0 0 –1 0 1 3 0 0
3 2 0 4 –2 2 2 4 0 0
3 0 –6 7.5 –6 2 1 3 2 0
3 0 1 –5 2 2 1 3 0 1
4 0 0 0 6 0 1 4 1 0
4 –16 0 –22 12 2 2 5 1 0
4 0 30 –45 30 2 1 4 3 0
4 0 –12 42 –18 2 1 4 1 1
5 0 0 0 –8 0 2 6 0 0
5 0 0 0 –45 0 1 5 2 0
5 0 0 0 9 0 1 5 0 1
5 38 24 37 –8 2 3 7 0 0
5 144 12 174 –78 2 2 6 2 0
5 0 –210 367.5 –210 2 1 5 4 0
5 –24 –8 –98 26 2 2 6 0 1
5 0 135 –427.5 180 2 1 5 2 1
5 0 –9 54 –18 2 1 5 0 2
6 0 0 0 150 0 2 7 1 0
6 0 0 0 420 0 1 6 3 0
6 0 0 0 –180 0 1 6 1 1
6 –820 –536 –554 64 2 3 8 1 0
6 –1536 –288 –1860 552 2 2 7 3 0
6 0 1890 –3780 1890 2 1 6 5 0
6 576 216 1962 –444 2 2 7 1 1
6 0 –1680 5250 –2100 2 1 6 3 1
6 0 270 –1350 450 2 1 6 1 2

The validation of the series is checked. Its computational
efficiency is compared with an RK7 integrator.

All numerical calculations in this work use the C com-
piler of the GNU Compiler Collection (GCC) v4.6.0 on a
Linux Fedora 15 laptop with a quad-core Intel Core i5 CPU
with 2.50 GHz clock speed and 2.8 GB of RAM.

3.1 Setup

In our simulations, we use geometrized units by setting
G = 1 and c = 1 so that a quantity in terms of length
can be expressed by mass (Wald 1984). Also, we only con-
sider the cases belonging to GR after puttingβ = γ = 1.
Since the angular momentum of the PN two-body system
is conserved, its 3-D motion can be reduced to a planar
one.

This 2-D motion can be described by the Cartesian co-
ordinates(x, y, vx, vy) or the osculating orbital elements
a, e, ω andf at a specific moment, wherea is the semi-
major axis,e is the eccentricity,ω is the argument of peri-
astron andf is the true anomaly. We also defineT0 as its
Keplerian period, which will be used to rescale the time.

Three configurations of orbits will be studied:

– A Mercury-like orbit (Orb-M) withβm ≡ m1/m2 =
1.660137512 × 10−7. At the initial momentt0, a =
3.92172873 × 107m, e = 0.20563593, ω = 0 and
f = 3

2π, wherem = m1 + m2.
– An Earth-like orbit (Orb-E) with βm =

3.003489650 × 10−6. At the initial moment t0,

a = 1.013103847 × 108m, e = 0.01671123, ω = 0
andf = 3

2π, wherem = m1 + m2.
– A binary pulsar PSR 0737–3039-like orbit (Orb-P)

with βm = 0.8129804694. At the initial momentt0,
a = 2.300539153 × 105m, e = 0.0877775, ω = 0
andf = 3

2π, wherem = m1 + m2.

Orb-M has a relatively large eccentricity; Orb-P has
a mass ratioβm close to1 and a smaller semimajor axis,
leading to a larger relativistic correction. In fact, the rela-
tivistic periastron advances in the binary pulsar PSR 0737–
3039 (Kramer et al. 2006) can exceed the corresponding
value for Mercury by a factor of∼ 105.

3.2 Accuracy Check: Integrals of Motion

Integrals of motion play an important role in numerical cal-
culations. Although Huang & Innanen (1983) pointed out
that variation of the conserved integral invariants occasion-
ally might not reflect errors in the integration, the accuracy
of the method of integration can still roughly be shown
by the change of an invariant. We calculate variations of
the conserved PPN energyE [see Eq. (4)] and the con-
served magnitude of the PPN angular momentumL [see
Eq. (5)] as

δE ≡ log10

(

∣

∣

E − E0

E0

∣

∣

)

, (23)

δL ≡ log10

(

∣

∣

L − L0

L0

∣

∣

)

, (24)

whereE0 = E(t0), L = |L| andL0 = |L(t0)|.
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Fig. 2 Variations ofδE (left column) andδL (right column) for Orb-M (top row), Orb-E (middle row) and Orb-P (bottom row) versus
time t. The origins of all time coordinates are chosen to coincide at t0 and the timest are represented in the unit of the Keplerian
period of the systemT0. The labels of “FGn, N ” mean the curves are calculated by thef andg series up to the order ofn and with the
step-sizes ofT0/N . The notation “RKn, N ” means that this has the same order and step-size as those with “FGn, N ” except for the
usage of an RK7 integrator.

Figure 2 shows the variations ofδE (left) and δL
(right) for Orb-M (top row), Orb-E (middle row) and Orb-P
(bottom row) versus timet. The origins of all time coordi-
nates are chosen to coincide att0 and the timest are rep-

resented in the unit of the Keplerian period of each system
T0. The labels of “FGn,N ” mean the curves are calculated
by the f andg series up to the order ofn and with the
step-size ofT0/N . The notation “RKn,N ” means that this
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Fig. 3 Runtime of the curves in Figure 2 for Orb-M (top row), Orb-E (middle row) and Orb-P (bottom row) with various methods,
orders and step-sizes. The labels of “FGn, N ” mean the usage of thef andg series up to the order ofn and with the step-sizes of
T0/N . The notation “RKn, N ” means that this has the same order and step-size as those with “FGn, N ” except for the usage of an
RK7 integrator.

has the same order and step-size as those with “FGn,N ”
except for the usage of an RK integrator.

All of the figures show, at the same ordern = 7
and with the same step-sizes, the accuracy of thef and
g series is worse than that for the RK integrator by about
two orders of magnitude. Although Pellegrini et al. (2014)
did not directly show the same figures as ours, the maxi-
mum change and the root-mean-square of the change in the
Hamiltonian (energy) for an unperturbed Keplerian two-
body problem by different methods of orbital propagation
under Sundman transformations were given [see fig. 4 in
Pellegrini et al. (2014)]. Just like we find, it was shown by
Pellegrini et al. (2014) that, with the same step-sizes, the
maximum change and the root-mean-square of the change
in Hamiltonian caused by RK8 were smaller than those of
the f andg series of order 8 by about 2 orders of mag-
nitude. When we use higher orders of thef andg series,
such as the order of 9 for Orb-M in the top row of Figure 2
and the orders of 8 and 9 for Orb-E in the middle row of
Figure 2, the accuracy can be improved to the level close to
or better than that provided by RK7. The accuracy of Orb-
E is more easily improved than the one of Orb-M because
the relativistic correction to Orb-E is smaller. However,
this tendency of improvement by increasing the order of
f andg series does not work on Orb-P in the bottom row
of Figure 2. It perhaps may be caused by its mass ratio∼ 1,
which can enlarge the relativistic correction in Equation (1)
by an increment ofη in theaPPN.

3.3 Computational Efficiency: Runtime Comparisons

In order to compare the runtime of thef andg series and
the RK7 integrator, we use the functionsCLOCK T and
CLOCKS PER SEC in the C compiler to return the CPU
time in seconds.

As Figure 1 indicates, the lower efficiency of comput-
ing f and g series has ordern & 7. The results shown
in Figure 3 quantitatively confirm this. Figure 3 presents
runtime of the curves in Figure 2 for Orb-M (top row),
Orb-E (middle row) and Orb-P (bottom row) with various
methods, orders and step-sizes. The labels of “FGn, N ”
mean the usage of thef andg series up to the order of
n and with the step-sizes ofT0/N . The notation “RKn,
N ” means that this has the same order and step-size as
those with “FGn, N ” except for the usage of an RK7 in-
tegrator. We find that the RK7 integrator is more efficient
than thef andg series in our numerical simulations on the
PN two-body problems although this statement is opposite
for Newtonian (Keplerian) two-body problems (Pellegrini
et al. 2014). The reason is that the PN correction in the
equations of motion [Eq. (1)] generates quite a lot of terms
in thef andg series. Despite suffering low efficiency, the
flexibility of going to higher orders is the advantage of the
f andg series in the PN two-body problem.

4 ASTROPHYSICAL APPLICATIONS

In this section, we will discuss applications of thef andg
series in astrophysics: relativistic advance of periastron and
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some concerns about the effect of gravitational radiation
on the scheme off andg series for a realistic two-body
system.

4.1 Advance of periastron

Relativistic advance of periastron is one of the most impor-
tant features of a two-body problem in the framework of
GR. In fact, the anomaly in the perihelion shift of Mercury
(Nobili & Will 1986) gave a hint about GR and these ad-
vances of planets in the solar system have been used to test
fundamental laws of physics (e.g. Iorio & Saridakis 2012;
Iorio 2013; Xie & Deng 2013; Iorio 2014a,b; Li et al. 2014;
Deng & Xie 2014; Liang & Xie 2014; Liu et al. 2014; Deng
& Xie 2015a,b). It is also true for binary pulsars, whose
advances of periastron are widely used for testing gravi-
tational laws (e.g. Bell et al. 1996; Damour & Esposito-
Farèse 1996; Kramer et al. 2006; Iorio 2007; Deng et al.
2009; Li 2010; Deng 2011; Li 2011; De Laurentis et al.
2012; Ragos et al. 2013; Xie 2013; Lu et al. 2014).

We take the results of Orb-M and Orb-P calculated by
“FG7,100”, “FG8,100, FG9,100” and “RK7,100” as exam-
ples for calculating the advance of periastron. The (oscu-

lating) argument of periastronω is obtained at each step
for each run and then the time series ofω is fitted accord-
ing to a linear patternω = ω0 + ω̇t to show its rate, i.e.
ω̇ ≡ dω/dt. GR predicts that, up to the 1PN order, it has
the value of (Misner et al. 1973; Landau & Lifshitz 1975;
Brumberg 1991)

ω̇ = 3
(T0

2π

)

−5/3

(Gm)2/3c−2(1 − e2)−1 . (25)

Table 3 shows the fitted values ofω̇ of Orb-M and
Orb-P by the schemes of “FGn,100” (n = 7, 8, 9) and
“RK7,100”. The theoretical values predicted by GR are
also given. As has been shown in Section 3.2 for the case
of Orb-M, when we use the higher orders of thef andg se-
ries, the calculated value ofω̇ will be effectively improved
and will be closer to the theoretical value. The scheme of
“FG9,100” gives a better value oḟω of Orb-M than the
method of “RK7,100”. In the case of Orb-P, although the
trend of improvement with higher orders can still be found
for thef andg series, its efficiency becomes lower than the
one in the case of Orb-M and the method of “RK7,100”
performs better, like what we have found in Section 3.2.

4.2 Gravitational radiation

For a realistic two-body system in the framework of GR, it emits gravitational radiation, causing its orbit to shrink (Misner
et al. 1973; Landau & Lifshitz 1975). Due to the gravitational radiation,a ande will decay such that (Brumberg 1991):

da

dt
= −

64

5

G3m1m2m

c5a3(1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4

)

, (26)

de

dt
= −

1

15

G3m1m2m

c5a4(1 − e2)5/2
e(304 + 121e2) . (27)

The energy and angular momentum dissipate as well; up to the leading order, they change as (Brumberg 1991)

1

E

dE

dt
= −

64

5

G3m1m2m

c5a4(1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4

)

, (28)

1

L

dL

dt
= −

4

5

G3m1m2m

c5a4(1 − e2)5/2
(8 + 7e2) . (29)

As rough estimates, we can have that

∆EGW ≡ log10

(∣

∣

∣

E − E0

E0

∣

∣

∣

)

GW
≈ log10

[( 1

E

dE

dt

)

NET0

]

, (30)

∆LGW ≡ log10

(
∣

∣

∣

L − L0

L0

∣

∣

∣

)

GW
≈ log10

[( 1

L

dL

dt

)

NLT0

]

, (31)

whereNE andNL are the two numbers representing Keplerian periods. Figure2 shows the variation ofδE and δL
for Orb-M, Obr-E and Orb-P. It is necessary to know when the dissipation caused by the gravitational radiation can
become comparable with the one due to the truncation error ofthef andg series indicated by Figure 2. If we assume
∆EGW ∼ ∆LGW ∼ −10, it can be found that (1)NE ∼ NL ∼ 1015 for the case of Orb-M, (2)NE ∼ NL ∼ 1015

for Orb-E, and (3)NE ∼ NL ∼ 300 for Orb-P. It means that, in the cases of planetary orbits like Orb-M and Orb-E, the
gravitation radiation will not affect the validity of thef andg series because the dissipation due to gravitational radiation
is much smaller than the truncation error of thef andg series in the time span∼ 1015T0. However, since the gravitational
radiation will quickly become significant in compact binaries like Orb-P, the validities of thef andg series and 1PN
approximation need to be carefully checked in their long-term dynamical evolution.
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Table 3 Relativistic Advance of Periastron of Orb-M and Orb-P

Orb-M Orb-P
ω̇ (as cy−1) ω̇ (◦ yr−1)

FG7,100 41.8898808 16.8964479
FG8,100 42.9750568 16.8976391
FG9,100 42.9800189 16.8976418
RK7,100 42.9792988 16.8976420
GRa 42.9804651 16.8994880

Notes:a Theoretical values calculated by Equation (25).

5 CONCLUSIONS AND DISCUSSION

In this work, we derive thef andg series for a PN two-
body problem with PPN parametersβ and γ up to the
order of 30. All of the coefficients areexact without any
cutoff for significant figures. Tables 1 and 2 respectively
show these coefficients forfn andgn with n = 0, 1, · · · , 6
as examples. The machine-readable files, which contain
the coefficients up to 30th order, can be found in the
Supplementary Files.

Thef andg series are compared with an RK7 integra-
tor in the aspects of accuracy (see Fig. 2) and efficiency
(see Fig. 3). We find that, at the same ordern = 7 and
with the same step-sizes, the accuracy of thef andg se-
ries is worse than the one of the RK integrator by about 2
orders of magnitude; and when the higher orders are used,
the accuracy can be improved to the level close to or better
than the one of the RK7 integrator. The efficiency of thef
andg series is lower than the one of the RK7 integrator at
the same order because the series has more terms to deal
with in the calculation (see Fig. 1). However, the flexibility
of going to higher orders is the advantage of thef andg
series in the PN two-body problem.

Astrophysical applications of thef and g series are
discussed. Some examples of relativistic advance of perias-
tron are given. We find that, in the case of planetary orbits,
when we use the higher order of thef andg series, the cal-
culated value oḟω will be effectively improved and will be
closer to the theoretical value of GR. In the case of a com-
pact binary, although the trend of improvement with higher
order can still be found for thef andg series, its efficiency
becomes lower. The effect of gravitational radiation on the
scheme off and g series is evaluated as well. Our esti-
mations indicate that, in the cases of planetary orbits, the
gravitational radiation will not affect the validity of thef
andg series in the time span∼ 1015T0. However, since
the gravitational radiation will quickly become significant
in compact binaries, the validities of thef andg series and
1PN approximation need to be carefully checked in their
long-term dynamical evolution.

One important issue, which we do not touch on in
this work and we will work on in our next investiga-
tion, is regularization of the problem (see Mikkola 2008,
for a brief review and references therein). The PN per-
turbation on the motion of Keplerian two-body prob-
lem is velocity-dependent and algorithmic regularization
(Mikkola & Merritt 2006) might be applied to it.
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