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Abstract Classical Newtoniarf andg series for a Keplerian two-body problem are extended foctse

of a post-Newtonian two-body problem with parametéasnd~. These two parameters are introduced to
parameterize the post-Newtonian approximation of altar@sheories of gravity and they are both equal to
1in general relativity. Up to the order of 30, we obtain allloé ttoefficients of the series in thekact forms
without any cutoff for significant figures. Theandg series for the post-Newtonian two-body problem are
also compared with a Runge-Kutta order 7 integrator. Algiothe f andg series have no superiority in
terms of accuracy or efficiency at the order of 7, the disanepan the performances of these two methods
is not quite distinct. However, theandg series have the advantage of flexibility for going to higheieos.
Some examples of relativistic advance of periastron arergand the effect of gravitational radiation on the
scheme off andg series is evaluated.
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1 INTRODUCTION 1971; Black 1973; Papadakos 1983), motion of comets

(Sitarski 1979), the Solar System planets (Le Guyader
In classical Newtonian celestial mechanics, frendg se-  1993; Bem & Szczodrowska-Kozar 1995) and spacecrafts
ries (the Taylor’s series in the time domain) can trace thei(Soong & Paul 1971; Sharifi & Seif 2011; Pellegrini et al.
history back to Lagrange in 1782. He made use of them t@014).

calgulate the power series solution of Keplerian mption UP  Recently, thanks to rapid developments in technology
to fifth order. Since then, a large amount of studies havgt measurement and metrology, Einstein’s general relativ-
been dpne.on them and _the series are widely us.ed in orkqﬁ, (GR) needs to be employed in some cases of astrom-
determination, interpolation of states between time stepgiry and celestial mechanics. Among them, the relativis-
and integration of the equations of motion for two bodies. ¢ gravitational two-body problem in the parameterized

The radius of convergence of thfeandg series for a  post-Newtonian (PPN) formalism has been well studied.
Keplerian two-body problem in time intervals was investi- In the PPN formalism, some specific parameters are intro-
gated and given by Moulton (1903) and Taff (1985). Theduced to parameterize the post-Newtonian (PN) approxi-
series was explicitly expressed up to 8th order by Escobahation of alternative theories of gravity (see Will 1993,
(1965). By developing a computer program which could2006, for reviews). Therefore, as a natural step to gener-
generate and manipulate symbolic mathematical expresdize the methodology in classic Newtonian celestial me-
sions, Sconzo et al. (1965) derived explicit expressions fochanics to relativistic celestial mechanics, we will try to
the coefficients of th¢ andg series for Keplerian motion obtain the f and g series solutions to a PN two-body
up to 27th order: the integer coefficients of terms up to 12tlproblem with PPN parametefs and~. When these two
are exact; beyond that order, the coefficients are obtainguarameters are both equal to the series can return to
in floating point form with eight significant figures. Bem those series for a PN two-body problem in GR. We de-
& Szczodrowska-Kozar (1995) gave a table of the coeffitive the coefficients of these PPNand g series for the
cients of thef andg series up to the 20th order and paid two-body problem up to the 30th order. All of the co-
special attention to test the series in highly eccentrig¢erb efficients areexact and can be found ohttp://mwww.raa-

The f andg series are also extended to a more generdPUrnal.org/docs/Supp/2318supplement.rar.
form. They could be utilized in studies on dynamics of the  In Section 2, we will present the details of calculating
restricted 3-body problem (Steffensen 1956, 1957; Rabthe f andg series for a PN two-body problem with PPN
1961; Deprit & Price 1965), th&-body problem (Broucke parameterg and~. The recursion formulas of these series
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will also be given. Numerical validation will be checked by some examples of relativistic advance of periastron and
testing the conservation laws of energy and angular moevaluate the effect of gravitational radiation on the schem
mentum in the system in Section 3. The comparison beef f andg series for a realistic two-body system. The con-
tween thef andg series and a Runge-Kutta order 7 (RK7) clusions and discussion will be presented in Section 5.
integrator will be described as well. In Section 4, we give

2 f AND g SERIES OF THE PPN TWO-BODY PROBLEM

In the PPN formalism, the equations of motion for a two-bodybtem with point masses; andms can be written as

(Soffel et al. 1987; Brumberg 1991; Will 1993)
d2
Pl aN + appN , 1)

wherer is the Euclidian vector fromn, to m4. With the definitionG = 1 ande = ¢!, the Newtonian acceleratiany
and the PPN acceleratiappy are, respectively,

aN = _Tgra (2)
2
m m 3 ([r-v mi{r-v
aPPN:62r_3'r (25+27+2n)7—(7+3n)v2+§77(—r ) }+62(27+2—2n)r—2<—r )v, ©))

wherem = my + ma, p = myms/m, n = p/m andv = dr/dt.

In the acceleratiomppy, we take the PPN parametetsand~ into account and leave other PPN parameters un-
touched. Within the PPN formalism (see Will 1993, 2006, ®riews),y describes the amount of space-curvature pro-
duced by unit rest mass; apidepresents the nonlinearity in the superposition law fariy. They are both equal tbin
GR. Experiments show their deviations frdnare very smalljy — 1| < 10~5 (Bertotti et al. 2003) an¢l3 — 1| < 10~*
(Williams et al. 2004).

In the PN two-body problem with PPN paramet@mand~, there exist integrals of motion: PPN eneifgyand angular
momentumL (Soffel et al. 1987; Brumberg 1991; Will 1993):

NS ANEY & PPN | om 1 omreon2 1 m?
E—u(zv T)—i—,ue{S(l 3ot + 527+ 1+ s +2’7r( - ) +5@-D @
and
L:u(r><v){l—i—eQ[va(l—377)—!—(274—77—1-1)@}} )
2 rl)’

These invariants will be used to check the accuracy offthadg series (see Section 3.2 for details).
Because the acceleratiappyn only depends on two basis vectarandw, like the case in the Newtonian framework
of ax, we can also hav¢ andg series as
r = fro+gvo, (6)
v = fro+ gvo, (7)

where dot means taking a derivative with respect to time= ¢ — to, 7o = r(to), vo = v(t9) and

f = Z%fﬂ(tO;EQaﬁaW)Tna (8)
n=0

g =3 Sonlto; e 5" ©)
n=0

Here, we can see thgtandg must include the relativistic corrections.
The functions off,, andg,, satisfy the relation as

n

D"(r) = Fretie S + gnv. (20)

For the order of: + 1, we have
DU (r) = fuir + gy, (11)
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which can also be obtained by taking the derivative as
DV (r) = D(D"(r)) = D(fa)r + fuD(r) + D(ga)v + guD(v). (12)
With the notations that

u =

, pP= , q=v7, (13)

1 v 9
r r

and with the help of Equation (1), which can be re-expressed a

3
D(v) = —mu’r + Emu’r [(25 + 2y 4+ 2n)mu — (v 4+ 3n)g + 577]92} + 22y + 2 — 2n)mu’pv, (14)

Equation (12) can also be written as

3
DD (p) = [D(fn) — mug, + € (28 + 2y + 2n)m*u’g, — (v + 3n)muqg, + 562nmu3p29n} r

+[fu+ Dlgn) + (27 +2 = 2m)gumup|v. (15)

After comparing the above equation with Equation (11), wewark out the recursion formulas of the series as
3

ﬁwl:DUM—mﬁ%+3%mﬁ“%+?wﬁmmW%v+%M+§wﬂ, (16)

gnt1 = D(gn) + fn + €(27 +2 = 2n)gamu’p. (17)

By making use of these recursion formulas and the followeigtions
D(u) = —u?p, (18)
3
D(p) = —up® +ugq — mu® + mu? [(% + 27 + 2n)mu — (v + 3n)g + 5771)2} +€(2y +2 = 2n)mup?, (19)

3
D(q) = —2mu’p + €22mu’p {(25 + 2y 4+ 2n)mu — (v 4+ 3n)g + 577]92} + 622(2’}/ +2— 277)mu2pq, (20)

we calculate the coefficients of thieandg series with the help of the symbolic manipulatorMLE 2. It is shown that
both f,, andg,, can be expressed as

K,

fu = S (AkB+ By + Crp + Dy mbeucepfeges (21)
k=1
K,

gn = Y (A}B+ Bpy + Cin + Dy)esmPruhpe g . (22)
k=1

All these coefficients are obtained in theixact forms  the f andg series up to 7th order, the total number of the
without cutting at some significant figure. Tables 1 andterms needed to be collected will reach the levelof0?
2 respectively show these coefficients forandg, with  (see the bottom panel of Fig. 1). As a comparison, an RK7
n = 0,1,---6 as examples. The machine-readable filesjntegrator roughly deals with abolit 11 = 55 terms: five
which contain coefficients up to 30th order, can be founderms in the equations of motion [see Eq. (1) or (14)] and
in the Supplementary Files. 11 terms for calculating the equations of motion (e.g. see
Each K,,, which is the number of terms in the sum- Stoer & Bulirsch 2002, for details). It means that, for a PN
mation of f,, at the order ofn, has two contributions: two-body problem, the efficiency of computirfgandg se-
Newtonian partV,, and PN part?,, i.e. K,, = N,, + P,.  ries with the order. 2 7 will be lower than the one of an
For the f series from 0 tonth order, we defineS,, =  RK7 integrator (see the next section for details). Although
> K to count the total number of terms in the summa-the f and g series have this disadvantage, they can go to
tion. Itis also true fok], = N}, + P, andS), = > K;.  high orders more easily than an RK integrator.
Figure 1 shows histograms for (&),, P,, andK,, (top
panel), (2)N}, P, and K/, (middle panel), and (3f,,
S! andsS,, + S/, (bottom panel). They can tell how many 3 NUMERICAL EVALUATION
terms need to be calculated in the numerical implementa-
tion, which more or less reflects the runtime for a com-This section presents the results obtained by applying the
puter. As a crude estimation, in 1-D motion, if we considerandg series for orbital integration in some different cases.
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Table 1 PPNf,, Series fom = 0,1, --- , 6 in the Form of Equation (21)

n Ak Bk Ck Dk ag bk Ck dk €k
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 -1 0 1 3 0 0
2 2 2 2 0 2 2 4 0 0
2 0 0 15 0 2 1 3 2 0
2 0 -1 -3 0 2 1 3 0 1
3 0 0 0 3 0 1 4 1 0
3 -8 -8 -3 -2 2 2 5 1 0
3 0 0 —7.5 0 2 1 4 3 0
3 0 3 12 0 2 1 4 1 1
4 0 0 0 -2 0 2 6 0 0
4 0 0 0 -15 0 1 5 2 0
4 0 0 0 3 0 1 5 0 1
4 10 12 3 4 2 3 7 0 0
4 48 54 6 24 2 2 6 2 0
4 0 0 52.5 0 2 1 5 4 0
4 -8 -14 -16 —4 2 2 6 0 1
4 0 -15 -82.5 0 2 1 5 2 1
4 0 3 12 0 2 1 5 0 2
5 0 0 0 30 0 2 7 1 0
5 0 0 0 105 0 1 6 3 0
5 0 0 0 —45 0 1 6 1 1
5 =170 -200 -15 -80 2 3 8 1 0
5 —384 —492 -15 —282 2 2 7 3 0
5 0 0 —472.5 0 2 1 6 5 0
5 144 252 225 102 2 2 7 1 1
5 0 105 787.5 0 2 1 6 3 1
5 0 —45 —225 0 2 1 6 1 2
6 0 0 0 —22 0 3 9 0 0
6 0 0 0 —420 0 2 8 2 0
6 0 0 0 -945 0 1 7 4 0
6 0 0 0 66 0 2 8 0 1
6 0 0 0 630 0 1 7 2 1
6 0 0 0 —45 0 1 7 0 2
6 176 220 22 88 2 4 10 0 0
6 2610 3180 -111 1500 2 3 9 2 0
6 3840 5550 210 3660 2 2 8 4 0
6 0 0 5197.5 0 2 1 7 6 0
6 -362 -538 —280 -208 2 3 9 0 1
6 —2304 | 4212 -3204 | -2112 2 2 8 2 1
6 0 -945 -9450 0 2 1 7 4 1
6 144 342 504 120 2 2 8 0 2
6 0 630 3937.5 0 2 1 7 2 2
6 0 —45 —225 0 2 1 7 0 3
o T 1 T T T T T T T T T T 11
2 P ATy | -
K, —
1 4
5 —
£ 2f -
2 Ky
g 1 T
g
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Fig. 1 Histograms on logarithmic scales for (&4),, P, and K, of the f series {op panel), (2) N,,, P, and K, of the g series fiddle
panel), and (3)S,, of the f series,S,, of theg series ands,, + S;, (bottom panel).
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Table 2 PPNy, Series fom = 0,1, --- , 6 in the Form of Equation (22)

n A A o/ Dy [ ap | b [ o [ d | ¢
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
2 0 2 -2 2 2 1 2 1 0
3 0 0 0 -1 0 1 3 0 0
3 2 0 4 -2 2 2 4 0 0
3 0 —6 7.5 —6 2 1 3 2 0
3 0 1 -5 2 2 1 3 0 1
4 0 0 0 6 0 1 4 1 0
4 -16 0 —22 12 2 2 5 1 0
4 0 30 —-45 30 2 1 4 3 0
4 0 -12 42 —-18 2 1 4 1 1
5 0 0 0 -8 0 2 6 0 0
5 0 0 0 —45 0 1 5 2 0
5 0 0 0 9 0 1 5 0 1
5 38 24 37 -8 2 3 7 0 0
5 144 12 174 —78 2 2 6 2 0
5 0 -210 367.5 -210 2 1 5 4 0
5 -24 -8 -98 26 2 2 6 0 1
5 0 135 —427.5 180 2 1 5 2 1
5 0 -9 54 -18 2 1 5 0 2
6 0 0 0 150 0 2 7 1 0
6 0 0 0 420 0 1 6 3 0
6 0 0 0 -180 0 1 6 1 1
6 -820 -536 -554 64 2 3 8 1 0
6 —1536 —288 —1860 552 2 2 7 3 0
6 0 1890 -3780 1890 2 1 6 5 0
6 576 216 1962 —444 2 2 7 1 1
6 0 -1680 5250 —-2100 2 1 6 3 1
6 0 270 —-1350 450 2 1 6 1 2

The validation of the series is checked. Its computational a = 1.013103847 x 108m, e = 0.01671123, w = 0
efficiency is compared with an RK7 integrator. andf = %w, wherem = my + mao.

All numerical calculations in this work use the C com- — A binary pulsar PSR 0737-3039-like orbit (Orb-P)
piler of the GNU Compiler Collection (GCC) v4.6.0 on a with 3,, = 0.8129804694. At the initial momentt,

Linux Fedora 15 laptop with a quad-core Intel Corei5CPU  a = 2.300539153 x 105m, e = 0.0877775, w = 0

with 2.50 GHz clock speed and 2.8 GB of RAM. andf = 2x, wherem = my + mo.
Orb-M has a relatively large eccentricity; Orb-P has
3.1 Setup a mass ratigd,, close tol and a smaller semimajor axis,

In our simulations. we use geometrized units by settin leading to a larger relativistic correction. In fact, théare
' 9 y Yivistic periastron advances in the binary pulsar PSR 0737—

G = 1 andc = 1 so that a quantity in terms of length :
can be expressed by mass (Wald 1984). Also, we only ConI§039 (Kramer et al. 2006) can exceed the corresponding

5
sider the cases belonging to GR after puttihg- v = 1. value for Mercury by a factor ot 10°.
Since the angular momentum of the PN two-body syste
is conserved, its 3-D motion can be reduced to a plana

one. ) . ) Integrals of motion play an importantrole in numerical cal-
‘This 2-D motion can be described by the Cartesian cogyations. Although Huang & Innanen (1983) pointed out

ordinates(z, y, v., vy) Or the osculating orbital elements that variation of the conserved integral invariants ocmasi

a, e, w and f at a specific moment, whereis the semi- 51y might not reflect errors in the integration, the accyrac

major axis¢ is the eccentricityw is the argument of peri-  of the method of integration can still roughly be shown

astron andf is the true anomaly. We also defifig as its  py the change of an invariant. We calculate variations of

Keplerian period, which will be used to rescale the time. e conserved PPN enerdy [see Eq. (4)] and the con-

.2 Accuracy Check: Integrals of Motion

Thl’ee Conﬁgurations Of OrbitS W|” be Studied: Served magnitude Of the PPN angu'ar momenﬁd@ee
Eq. (5)] as
— A Mercury-like orbit (Orb-M) with,,, = m1/mq = E—E,
1.660137512 x 10~7. At the initial momentty, a — SE = logy, (\ - y), (23)
3.92172873 x 10"m, e = 0.20563593, w = 0 and I OL
f = %r, wherem = my + ms. 5L = logy (\_70 ) (24)
— An Earth-like orbit (Orb-E) with 8,, = Lo

3.003489650 x 107°. At the initial momentt,, whereE, = E(t), L = |L| andLy = |L(to)|.
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Fig. 2 Variations of§ E (left column) andé L (right column) for Orb-M (top row), Orb-E (niddle row) and Orb-P ijottom row) versus
time ¢t. The origins of all time coordinates are chosen to coincid& and the timeg are represented in the unit of the Keplerian
period of the systerify. The labels of “FG, N” mean the curves are calculated by thandg series up to the order of and with the
step-sizes of , /N. The notation “Rk:, N” means that this has the same order and step-size as thds&R@it, N” except for the
usage of an RK7 integrator.

Figure 2 shows the variations ofF (left) and oL

200

resented in the unit of the Keplerian period of each system

(right) for Orb-M (top row), Orb-E (middle row) and Orb-P 7. The labels of “F@&,N” mean the curves are calculated

(bottom row) versus time The origins of all time coordi-
nates are chosen to coincidetgtand the timeg are rep-

by the f and g series up to the order of and with the
step-size offy/N. The notation “Rke, N means that this
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Fig. 3 Runtime of the curves in Figure 2 for Orb-Mop row), Orb-E (middle row) and Orb-P ottom row) with various methods,
orders and step-sizes. The labels of 1EGV” mean the usage of thg and g series up to the order af and with the step-sizes of
To/N. The notation “Rk:, N” means that this has the same order and step-size as thds&R@it, N” except for the usage of an
RK7 integrator.

has the same order and step-size as those witm;NG 3.3 Computational Efficiency: Runtime Comparisons

except for the usage of an RK integrator. ) ]
In order to compare the runtime of thfeandg series and

the RK7 integrator, we use the functionsoCK_T and

All of the figures show, at the same order = 7 | ocKs PER SEC in the C compiler to return the CPU
and with the same step-sizes, the accuracy offttend 4 in seconds.

g series is worse than that for the RK integrator by about 5 Figure 1 indicates, the lower efficiency of comput-
two orders of magnitude. Although Pellegrini et al. (2014)ing f and g series has order > 7. The results shown

did not directly show the same figures as ours, the m_axil-n Figure 3 quantitatively confirm this. Figure 3 presents
mum change and the root-mean-square of the changemtl;:gntime of the curves in Figure 2 for Orb-M (top row),

Hamiltonian (energy) for an unperturbed Keplerian two-g, £ (middie row) and Orb-P (bottom row) with various
body problem by different methods of orbital propaganonmethods, orders and step-sizes. The labels ofiiF@”

under Sundman transformations were given [see fig.4 in -0 the usage of the and ¢ series up to the order of
Pellegrini et al. (2014)]. Just like we find, it was shown by o4 \vith the step-sizes df,/N. The notation “Rka
Pellegrini et al. (2014) that, with the same step-sizes, th&;» ,aans that this has the same order and step-size as

maximum change and the root-mean-square of the changgﬁose with “FGi, N” except for the usage of an RK7 in-

in Hamiltonian caused by RK8 were smaller than those Ofeqator. We find that the RK7 integrator is more efficient
the f andg series of order 8 by about 2 orders of mag-an thef andg series in our numerical simulations on the
nitude. When we use higher ord_ers of thandg SEres, - py two-body problems although this statement is opposite
such as the order of 9 for Orb-Min th? top row of Figure 2¢, Newtonian (Keplerian) two-body problems (Pellegrini
and the orders of 8 and 9 for Orb-E in the middle row ofey 5, 5014). The reason is that the PN correction in the

Figure 2, the accuracy can be improved to the level close t8quations of motion [Eq. (1)] generates quite a lot of terms

or better than that provided by RK7. The accuracy of Orb-In the f andg series. Despite suffering low efficiency, the

E is more easily improved than the one of Orb-M becausgg,ipjiity of going to higher orders is the advantage of the
the relativistic correction to Orb-E is smaller. However,ff andg series in the PN two-body problem.

this tendency of improvement by increasing the order o
f andg series does not work on Orb-P in the bottom rows, ASTROPHYSICAL APPLICATIONS

of Figure 2. It perhaps may be caused by its mass ratiQ

which can enlarge the relativistic correction in Equatibn ( In this section, we will discuss applications of tfi@ndg
by an increment ofy in theappx. series in astrophysics: relativistic advance of periasard
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some concerns about the effect of gravitational radiatiomating) argument of periastron is obtained at each step
on the scheme of andg series for a realistic two-body for each run and then the time series.ois fitted accord-

system. ing to a linear pattery = wy + wt to show its rate, i.e.
w = dw/dt. GR predicts that, up to the 1PN order, it has

Brumberg 1991)

Relativistic advance of periastron is one of the most impor- TN —5/3
tant features of a two-body problem in the framework of o= 3(_0) (Gm)2/3072(1 —e?) . (25)
GR. In fact, the anomaly in the perihelion shift of Mercury ™
(Nobili & Will 1986) gave a hint about GR and these ad-  Table 3 shows the fitted values of of Orb-M and
vances of planets in the solar system have been used to t€sib-P by the schemes of “FG100” (n = 7,8,9) and
fundamental laws of physics (e.qg. lorio & Saridakis 2012;*“RK7,100”. The theoretical values predicted by GR are
lorio 2013; Xie & Deng 2013; lorio 2014a,b; Lietal. 2014; also given. As has been shown in Section 3.2 for the case
Deng & Xie 2014; Liang & Xie 2014; Liu etal. 2014; Deng of Orb-M, when we use the higher orders of thandg se-
& Xie 2015a,b). It is also true for binary pulsars, whoseries, the calculated value ofwill be effectively improved
advances of periastron are widely used for testing graviand will be closer to the theoretical value. The scheme of
tational laws (e.g. Bell et al. 1996; Damour & Esposito-“FG9,100” gives a better value of of Orb-M than the
Farese 1996; Kramer et al. 2006; lorio 2007; Deng et almethod of “RK7,100". In the case of Orb-P, although the
2009; Li 2010; Deng 2011; Li 2011; De Laurentis et al. trend of improvement with higher orders can still be found
2012; Ragos et al. 2013; Xie 2013; Lu et al. 2014). for the f andg series, its efficiency becomes lower than the

We take the results of Orb-M and Orb-P calculated byone in the case of Orb-M and the method of “RK7,100”
“FG7,100",“FG8,100, FG9,100” and “RK7,100" as exam- performs better, like what we have found in Section 3.2.
ples for calculating the advance of periastron. The (oscu-

4.2 Gravitational radiation

For arealistic two-body system in the framework of GR, it&mgravitational radiation, causing its orbit to shrink @vier
etal. 1973; Landau & Lifshitz 1975). Due to the gravitatibraaliation,a ande will decay such that (Brumberg 1991):

da 64 G3mimam 73 5 37 4
ca _ 22 mamem (g (22 Of ) 26
dt 5 c5a3(1—62)7/2( T et ) (26)
de 1 G*mimam
o = _Eme@oume?). (27)
The energy and angular momentum dissipate as well; up t@#uirig order, they change as (Brumberg 1991)
1dE 64 G®mumom 73 5 37 4
Bar = s e ey (Lt ae tase): (28)
1dL 4 G*mimam
Za - _5705014(1—62)5/2(8_‘—762)' (29)
As rough estimates, we can have that
E — E, 1dE
ABaw = 1 (‘7‘) ~1 [(——)N T}, 30
GW 0810 By aw 0810 E dt ELo (30)
_ L—Lg 1dL
A = 1ogaa (| =) o ~ Tom | (7 ) 2070] @

where Ng and Ny, are the two numbers representing Keplerian periods. Figushows the variation o £ and oL

for Orb-M, Obr-E and Orb-P. It is necessary to know when thesigation caused by the gravitational radiation can
become comparable with the one due to the truncation errtiteof andg series indicated by Figure 2. If we assume
AEqw ~ ALgw ~ —10, it can be found that (LN ~ N ~ 10' for the case of Orb-M, 2Nz ~ Np ~ 10"

for Orb-E, and (3)Ng ~ N1 ~ 300 for Orb-P. It means that, in the cases of planetary orbits@kb-M and Orb-E, the
gravitation radiation will not affect the validity of theandg series because the dissipation due to gravitational iadiat
is much smaller than the truncation error of thandg series in the time span 10'°T;,. However, since the gravitational
radiation will quickly become significant in compact birewilike Orb-P, the validities of th¢ and g series and 1PN
approximation need to be carefully checked in their longatdynamical evolution.
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