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Abstract In a real medium which has oscillations, the perturbations can cause an energy transfer between
different modes. A perturbation, which is interpreted as aninteraction between the modes, is inferred to be
mode coupling. The mode coupling process in an inhomogeneous medium such as solar spicules may lead to
the coupling of kink waves to local Alfvén waves. This coupling occurs in practically any conditions when
there is smooth variation in density in the radial direction. This process is seen as the decay of transverse
kink waves in the medium. To study the damping of kink waves due to mode coupling, a 2.5-dimensional
numerical simulation of the initial wave is considered in spicules. The initial perturbation is assumed to be
in a plane perpendicular to the spicule axis. The consideredkink wave is a standing wave which shows an
exponential damping in the inhomogeneous layer after the mode coupling occurs.

Key words: solar spicules — mode coupling — MHD waves

1 INTRODUCTION

Spicules are one of the important phenomena in the
solar chromosphere which are observed at the limb
(Zaqarashvili & Erdélyi 2009). In order to study the os-
cillations in spicules, many works have been done ob-
servationally and theoretically (De Pontieu et al. 2004;
Kukhianidze et al. 2006; Kuridze et al. 2013; Verth et al.
2011). The generation and propagation of magnetohydro-
dynamic (MHD) waves in the interval of the spicule life-
time (about5 − 15 min) can be detected by spicule obser-
vations.

Helioseismology can determine the properties of so-
lar phenomena from observed oscillations, an idea which
was originally suggested by Zaqarashvili et al. (2007) for
chromospheric spicules (Verth et al. 2011). By estimat-
ing the period of oscillations, two types of MHD waves
are observed in spicules: kink waves (Nikolsky & Platova
1971; De Pontieu et al. 2007; He et al. 2009; Ebadi et al.
2012) and Alfvén waves reported by Jess et al. (2009).
Since spicules are denser than surrounding coronal plasma
(Beckers 1968), they can be modeled as cool magnetic
tubes embedded in hot coronal plasma.

Damping of MHD waves (kink or Alfvén waves) can
be considered as a mechanism that leads to solar coronal
heating. When MHD waves interact with plasma inhomo-
geneities, a number of physical phenomena are generated
such as resonant absorption, mode coupling, phase mixing,
and wave dispersion.

The process of conversion of energy from the incom-
pressible kink mode to an Alfvén wave describes mode
coupling in an inhomogeneous medium. This process can

take place in each oscillating phenomenon. For example
in sunspots, it takes place between the p-mode seismic
wave field of the solar interior and the oscillations in the
overlying atmosphere (conversion of fast to slow modes)
(Cally et al. 1994). Pascoe et al. (2010) have studied the
damping of kink waves due to mode coupling in solar
coronal loops. They have demonstrated that the observed
loop displacements are the coupled kink-Alfvén waves,
i.e. transverse footpoint motions travel along the loop and
couple to Alfven waves through the inhomogeneity at the
loop boundary. When an inhomogeneous layer in encoun-
tered, the Alfvén speed varies continuously and resonant
absorption occurs where the phase speed of the kink wave
matches the local Alfvén wave speed (Ck = VA(r)) (Allan
& Wright 2000; Hood et al. 2013). Terradas et al. (2010)
demonstrated that the damping of the transverse motions
through mode coupling is frequency dependent. Using the
CoMP data (Tomczyk & McIntosh 2009), Verth et al.
(2010) found evidence for this frequency that strength-
ens the interpretation in which the observed propagat-
ing Doppler shift oscillations are the coupled kink-Alfvén
waves.

Here, we study the damping of the observed transverse
oscillations of the solar spicule axis. This study is referring
to the results obtained by analyzing the time series of the
Ca II H-line obtained from Hinode/SOT on the solar limb
(Tsuneta et al. 2008). These observed transverse oscilla-
tions were interpreted as standing kink waves (Ebadi et al.
2012). This paper is organized as follows. The basic equa-
tions and theoretical model are presented in Section2. In
Section3, numerical results are presented and discussed,
and Section4 contains the conclusion.
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2 BASIC EQUATIONS OF THE MODEL

The damping of standing kink waves is studied in a spicule
environment through the mode coupling mechanism. We
perform a 2.5-dimensional simulation of MHD equations
in a stratified medium. Non-ideal MHD equations in the
plasma dynamics are as follows:

∂ρ

∂t
+ ∇ · (ρV ) = 0 , (1)

ρ
∂V

∂t
+ ρ(V · ∇)V = −∇p + ρg +

1

µ0
(∇× B) × B

+ρν∇2V , (2)

∂B

∂t
= ∇× (V × B),∇ · B = 0 , (3)

∂p

∂t
+ ∇ · (pV ) = (1 − γ)p∇ · V , (4)

wherep = ρRT/µ is the pressure for a perfect gas,ρ is the
plasma density,µ is the mean molecular weight,µ0 is the
vacuum permeability,ν is a constant viscosity coefficient,
γ = 5/3 is the adiabatic index, andg is the gravitational
acceleration. We applyρν = 2.2×10−17T 5/2 kg m−1 s−1

to a fully ionized hydrogen plasma (Priest 1982).

2.1 The Equilibrium State

VectorsV andB in Equations (1)–(4) are the velocity and
magnetic field respectively which are defined as follows:

V = v0 + v ,

B = B0 + b , (5)

wherev0 = v0k̂ andB0 are the equilibrium velocity and
magnetic field respectively. In order to have the kink waves
coupled with Alfvén waves, an equilibrium magnetic field
is considered to beB0 = B0(αĵ + k̂) whereα is a con-
stant value (α < 1). In this case, they-component of the
magnetic field is smaller than itsz-component by a factor
of α. Since the equilibrium magnetic field is force-free, the
pressure gradient is balanced by the gravity force via equa-
tion −∇p0(x, z) + ρ0(x, z)g = 0, whereg = (0, 0,−g),
and the pressure in an equilibrium state is described by

p0(x, z) = p0(x) exp(−z/H) . (6)

Since coupling between kink and Alfvén waves occurs
in practically any conditions when there are smooth den-
sity variations in the radial direction (here, thex-direction)
(Ruderman & Roberts 2002; Soler et al. 2011), the density
profile is written in the following form

ρ0(x, z) = ρ0(x) exp(−z/H) , (7)

whereH = RT
µg is the pressure scale height and the atmo-

sphere is considered isothermal. Also,ρ0(x) is considered

to be the following (De Moortel et al. 1999; Ruderman &
Roberts 2002; Karami & Ebrahimi 2009)

ρ0(x) =
1

2
ρ0

[

1 + dρ − (1 − dρ) tanh((x − 1)/d)
]

, (8)

wheredρ = ρe

ρ0

= 0.01. Hereρ0 is the plasma density in
the spicule,ρe is the external density, andd is the width of
the inhomogeneous layer.

2.2 Perturbation Equations

In order to make continuous displacements of the tube
axis of a spicule, a perturbation in the velocity and mag-
netic field is considered at the lower boundary of the tube.
Vectorsv andb in Equation (5) are the perturbed velocity
and magnetic field which are defined asv = (vx, vy, vz)
andb = (bx, by, bz), respectively. The initial perturbed ve-
locity is considered to have a two dimensional dipole form
as introduced by Pascoe et al. (2010):

vx(x, z, t = 0) =
x2

− z2

(x2 + z2)2
,

vy(x, z, t = 0) =
2xz

(x2 + z2)2
,

vz(x, z, t = 0) = Av sin(πx) sin(πz) , (9)

and

(bx, by, bz)(x, z, t = 0) = Ab sin(πx) sin(πz) ,

p(x, z, t = 0) = Ap sin(πx) sin(πz) , (10)

whereAv, Ab andAp are the small amplitudes of the per-
turbed velocity, magnetic field and pressure respectively
(by choosing these small amplitudes, the components tend
to be almost zero. These choices are made to avoid some
unwanted effects in our simulation code).

In order to see the variations of the perturbed velocity
and magnetic field, linearized dimensionless MHD equa-
tions with the considered assumptions are as follows:

∂vx

∂t
+ v0

∂vx

∂z
=

1

ρ0(x, z)

(

∂bx

∂z
− α

∂by

∂x
−

∂bz

∂z

)

+ ν∇
2
vx ,

∂vy

∂t
+ v0

∂vy

∂z
=

1

ρ0(x, z)

∂by

∂z
+ ν∇

2
vy ,

∂vz

∂t
+ v0

∂vz

∂z
= −β

∂P

∂z
− g +

α

ρ0(x, z)

∂by

∂z
+ ν∇

2
vz , (11)

∂bx

∂t
=

∂vx

∂z
− v0

∂bx

∂z
,

∂by

∂t
=

∂vy

∂z
− v0

∂by

∂z
,

∂bz

∂t
=

∂vz

∂z
− v0

∂bz

∂z
, (12)

whereβ(z) = p0(z)
B2

0
/2µ

is the ratio of gas pressure to mag-
netic pressure. The boundary conditions for a standing for-
malism are defined to bev = 0 andb = 0 at z = 0 and
L. Hence by considering these conditions in Equation (4),
we havep = 0 at boundariesz = 0 andL (Ruderman &
Roberts 2002).



Mode Coupling 3

3 DISCUSSION

In order to solve the coupled Equations (11) and (12) nu-
merically, the finite difference and fourth-order Runge-
Kutta methods are used to calculate the space and
time derivatives, respectively. The implemented numerical
scheme relies on the forward finite difference method to
take the first spatial derivatives with a truncation error of
(∆x), which is the spatial resolution in thex direction. The
order of approximation for the second spatial derivative
in the finite difference method isO((∆x)2). On the other
hand, the fourth-order Runge-Kutta method takes the time
derivatives into account. The computational output data are
given to an accuracy of17 decimal digits (Fazel & Ebadi
2014). We set the number of mesh-grid points as256×256.
The time step is chosen as0.0001, and the system length
in thex andz dimensions (simulation box sizes) are set to
be (0, 4) and (0, 20) respectively.

In the considered conditions for a spicule, the val-
ues of all the presented parameters are (Murawski &
Zaqarashvili 2010, Ebadi et al. 2012, Fazel & Ebadi 2013):
L = 6000 km (spicule length),a = 250 km (spicule ra-
dius),d = 0.2a = 50 km (inhomogeneous layer width),
ne = 11.5 × 1016 m−3, VA0 = 50 km s−1, v0 =
25 km s−1, B0 = 1.2 × 10−3 Tesla,T0 = 14 000 K,
p0 = 3.7 × 10−2 N m−2, ρ0 = 1.9 × 10−10 kg m−3,
g = 272 m s−2, R = 8300 m2s−1k−1 (universal gas con-
stant),H = 750 km, µ = 0.6, µ0 = 4π × 10−7 Tesla
m A−1, τ = a/Ck = 5 s (the period of oscillations), and
Av = Ab = Ap = 10−8 (dimensionless amplitudes of per-
turbed velocity, magnetic field and pressure respectively).

Considering Equations (11) and (12), they-component
of the velocity and magnetic field define they-independent
Alfvén waves. By rewriting they-component of these
equations and by combining them, we can obtain

ρ0

[∂2vy

∂t2
+ (v0 · ∇)

∂vy

∂t

]

=

1

µ0

[

(B0 · ∇)2vy − (v0 · ∇)by

]

+ ρ0ν∇
2 ∂vy

∂t
.(13)

This equation describes the damped Alfvén waves that
have velocity and magnetic field perturbations in they-
direction and propagate along the equilibrium magnetic
field. If for a moment we forget aboutν and adopt a lo-
cal analysis, the dispersion relation is obtained asσ2 =
k2

‖B2

0

ρ0

= k2
‖V

2
A , wherek‖ = αky + kz is the parallel

wave number andVA is the local Alfvén velocity. The sec-
ond row of Equations (11) and (12) describes the damped
Alfvén waves which are coupled with the first and third
rows of Equations (11) and (12). The equations tell us that
a transfer of energy from motions described by the vari-
ables (vx, vz, bx, bz) to motions described by the variables
(vy, by) can occur in the considered MHD waves. The vari-
ables (vx, vz, bx, bz) are damped due to the coupling to
Alfvén waves. These results are demonstrated in the fol-
lowing figures for the perturbed velocity and magnetic field
variations.

At t = 0, the initial perturbation is applied at the lower
z boundary. This perturbation uniformly propagates up-
ward and then it stops at the upperz boundary (the standing
case).

Figure 1 is the plot of the initial wave packet given
by Equation (9). In the case of an inhomogeneous layer
(ρ0/ρe > 1), since the initial perturbation acts over all
density regions (inside the spicule, in the inhomogeneous
layer and outside the spicule), the Alfvén speed varies in
these regions (VA(x, z)). The Alfvén speed varies continu-
ously in the inhomogeneous layer and resonant absorption
occurs where the conditionvA = vphase is satisfied. Here,
vphase = ω/kz, whereω is the angular frequency of kink
oscillation andkz is the local longitudinal wave number.
In our simulation, the spicule is considered to be a thin
flux tube (a = 250 km radius) with a thin inhomogeneous
layer (d = 0.2a = 50 km width). In this approach, the
above condition is satisfied in the considered inhomoge-
neous layer, so this is the reason that mode coupling occurs
in the modeled spicule.

Figure 2 shows the perturbed velocity variations of
vx with respect toz (height or propagation direction) at
t = 10τ s (top panel) andt = 40τ s (bottom panel). The
perturbed velocity is normalized toVA0. At t = 10τ s, the
perturbedvx already shows damping due to phase mixing
occurring in the inhomogeneous layer. By the later stage
at t = 40τ s, we see that the initial perturbation (the kink
wave) has undergone a complete attenuation and only the
phase-mixed Alfvén wave with bigger amplitude remains
in the layer. The lower panel shows an exponential damp-
ing of vx with z. This is in good agreement with results ob-
tained by Pascoe et al. (2012). They have demonstrated that
for standing kink modes with the approximations of a thin
flux tube and thin boundary layer, an exponential damping
envelope is obtained. In both panels at the first heights, the
total amplitude of velocity oscillations has values near the
initial ones. As height increases, the perturbed velocity am-
plitude decreases to smaller values which demonstrates the
damping process occurs due to mode coupling. The cou-
pling of the kink wave to a local Alfvén mode causes a
decrease in wave energy in the spicule, and so appears to
dampen the spicule oscillation.

Figure 3 shows the three-dimensional (3D) plots of the
perturbed velocity in thex − z space at two time steps (as
mentioned in Fig. 2).

Figure 4 demonstrates variations of the perturbed mag-
netic field component,bx, with respect toz at two loca-
tions: the spicule axis (according to our simulation box,
the spicule axis is placed at the dimensionless pointx = 2
corresponding tox = 250 km) (upper panel), and inho-
mogeneous layer (x = 3.8 corresponding tox = 475 km)
(lower panel). The upper panel shows the upwards prop-
agating kink oscillations (with smaller amplitude) along
the spicule axis which undergoes damping due to mode
coupling as height increases. The lower panel shows the
Alfvén mode (with bigger amplitude) in the inhomoge-
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Fig. 1 The initial wave packet (vx andvy) is shown att = 0 s.
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Fig. 2 The perturbed velocity variations are shown with respect
to z at two time steps:t = 10τ s (top panel) and t = 40τ s
(bottom panel).
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0 2 4 6 8 10 12 14 16 18
−4

−3

−2

−1

0

1

2

3

4
x 10

−4

z

b x

0 2 4 6 8 10 12 14 16 18
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

z

b x
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neous layer. The componentbx grows in z as energy is
transferred to the Alfvén mode from the kink mode.

Figure 5 demonstrates variations of the perturbed mag-
netic field component,bz, with respect toz at the same lo-
cations as in Figure 4. The componentbz has small fluctu-
ations which indicate an almost incompressible kink mode
in the inhomogeneous layer (with an amplitude of about
10−9).

The 3D plots of the perturbed magnetic field compo-
nents with respect tox andz are presented in Figures 6 (at
t = 10τ s) and 7 (att = 40τ s). In these figures, the spatial
damping of the oscillations is also seen along the tube axis.

In Figure 8, the total energy normalized to the initial
total energy is presented. The wave energy is defined as
Etot = 1/2(ρ(v2

x + v2
y + v2

z) + 1/µ(b2
x + b2

y + b2
z)). The

coupling of the kink mode to the local Alfvén mode leads
to a decrease in the kink wave energy in the spicule which
is exhibited as damping of the tube oscillations. The am-
plitude of total energy decreases exponentially with time.
The period of the kink waves (Pk = 2L/Ck = 241.2 s)
is in good agreement with spicule lifetimes (5 − 15 min)
(Zaqarashvili & Erdélyi 2009).

4 CONCLUSIONS

In this paper, we attempt to investigate the behavior of
MHD waves observed in solar spicules. The purpose is to
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study their damping process by a mode coupling mecha-
nism. To do this, a typical spicule is considered to be a thin
flux tube in thex − z plane, and an initial perturbation is
assumed as a transverse kink wave at the lowerz-boundary
of the tube. An initial perturbation is applied to the velocity
and the magnetic field of the spicule, which leads to trans-
verse displacement of the spicule axis. These transverse
waves undergo a damping due to plasma inhomogeneity
as height increases in which an energy transfer takes place
from the kink mode to the local Alfvén mode. The ampli-
tude of the Alfvén wave grows along the tube axis, and
then experiences a spatial damping in the spicule. We ob-
serve that the total energy of the coupled kink to Alfvén
waves decreases with time exponentially.

In the approach of modeling a spicule using a thin
tube with a thin inhomogeneous layer, the dissipation
takes place in this layer aroundVA = Ck whereCk =
√

( 1
1+ρe/ρ0

)VA0 (Kukhianidze et al. 2006). The exponen-

tial damping of the spicule oscillations gives a damp-
ing time which depends on the period of oscillation and
the spicule parameters (Pascoe et al. 2012). The obtained
τdamp = 8.5 min is in good agreement with the spicule
lifetime. This simulation is based on observational results
reported by Ebadi et al. (2012). They studied these oscil-
lations observationally and theoretically, and analyzed the
time series of the Ca II H-line obtained from Hinode/SOT
on the solar limb. The time distance analysis shows that
the axis of a spicule undergoes quasi-periodic transverse
displacement at different heights from the photosphere.
The theoretical analysis also shows that the observed os-
cillations may correspond to the fundamental harmonic of
standing kink waves.

In this case, our initial perturbation corresponds to
some general photospheric motion and our kink waves cor-
respond to the transverse oscillations in the spicule axis
observed from Hinode/SOT by Tsuneta et al. (2008).

References

Allan, W., & Wright, A. N. 2000, J. Geophys. Res., 105, 317
Beckers, J. M. 1968, Sol. Phys., 3, 367
Cally, P. S., Bogdan, T. J., & Zweibel, E. G. 1994, ApJ, 437, 505
De Moortel, I., Hood, A. W., Ireland, J., & Arber, T. D. 1999,

A&A, 346, 641
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