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Abstract We compiled the radio, optical and X-ray data of blazars fromthe Sloan
Digital Sky Survey database, and presented the distribution of luminosities and broad-
band spectral indices. The distribution of luminosities shows that the averaged lu-
minosity of flat spectrum radio quasars (FSRQs) is larger than that of BL Lacertae
(BL Lac) objects. On the other hand, the broadband spectral energy distribution reveals
that FSRQs and low energy peaked BL Lac objects have similar spectral properties,
but high energy peaked BL Lac objects have a distinct spectral property. This may be
due to the fact that different subclasses of blazars have different intrinsic environments
and are at different cooling levels. Even so, a unified schemeis also revealed from the
color-color diagram, which hints that there are similar physical processes operating in
all objects under a range of intrinsic physical conditions or beaming parameters.

Key words: galaxies: active — BL Lacertae objects: general — galaxies:fundamental
parameters — quasars: general

1 INTRODUCTION

Blazars are a subset of active galactic nuclei (AGNs) with strong emission at all wavelengths. They
are the brightest and most variable high energy sources among AGNs, and they have continuous
spectral energy distributions (SEDs). The continuum emission in blazars is thought to be from a
relativistic jet oriented close to the observer and emanating from the vicinity of a black hole (Stern
& Poutanen 2008; Ghisellini et al. 1986). The SEDs of blazarsare characterized by a universal two-
bump structure: one in the infrared to ultraviolet band, andthe other in the MeV-GeV band. The
synchrotron radiation in a relativistic beamed jet is responsible for the lower-energy peak, while the
high-energyγ-ray emission is produced by the inverse Compton (IC) mechanism (Sambruna et al.
1996). Generally, blazars can be divided into two subclasses, BL Lacertae (BL Lac) objects and flat
spectrum radio quasars (FSRQs). The main difference between these two classes is their emission
lines: BL Lac objects are characterized by a lack of strong emission lines (equivalent width< 5 Å),
while FSRQs have strong broad emission lines with a strengththat is similar to normal quasars
(Scarpa & Falomo 1997).
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Based on the peak energy frequency of the synchrotron emission peak, BL Lac objects can
be divided into “high energy peaked BL Lacs” (HBLs) and “low energy peaked BL Lacs” (LBLs)
(Padovani & Giommi 1995; Giommi et al. 1995). Mei et al. (2002) and Ma et al. (2007) found that
the two subclasses of BL Lac objects can be distinguished by their peak frequenciesνpeak: HBLs
havelog νpeak > 14.7, while LBLs havelog νpeak < 14.7.

In addition, Padovani & Giommi (1995) found that LBLs and HBLs can also be divided by using
the ratio of X-ray flux at 1 keV (in units of erg cm−2 s−1) to 5 GHz radio flux density (in units of
Janskys (Jy)). The criterion isfx/fr ∼ 10−11, corresponding to the broadband spectral index (from
5 GHz in radio to 1 keV in X-ray)αrx ≃ 0.75. HBLs have a broadband spectral index ofαrx ≤ 0.75,
and LBLs have a spectral index ofαrx > 0.75 (Giommi et al. 1995; Ma et al. 2007; Mei et al. 2002;
Urry & Padovani 1995). The SEDs of these two different subclasses of BL Lac objects have been
investigated by a number of authors (e.g., Bao et al. 2008; Chen et al. 2006; Padovani & Giommi
1995; Giommi et al. 1990; Nieppola et al. 2006). Padovani & Giommi (1995) and Giommi et al.
(1990) found that these two subclasses occupy different regions on theαro - αox plane. Padovani
& Giommi (1995) also found that there are correlations between the minimum soft X-ray flux and
the radio flux, and there are also correlations between the radio and optical fluxes for the subsample
of HBLs but not for that of LBLs. Nieppola et al. (2006) found that there is a negative correlation
between the luminosity and the synchrotron peak frequencyνpeak at the radio and optical bands,
whereas the correlation turns slightly positive in X-ray (Nieppola et al. 2006). Fan et al. (2012) and
Lyu et al. (2014) found that HBLs have different properties from LBLs. Yan et al. (2014) found that
the one-zone synchrotron self-Compton (SSC) model can successfully fit the SEDs of HBLs, but
fails to explain the SEDs of LBLs. In addition, Bao et al. (2008) found that these two subclasses of
BL Lac objects can be explained by a unified scheme.

BL Lac objects and FSRQs are grouped together under the denomination of blazars, which elim-
inates the somewhat ambiguous issue of the strength of emission lines as a classification criterion.
However, there are some differences in the individual emission properties among different blazar
subclasses. The relationship among different kinds of blazars can enhance our understanding of the
fundamental properties of blazars. Therefore, it is imperative to investigate the connection among
FSRQs, LBLs and HBLs.

The relationship between of BL Lac objects and FSRQs has beendiscussed by a number of
authors (e.g., Comastri et al. 1997; Fossati et al. 1998; Ghisellini et al. 1998, 2009; Li et al. 2010;
Sambruna et al. 1996; Xie et al. 2001, 2003, 2004, 2006, 2007,2008; Zheng et al. 2007), who
assembled the SED of many radio, X-ray andγ-ray selected blazars. Fossati et al. (1998) studied the
SEDs of a combined blazar sample, and found that the SED properties of these subclasses present a
remarkable continuity and a systematic trend as a function of source luminosity, which suggests that
the parameter describing the blazar continua is likely to bethe source luminosity. Based on the first
Fermi sample, Ghisellini et al. (2009) found that FSRQs and BL Lac objects occupy separate regions,
and obey a spectral sequence. However, Antón & Browne (2005) found that there are selection
effects for the “blazar sequence” reported by Fossati et al.(1998) and Ghisellini et al. (1998). Some
literature has shown that HBLs have different properties from FSRQs, but LBLs are similar to FSRQs
(e.g. Chen et al. 2013; Fan et al. 2012; Li et al. 2010; Lyu et al. 2014). However, Li et al. (2010) and
Chen et al. (2013) also found that their whole sample suggests there is a unified scheme of blazars.
Comastri et al. (1997) discovered that there is a significantanticorrelation between X-ray andγ-ray
spectral indices, and also between the broadband spectral indicesαro andαxγ of BL Lac objects and
FSRQs. The correlation between the broadband spectral indices obtained by Comastri et al. (1997)
implied that there is a different shape in the overall energydistributions from radio toγ-ray energies
between BL Lac objects and FSRQs. Sambruna et al. (1996) and Xie et al. (2003) found that three
kinds of blazars have different SEDs, but follow a continuous spectral sequence.

In this paper, we will study the distributions of the luminosities and the radio-optical-X-ray
SEDs of SDSS blazars. We also study the connections among LBLs, HBLs and FSRQs. A detailed
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explanation of the sample is given in Section 2. The distributions of luminosity are presented in
Section 3. The broadband spectral energy distribution is given in Section 4. In Section 5, discussions
and conclusions are presented.

2 THE SAMPLE OF SDSS BLAZARS

The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the
history of astronomy. Plotkin et al. (2008) have drawn a large sample of 501 BL Lac object can-
didates from the combination of SDSS Data Release 5 (SDSS DR5) optical spectroscopy, and the
Faint Images of the Radio Sky at Twenty-Centimeters (FIRST)radio survey. Plotkin et al. (2010)
have presented a sample of 723 optically selected BL Lac candidates from the SDSS Data Release 7
(SDSS DR7) spectroscopic database. Based on the large radio(the NRAO VLA Sky Survey, ATCA
catalogue of compact PMN sources), ROSAT All Sky Survey (RASS), the SDSS Data Release 4
(SDSS DR4) and 2dF survey data, Turriziani et al. (2007) presented a Radio-Optical-X-ray catalog
compiled from at ASDC (ROXA) including 816 objects, among which 510 are confirmed blazars. In
addition, Chen et al. (2009) have also presented a sample including 118 Non-thermal jet-dominated
FSRQs from SDSS Data Release 3 (SDSS DR3), which is an X-ray quasar sample with the FIRST
and GB6 radio catalogs. Based on the samples of Plotkin et al.(2008, 2010), Turriziani et al. (2007)
and Chen et al. (2009), we compiled a large sample of 606 blazars, including 292 FSRQs and 314
BL Lacs. All the objects in the sample have matches in RASS andmeasured redshifts. In our sam-
ple, the three-band luminosities (Lr, Lo andLx) and the broadband spectral indicesαro, αrx andαox

were given in the literature (Chen et al. 2009; Plotkin et al.2008, 2010; Turriziani et al. 2007). The
luminositiesLr, Lo andLx are the specific luminosities (per unit frequency) at 5 GHz, 5000Å and
1 keV, respectively.αro is the two-point spectral indices between 5 GHz and 5000Å, αrx represents
the two-point spectral indices between 5 GHz and 1 keV, andαox denotes the two-point spectral
indices between 5000̊A and 1 keV.

As discussed in Section 1, BL Lac objects can be divided into HBLs and LBLs, based on the
radio-X-ray spectral indexαrx between 5 GHz and 1 keV. According to the literature (Giommi et al.
1995; Ma et al. 2007; Mei et al. 2002; Plotkin et al. 2008; Urry& Padovani 1995), most BL Lac
objects withαrx ≤ 0.75 are HBLs, and most BL Lac objects withαrx > 0.75 are LBLs. Therefore,
to investigate the relations among different blazar subclasses, we adoptαrx = 0.75 as a rough value
to separate HBLs from LBLs when applied to SDSS BL Lac objects(Giommi et al. 1995; Ma et al.
2007; Mei et al. 2002; Urry & Padovani 1995). Based on this criterion, there are 270 HBLs and 44
LBLs in our sample.

3 DISTRIBUTIONS OF LUMINOSITY OF BLAZARS

Fossati et al. (1998) studied the SEDs of a combined blazar sample, and found that source luminosity
is the characteristic parameter describing the blazar continua. On the basis of the first Fermi sample,
Ghisellini et al. (2009) have found that BL Lac objects are harder and less luminous than FSRQs.
Ghisellini et al. (1998) found that HBLs are the sources thathave the lowest intrinsic power and
the weakest external radiation field, LBLs are intrinsically more powerful than HBLs, and FSRQs
represent the most powerful blazars.

Thus, we computed the distributions of radio (at 5 GHz), optical (at 5000̊A) and X-ray (at
1 keV) luminosities for three subclasses of blazars. Figures 1–3 show the distribution of luminosities
for three kinds of blazars, and all of the luminosities are K-corrected to the source rest frame (Chen
et al. 2009; Plotkin et al. 2008, 2010; Turriziani et al. 2007). The distributions of radio, optical and
X-ray luminosities are plotted in Figures 1, 2 and 3, respectively.

From Figure 1, one can find that FSRQs have larger radio luminosities than BL Lac objects,
while the radio luminosities of LBLs are more powerful than those of HBLs. This suggests that
the radio luminosities of the three kinds of blazars, from FSRQs to LBLs to HBLs, are decreasing,
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Fig. 1 Distributions of radio luminosity at 5 GHz for the three kinds of blazars used in our sample.

Fig. 2 Distributions of optical luminosity at 5000̊A for the three kinds of blazars used in our sample.

which is consistent with the argument reported by Ghisellini et al. (1998). In Figure 2, we can note
that the optical luminosities of FSRQs are larger than thoseof BL Lac objects, while HBLs have
similar optical luminosities to those of LBLs. Correspondingly, the X-ray luminosities of HBLs are
systematically lower than FSRQs, but larger than LBLs (see Fig. 3).

The distributions presented in Figures 1, 2 and 3 show that the luminosity is an important pa-
rameter that can be used to distinguish FSRQs from BL Lac objects. A tendency of luminosities
from FSRQs to BL Lac objects is revealed from the distributions of luminosities. The distributions
of luminosities for three kinds of blazars presented from Figures 1–3 are consistent with the results
reported by Fossati et al. (1998) and Ghisellini et al. (1998). On the other hand, one can note that all
of the distributions are continuous in properties between HBLs and LBLs, as well as between FSRQs
and BL Lac objects, which is in good agreement with the previous arguments about the continuum
of blazars (Fossati et al. 1998; Ghisellini et al. 1998; Xie et al. 2003; Comastri et al. 1997; Sambruna
et al. 1996).

4 BROADBAND SPECTRAL ENERGY DISTRIBUTION OF BLAZARS

Searching for the connection among different blazar subclasses is very significant because it can sub-
stantially enhance our understanding of the fundamental nature of blazars. The relationship among
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Fig. 3 Distributions of X-ray luminosity at 1 keV for the three kinds of blazars used in our sample.

different blazars has been discussed in the literature witha unified scheme and a spectral sequence
for blazars (Fossati et al. 1998; Ghisellini et al. 1998; Sambruna et al. 1996; Xie et al. 2003). For
investigating the relationship among different subclasses of blazars, we will analyze the relationship
among the HBLs, LBLs and FSRQs on the basis of the broadband spectral indicesαro, αrx andαox.

4.1 Diagram of αrx versus αro

Here, we investigate the relationship between the broadband spectral indicesαrx andαro for the
whole sample. The plot is shown in Figure 4. Figure 4 shows that there is a good correlation between
αrx andαro for the whole sample. An equation derived by linear regression analysis for all of the
samples is written as

αrx = (0.64 ± 0.03)αro + (0.43 ± 0.01), (1)

with a correlation coefficient ofr = 0.70 and a chance probability ofp < 10−4. Moreover, we also
study the relationship betweenαrx andαro for the FSRQs and LBLs sample. We obtain

αrx = (0.42 ± 0.02)αro + (0.59 ± 0.01), (2)

with a correlation coefficient ofr = 0.70 and a chance probability ofp < 10−4. The correlation
analysis suggests that there is a linear correlation between αrx andαro for the whole sample, as well
as for the FSRQs+LBLs sample. This provides evidence for theunified scheme reported by Fossati
et al. (1998) and Ghisellini et al. (1998).

In addition, Figure 4 shows that the majority of FSRQs and LBLs are mixed together, which sug-
gests that they have similar spectral properties. However,Figure 4 also reveals that the distribution
of HBLs in theαrx versusαro diagram is different from that of FSRQs and LBLs. This indicates that
HBLs have different spectral properties from FSRQs and LBLs. These results are consistent with the
reported results of Xie et al. (2003), who found that HBLs andLBLs are located in different regions
in theαox−αxγ plane, but that the LBLs and FSRQs occupy the same region in theαox−αxγ plane.
In addition, our results also agree with those reported by Fan et al. (2012) and Lyu et al. (2014).

4.2 Diagram of αrx versus αox

In Figure 5,αrx versusαox is plotted for our SDSS blazar sample. We can find that the distribu-
tion of three kinds of blazars revealed from Figure 5 is similar to that of Figure 4. For the whole
sample, Figure 5 shows a significant correlation betweenαrx andαox, and the linear regression
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Fig. 4 The relationship between the broadband
spectral indicesαro andαrx for the sources in our
sample.

Fig. 5 The relationship between the broadband
spectral indicesαox andαrx for the sources in our
sample.

Fig. 6 The relationship between the broadband spectral indicesαro andαox for the
sources in our sample.

analysis yields
αrx = (0.30 ± 0.01)αox + (0.36 ± 0.02), (3)

with a correlation coefficient ofr = 0.62 and a chance probability ofp < 10−4. Moreover, Figure 5
shows that there is a weak correlation betweenαrx andαox for the FSRQs and LBLs sample, and
the linear regression analysis produces equation

αrx = (0.07 ± 0.02)αox + (0.71 ± 0.03), (4)

with a correlation coefficient ofr = 0.17 and a chance probability ofp = 0.0016. In Figure 5, one
can note that the majority of FSRQs and LBLs also occupy the same region, but the HBLs occupy a
separate distinct region, which is also consistent with theprevious results.

4.3 Diagram of αox versus αro

Based on the broadband spectral indexαox versusαro, we investigate the relationships betweenαox

andαro. Figure 6 plotsαox versusαro. A linear regression analysis shows that there is a weak or



The Broadband Spectral Energy Distributions of SDSS Blazars 935

even no correlation betweenαox andαro (r = −0.11 andp = 0.054) for the whole sample. This
independent relation is obviously inconsistent with the foregoing correlation revealed from Figure 4
and Figure 5. However, the correlation is significant when considering the FSRQs and LBLs sample,
and the linear regression analysis equation is

αox = (0.87 ± 0.07)αro + (1.75 ± 0.04), (5)

where the correlation coefficient isr = −0.56 and the chance probability isp < 10−4. This suggests
that the HBLs are different from FSRQs, but LBLs are similar to FSRQs. In addition, Figure 6 also
shows that most of the FSRQs and LBLs are located in the same region in theαox -αro plot, but
the HBLs occupy a separate distinct region in theαox versusαro plane. This is consistent with the
distribution shown in Figure 4 and Figure 5. This supports the foregoing results: FSRQs and LBLs
have similar spectral properties, but the HBLs have distinct spectral properties.

4.4 Summary

As noted above, from Figures 4 and 5, there is a strong correlation betweenαrx andαro, as well as
betweenαrx versusαox for the whole sample, which provides some more evidence for the conclu-
sion reported by Fossati et al. (1998) and Ghisellini et al. (1998); namely, there is a unified scheme
for blazars. On the other hand, from Figures 4, 5 and 6, one cannote that there are also some dif-
ferent distributions from the blazar sequence reported by Fossati et al. (1998) and Ghisellini et al.
(1998). In the color-color diagram, HBLs and FSRQs occupy separate regions, while the LBLs and
FSRQs are mixed together, which is consistent with what is reported in some literature (e.g. Chen
et al. 2013; Fan et al. 2012; Li et al. 2010; Lyu et al. 2014; Xieet al. 2003). This suggests that FSRQs
and LBLs have similar properties, but HBLs have distinct properties.

5 DISCUSSION AND CONCLUSIONS

Based on the Slew Survey, the 1 Jy samples of BL Lacs and the 2 Jysample of FSRQs, Fossati
et al. (1998) studied the systematics of the SEDs of blazars using data from the radio to theγ-ray
band, and found that three different kinds of blazars followan almost continuous spectral sequence:
from FSRQs through LBLs to HBLs. Ghisellini & Tavecchio (2008) revisited the so called “blazar
sequence,” and proposed that the power of the jet and the SED of its emission are linked to the two
main parameters of the accretion process. A similar trend was also obtained by other authors (e.g.
Xie et al. 2003; Sambruna et al. 1996; Ghisellini et al. 1998;Böttcher & Dermer 2002; Maraschi
et al. 2008) who found that similar physical processes operate in three kinds of blazars. However,
Antón & Browne (2005) found that there are selection effects for the “blazars sequence.” Moreover,
some authors have found that HBLs do not follow the blazar sequence (e.g. Chen et al. 2013; Fan
et al. 2012; Giommi et al. 2005; Li et al. 2010; Padovani et al.2003; Padovani 2007) .

In this paper, we computed the distributions of the radio (at5 GHz), optical (at 5000̊A) and
X-ray (at 1 keV) luminosities. The distributions of luminosities reveal that luminosity is both an
important parameter to distinguish FSRQs from BL Lac objects and the distributions are continuous
for the three kinds of blazars. The luminosities of FSRQs arelarger than those of BL Lac objects,
which is in good agreement with the arguments reported by other authors (Abdo et al. 2009; Fossati
et al. 1998; Ghisellini et al. 1998; Sambruna et al. 1996). The distributions of radio luminosity
support the blazar sequence reported by Fossati et al. (1998) and Ghisellini et al. (1998). However,
the distributions of optical and X-ray luminosities do not support this sequence.

The broadband energy distribution shows that three kinds ofblazars have different spectral prop-
erties. It also shows that most FSRQs and LBLs are mixed together in the color-color diagram (see
Figs. 4, 5 and 6), which is consistent with previous results (Fan et al. 2012; Li et al. 2010; Sambruna
et al. 1996; Xie et al. 2003; Zheng et al. 2007). This suggeststhat they have similar spectral proper-
ties, which provide more evidence for the conclusion of the unified scheme. However, the location of
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Fig. 7 Relations between redshift and spectral indices.

HBLs is separate from that of FSRQs and LBLs in the color-color diagram, which reveals that HBLs
have different SEDs from FSRQs and LBLs. This suggests that the results from the SDSS sample
do not support the so called “blazar sequence,” which is consistent with the results reported by other
authors (Antón & Browne 2005; Fan et al. 2012; Chen et al. 2013; Li et al. 2010; Padovani et al.
2003; Padovani 2007; Zhang et al. 2013). The spectral sequence obtained by Fossati et al. (1998)
may be related to the selection effects, because the samplesused by Fossati et al. (1998) are classic,
high flux limited surveys in the radio and X-ray (Antón & Browne 2005). The sample that we used
in this paper is a large sample that includes 606 blazars, which can provide an unbiased view of
the spectral properties of quasars. Moreover, Figure 7 plots the relations between the redshift and
spectral indices. Figure 7 shows that the spectral indices are independent of redshift, which suggests
that the selection effects in our sample are weak.

Ghisellini et al. (1998) suggested the level of cooling is different for different subclasses of
blazars. FSRQs suffer stronger cooling and synchrotron emission peaks at a much lower frequency.
However, the cooling is less important for HBLs, and the energetic particles can produce synchrotron
and IC emissions up to high frequency. The level of cooling inFSRQs is stronger than that of HBLs,
which may be due to the external radiation field (Ghisellini et al. 1998). Georganopoulos et al.
(2001) suggested that the radiating jet plasma in weak sources is outside the broad line scattering
region (BLR), but it is within in the power source. This implies that the location of the emitting
region between HBLs and FSRQs might be very different (Costamante 2009). The jet energy of
FSRQs would dissipate within the BLR, leading the high energy electrons in the jet to suffer greater
cooling (Chen & Bai 2011). Ghisellini et al. (2010) suggested that theγ-ray emission from FSRQs
is likely from the Compton scattering of an external radiation source, while for HBLs the SSC is
able to provide a good fit to theγ-ray emission. In addition, based on the physical properties of
relativistic jets, Yan et al. (2014) found that the one-zoneSSC model can successfully fit the SEDs
of HBLs, but fails to explain the SEDs of LBLs. Moreover, theyalso suggest that the ratios of the
Compton to the synchrotron peak energy fluxes of LBLs are greater than those of HBLs and LBLs,
and then LBLs are Compton dominated (Yan et al. 2014). This suggests that there is an external
radiation field for LBLs. Therefore, the levels of cooling ofFSRQs and LBLs are stronger than
those of HBLs, which leads us to conclude the synchrotron emission peaks of FSRQs and LBLs are
lower than those of HBLs. Abdo et al. (2010) found FSRQs and LBLs are low synchrotron peaked
blazars, while HBLs are high synchrotron peaked blazars. Fan et al. (2012) suggested that if the
synchrotron peak frequency moves to a lower frequency, thenthe IC peak frequency may also move
to a lower frequency. Thus, the X-rays produced by LBLs and FSRQs come from the combination
of synchrotron emission and the IC emission, while the X-rays generated by HBLs come from the
synchrotron emission of very high energy electrons (Abdo etal. 2010; Fan et al. 2012). In addition,
the different SEDs between HBLs, FSRQs and LBLs may be related to the different intrinsical
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environments around the blazar’s nucleus. The intrinsicalenvironments of FSRQs and HBLs have
a clear physical difference: the environment of HBLs is “cleaner” than that of FSRQs (Costamante
2009). The central regions of FSRQs are rich in gas and dust, which leads to a higher accretion rate
onto the central supermassive black hole (Böttcher & Dermer 2002). Moreover, the material would
efficiently reprocess and scatter radiation from the accretion disk. This would lead to the observed
strong optical emission lines in the BLR and to a high energy density of the external soft-photon
field in the jet (Böttcher & Dermer 2002).

Although HBLs have different SEDs from FSRQs and LBLs, the significant correlation revealed
from Figures 4 and 5 suggests that there is a unified scheme forthe whole sample, which is consistent
with the previous conclusion reported by other authors (Comastri et al. 1997; Fossati et al. 1998;
Ghisellini et al. 1998; Li et al. 2010; Sambruna et al. 1996; Xie et al. 2001, 2003). This hints that there
are similar physical processes operating in all these objects. In the case of the blazar-type sources
where the emission is usually associated with a stream from arelativistic jet, the overall spectrum is
determined by the energy spectrum of the electrons as well asby the variation of physical quantities
along the jet (Begelman et al. 1984). HBLs, LBLs and FSRQs have a significant correlation in the
color-color diagram (see Figs. 4 and 5), which implies that similar physical processes operate in all
objects under a range of intrinsic physical conditions or beaming parameters. On the other hand,
the difference among three subclasses of blazars, as revealed from the color-color diagram (see
Figs. 4, 5 and 6), could be attributed to the different levelsof cooling and the intrinsically different
environments around the blazars’ nucleus for different subclasses of blazars, which leads to different
optical and X-ray spectra for different kinds of blazars.
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