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Abstract The fact that a fermion system in an external magnetic fietwhks the
spherical symmetry suggests that its intrinsic geometgxisymmetric rather than
spherical. In this work we analyze the impact of anisotrqpiessures, due to the
presence of a magnetic field, in the structure equations oégnetized quark star.
We assume a cylindrical metric and an anisotropic energy embam tensor for the
source. We found that there is a maximum magnetic field thabage star can sus-
tain, closely related to the violation of the virial relat&

Key words: magnetic fields — stars: neutron — equation of state

1 INTRODUCTION

The presence of huge magnetic fields in compact objects (S@s)established fact. Typical mea-
sured surface magnetic fields are abbw® G, although in the case of theagnetarsubclass they
can be as high as0!® G (Woods & Thompson 2006). However, there are no obsenatiapable
of measuring the magnetic fields in the inner regions of stand theoretical arguments must be
used to estimate the maximum values of the field with an eyeossiple modifications to the stel-
lar structure. Based on the scalar virial theorem (Lai & $tap991), it can be estimated that the
maximum magnetic field that a CO can sustain(4sRk?/3)(B2,,/87) ~ GM?/R = Bmax ~

2 x 108(M/Mg)(R/Rs) "2 G, iS Bmax ~ 10'® G for a neutron star with a masg = 1.4M,
and a radiusz ~ 10°cm = 10~ %Ry, where M, and R, are the mass and the radius of the Sun
respectively. For a self-bound star a higher maximum vahs@le the coreBmax ~ 10%° G has
been obtained (Ferrer et al. 2010). These numbers suggesteh that a realistic model of a CO
must consider that matter is magnetized, and a few attenapes heen done in order to construct
models that describe the microphysics of magnetized farsystems (Gonzalez Felipe et al. 2005;
Chakrabarty 1996).

In the simplest case in which the source of the magnetic feeftbt addressed, i.e. fermions in
an external field, it is quite clear that in fermion systenesfitrmer breaks the spherical symmetry
and produces an anisotropy in the pressure. Depending actital numerical value, this anisotropy
could induce a deformation of the CO, and eventually leadstanisotropic collapse of the object
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if ultrastrong magnetic fields are indeed present (Maztieteal. 2003). The limits of the absolute
maximum field and the issue of spherical symmetry in the égaf state (EoS) are the subjects of
the present paper.

Itis importantto stress that the anisotropy of the pressisra main consequence of our assump-
tions of a constant external magnetic field. In Blandford &mtgiist (1982) it is argued that the pres-
sures become isotropic because of the work done againsbtieatz force density¥V x M) x B)
when the gas is compressed in the perpendicular directidh Tthis argument does not hold within
our assumptions of a constant magnetic field because we ViaveM = 0. Moreover, a more
realistic scenario is presented in Canuto (1971) in whicé could find isotropic pressures in a
magnetized fermion system, but no external magnetic fietddsired. There are many works that
recognize the existence of the anisotropic pressures assegoence of the spherical symmetry
breaking due to the preferred direction fixed by the magrtid (Chandrasekhar & Fermi 1953;
Haskell et al. 2008; Lattimer & Prakash 2007). In Chaichiamle (2000); Perez Martinez et al.
(2000); Martinez et al. (2003) it is discussed that a femgas in a magnetic field could collapse
due to the anisotropies of the pressures.

In the following, we will describe a system with the most slenmetric that is able to deal with
the cylindrical geometry hypothesis. The prescriptiontfue pressures in the energy momentum
tensor are thus very well defined and do not have ambiguities.

We must emphasize that a constant magnetic field is expeatedHighly conductive material
without the Meissner effect. Hence, the constant interiagnetic field may be a better approxima-
tion than would be naively expected.

Anisotropic systems have been studied in the context of dbat the standard approach has been
to take spherical symmetry for granted (Dev & Gleiser 200@kM: Harko 2003). In the presence
of pressure anisotropies due to a magnetic field, other symroieoices (i.e. cylindrical symmetry)
could give a more complete description of the physics; thidure has been pointed out by several
authors (Paulucci et al. 2011; Dexheimer et al. 2012). Rcsome works dealing with the problem
of an axisymmetric metric (Herrera et al. 2013; Quevedo 20&2e been presented, although they
remained within a theoretical perspective without appiicato actual systems.

Given these arguments, the introduction @fyéindrical symmetric metric in the Einstein equa-
tion, together with the construction of an anisotropic gganomentum tensor for the magnetized
matter, seems a more “natural” choice. This anisotropicdstatic equilibrium equation could shed
some light on how the magnetic field affects the sphericitthefCO, and yield upper limits for the
values of the magnetic field that this object can sustain.

In a first approximation to investigate this problem we wakwa general cylindrical symmetric
metric, with coordinatest(r, ¢, z), following the procedures of Trendafilova & Fulling (201ib)
solve the Einstein equations for an axisymmetric model o©at€take into account the anisotropy
induced by the external magnetic field. In the presence ohateat, external magnetic field there
are two main directions in space, parallel and perpenditalthe magnetic field. One of the main
approximations that we shall make is that all the functiond gariables of our model will only
depend on the radidl) variable, so that we can simply describe the perpendicelgugtorial)
direction of the CO with respect to the magnetic field. We algosider that the magnetic field is
constant and in the direction. This model can give information on the effectstaf magnetic field
in terms of the shape (oblateness) of the CO and yield upméslior the values of the magnetic
field that this object can sustain. More realistic model$ pélstudied in the future.

For the microscopic description of magnetized matter, weethe results obtained in Martinez
et al. (2010); Felipe & Martinez (2009) for magnetized sgra quark matter (MSQM), which can
represent the composition of a strange quark star in itsbgelhd version or the central nucleus of
a hybrid neutron star if it is only considered at high pregasBoth possibilities can be achieved by
selecting different sets of the available parameters,staidsed in Dexheimer et al. (2012); Paulucci
etal. (2011).
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In Section 2 we review the main thermodynamical propertfesroagnetized quark gas used to
describe the matter inside the star. In Section 3 we firsiiolite mass-radius relation for MSQM in
a standard spherical symmetry and show the problems rdtathd existence of two pressures; next
Einstein equations are solved in cylindrical symmetry ttagbthe structure equations that describe
the equilibrium of the stars taking into account both pressuFinally in Section 5 we present the
conclusions of this study.

2 MAGNETIZED FERMION SYSTEM

The thermodynamical potential for a magnetized fermionigate framework of the MIT Bag
model is given by

(s, B, T) = dfefB iz/ dps S lndet G;1(p") | 1)

=0 pa

with p* = (ip* — pur,0,/2e;Bl, p*) forl = 0,1, 2, ...; B is the inverse absolute temperatyre,is
the fermionic chemical potential art[ér1 = det[p* - v — my].

We label the electrons wittf and the quark flavors are, d and s. After performing the
Matsubara sum we obtain

dfefB
272

(B, iy, T) = — > e [ dn <ef+ %m(ue<5f“f>><1+e<ff+“f>>> @
=0

Taking the zero temperature limit (COs are considered figagenerate( > T), therefore the
thermal effects can be neglected) we can write the thermardiapotential as a sum of the vacuum
and statistical contributions

Qp =Q4(B,0,0) + Q7(B, 1,0). 3)

with
erB e B
05,00 =55 [ 55 [l @

whereé&; = \/p§ +m7 + 2[es B|l. The Q;(B,0,0) is the vacuum contribution and the renor-

malized form was found in Berestetskii et al. (1980). In windibws we neglect it, since we are
interested here in a region of field® < 1.2 where the statistical contributidl (B, 11, 0) to the
physical quantities is more important than the vacuum one.

The statistical contributiof (B, i¢, 0) has the form

_dsesB L Vi —<F
Qs (B, py,0) = ’;7:2 Z / dpspip/P3 ¢ + €7 (5)

deesB [tmes L+ pr
= Zﬁ"; > (,Uf pr—¢7ln fgi : (6)
=0 f
277712 . . .
wherela = [“f%B 1], I[z] denotes the integer part of a; = 2 — §;9 is the spin degeneracy

of the/-Landau level and, = 1 andd,, 4 = 3 are degeneracy factors. The Fermi momentum is

pE =/ ps% — 53, and the rest energy is given as
Ej':@/m?+2|efB|l, (7
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For degenerate magnetized strange quark matter, the nufebsity and magnetization are
given by the expressions

dym? B ox
Ny = —(00/0us) = 2f T B ZazpF, (8)

l
d e m max M +p
My = —(09;/0B) = =L <Z a [upr — [ +2¢,C4] ln%D ©)
=0

whereB§ = mf,/|ef| is the critical magnetic field andy =

Energy density and pressures are

€ = Qf—‘r,LLfo, (10a)
P=—> 9, (10b)
f
PL =Y (-Q5— BMy). (10c)
f

In order to study the matter inside the star we use the MIT Badet thus the EoS is obtained
from Equations (10a), (10b) and (10c) adding the bag (vaceikengy) parameter and the classical
magnetic energy,

BQ
E = — + Bpag, 11
e+ 5+ Boag (11)
B2
P = P\\—g—Bbag, (12)
B2
PL:PL+__Bbag- (13)
8

The stellar chemical equilibrium conditions are obtaing@blving the system of equations

o+ pre — pta = 0, pra — ps = 0 [equilibrium, (14a)
2N, — Ny — N, — 3N, = 0 charge neutrality (14b)
N, + Ng+ Ns —3ng = 0 baryon number conservation (14c)

Once the system Equation (14) is solved, we can find the thayynamical properties of the
MSQM in stellar chemical equilibrium conditions and studyhthe magnetic field modified them.

In Figure 1 we show the EoS of the magnetized gas, stresséfgththat when we increase the
magnetic field the anisotropy becomes relevant. An even tosé&rative graphic is the dependence
of pressures on the magnetic field which we show in Figure . ibted that when the magnetic
field increases, the splitting of the pressures becomesagrea expected. There is a regime where
the pressures are nearly equal (isotropic regime), but étasiaroundB ~ 108 G the pressure
anisotropy becomes very large. A quantitative parameterdasure the importance of the pressure
anisotropy (thesplitting coefficientcan be defined as

|PL— Py

A=pE o0

(15)
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Fig.2 Dependence of the pressures and the splitting coefficietiteomagnetic field.

In the right panel of Figure 2 we can see how this coefficiemtetiels on the magnetic field. A
criterion to discriminate between isotropy and anisotrogyimes is that\ ~ O(1) (Ferrer et al.
2010). In our casé\ = 1 for a magnetic field3 = 5 x 10'7 G, while for B = 10'® G, A ~ 3.3.In
our numerical computations we will first use magnetic fielthega well within the isotropic region
B = 10'7 G, and after that in the anisotropic regidh= 10'® G to compare their effects on the
stellar structure.

3 TOV EQUATIONS FOR MSQM

In order to set up the problem posed by the magnetized matt®riicthe study of the structure of
COs, we will analyze the usual spherical case, solving theltiag Tolman-Oppenheimer-\Volkoff
(TOV) equations (Misner et al. 1973). To find the static dtoe of a relativistic spherical star, we
start from Einstein’s equation

Gt =R', — %Rg“y = 87GT" (16)
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Fig. 3 Mass-Radius diagram comparing the effects of taking pelratlperpendicular pressure.

(u, v =0,1,2,3),imposing the Schwarzschild metric

ds? = —e?dt? + e dr? + r2dQ?, dQ? = db? + sin® ¢dg? | (17)
and the energy momentum tensor
7" = (E + P)utu, + Pg’, . (18)
We obtain the TOV equations
dM
= = urGE, (19)
dr
ap (E + P)(M + 47 Pr?)
dr ¢ r2 —2rM ’ (20)

with boundary condition®(R) = 0, M (0) = 0 and the EoF — f(P).

When we look at Equation (20) the problem of which pressurstrba used in the case of a
magnetized EoS (like the one obtained in the precedingsgdirises. One option is to work within
the isotropic regiméA < 1) whereP, = P,. However, if we want to explore the anisotropic
regime and address the issue of what is the maximum field rtit®@em is unavoidable.

In Figure 3 the mass-radius diagram is shown for MSQM for taloi@s of the magnetic field,
which compares the effects of both pressures in Equation F20 B = 10'7 G the differences are
not visible as expected because the pressures are neadyagliwe are in the isotropic regime
(A = 0.03). For B = 10'® G the differences between using the perpendicular or thallpar
pressure are quite large. In this case one must establigieaar to employ one of them or improve
the structure equations to take into account the anisasopi

4 ANISOTROPIC STRUCTURE EQUATIONS

In order to improve the structure equations in the presehaaisotropic pressures, we propose that
a more “natural” geometry of a magnetized fermion systenmiaxdasymmetric geometry. Thus, to
obtain the structure equations, we start with the cyliradljcsymmetric metric

ds? = —e?®dt? + 22 dr? + r2dg? + €2V d2?, (22)
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where®, A,  and¥ are only functions of-.
For this metric, the nonzero Einstein tensor components are

Gl = e MU + 02 — 0N — %A’ + %\Iﬂ),

G = e MV + %tl)’ + %\Iﬂ),

GY = e MO+ @2 — N + U+ U — WA + VD),
G? = e P + 02 — '\ — %A’ + %@’) .

With the energy momentum tensor for magnetized matter diygiGonzalez Felipe et al. 2005)

EO0O 0 0
0 PO O

[ —

Tu_ O O PL O ’ (22)
00 0 P

whereE, P and P, are given by the EoS (11), (12) and (13) respectively.
From the Einstein field equations in natural units we themiotthe following four differential
equations:

ArE = —e MW 02 WA — %A’ + %\Iﬂ) ,
ATP| = e N (VP + %@’ 1 %\p’),
AnP) = e (D" + 2 — N + U + U2 — VAN + VD),
ArPp = e MNP + @7 — PN — %A’ + %(I)’) .
Performing some algebra with the previous system of equsitiand using the energy momen-
tum conservatiof7*,. ) we finally obtain

P, = —®'(E+P.,)— V(P - P)), (23a)

Ame* (B + P +2P)) = "+ &' (¥ + & — N) + (}% 7 (23b)
Ame* (E+ P —2P)) = -0 — 0/ (V' + &' — A) — \Ij?/ : (23¢)
Are* (P — E) = %(\Iﬂ +0 —A). (23d)

This form, together with the EoB — f(P.), Pj — f(E), is asystem of differential equations

in the variables
P, P, E, &, A, V. (24)

Since the differential equations involve factorslgf, we will start with a power series expan-
sion of P, ®, ¥ andA aroundr = 0 to find the initial conditions suitable for numerical calatibns

P, = Piog+ Py, (25)
A = Ao+ Aqr, (26)
D = By + Oy + Por?, (27)
U = U+ Uyr+ Uyr?. (28)
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Fig.4 Metric coefficients and pressures inside the star for twoe&bf the magnetic field.

We take alsol = & = A = 0 atr = 0 so that the corresponding metric coefficients are equal
to 1 at that point andl’ = &' = 0 to select smooth solutions on theaxis.

By substitution of these conditions in the system of diffei@ equations we find

P (0) = Pio, (29a)
A(0) = 0, (29b)
®(0) = %(Puo +2Py1o + Eo)(rg — 2r0), (29¢)
\IJ(O) = %(—PHO + 2PL0 - E())(Tg - 27’0) 5 (29d)
@'(0) = 0, (29¢)
v (0) = 0. (29f)
We also impose
P (Ry)=0,

which determines the radius of the star, in the equator@&iy@ndicular) direction.

The solutions of the system given by Equation (23) with @itonditions Equation (29) are
shown in Figure 4. In the left panel of Figure 4 the behavidhefmetric coefficients is shown for two
values of the magnetic field. As we can note, the increasesafilignetic field produces an increase
of the star radius in the perpendicular direction. In thétiganel of Figure 4 the pressures inside
the star are depicted for a selected central density. ABelguantities exhibit a regular physical
behavior.

As we have pointed out, by hypothesis all our variables jegietid on the perpendicular radial
direction. Therefore, in the case of spherical symmetrycamnot simply compute all the quantities
needed for the mass radius diagram like in Figure 3. Instead/i compute the Tolman (Tolman
1934) generalization for the mass per unit length of a source

Mr = [V - 1} - 13 ~ 1)V, (30)
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Fig.5 Mass per unit parallel lengtil//R)) in solar masses, versus perpendicular radius. As the
magnetic field increases the perpendicular radius incseapeto a critical field. The curves are
organized in order of increasing values of the magneticdie®l = 10'" G, B = 10'* G, B =

1.5 x 10'"® GandB = 1.7 x 10'® G.

For the cylindrical metric (21) we have

My = /re‘““/\(E — 2P, — P))dV (31)
27 RH R,
= / / / re® ™ HMNE — 2P, — P))dpdzdr (32)
0 —-R; Jo
Ry
= 47R) / re®TVTNE — 2P, — P))dr. (33)
0
Therefore, we cannot compute the mass of the star but ratéenass per unit lengttMr/R)
M o
R—T = 471'/ re?TV N e — 2P — Py)dr. (34)
[ 0

In Figure 5 the mass per unit length versus perpendiculansasl shown. When the magnetic
field increases, the perpendicular radius and the mass pidength of the star also increases. We
found that there is a maximum field3(~ 1.8 x 10'® G) beyond which the metric coefficients
exhibit a divergent behavior. This value of the magnetidfaimost coincides with the threshold for
which the pressure difference has become important, andtsés B = 1.8 x 108 G, (for which
A = 10.5). Therefore, we infer that no stable solutions of the sysdeerpossible beyond this point
and this indicates the end of the theoretical stellar secpgewithin the adopted assumptions.

Even though within our model we cannot compute the mass sa@lation, the information
given in Figure 5 is important for constraining the maximumagnetic field allowed for magnetized
COs.

5 CONCLUSIONS

We have pointed out and worked on the problem of anisotromsgures in the description of the
structure of a CO in this paper. The suggestion is that whesplitting coefficient of the pressures
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A becomes> 1, the differences in the pressures cannot be neglected aifférzidt approach must
be used to study the structure of the star.

In the constant magnetic field approximation used in ouruatons, the feature of the
anisotropic pressures is always present, but other ptgsiisuch as different geometrical con-
figurations of the magnetic field, are not excluded.

An anisotropic metric has been employed to account for thkaststructure. The choice of a
constant magnetic field allowed a simple solution contgrilre anisotropic features in the high
magnetic field regime.

We have obtained a regular behavior of the metric coeffisiergide the star and a physically
consistent dependence of the pressures on the radii.

More importantly, the existence of a critical fiel8{ ~ 1.8 x 10'® G) beyond which there are no
equilibrium configurations has been found. This criticdtfis essentially (up to a small numerical
factor) related to the scalar virial theoreBuax ~ 10'® G; it suggests that a magnetic instability
ends the stable sequence of stars for values of the field dbeitical one.

Our main simplification in this model is that we have takerttadl variables as being dependent
on just the perpendicular (equatorial) radius. This alldws to have a more tractable system of
differential equations, although as a result we cannotrately compute the physical quantities
unless the dependence on bdth z) for the variables of the problem is kept. Nevertheless, the
model confirms the intuitive idea of the existence of a maximuagnetic field for which the star
may undergo an anisotropic collapse due to a magnetic itistal/e conjecture that a more accurate
scheme should render slightly different values, but withgame qualitative behavior found above.
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