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Abstract The fact that a fermion system in an external magnetic field breaks the
spherical symmetry suggests that its intrinsic geometry isaxisymmetric rather than
spherical. In this work we analyze the impact of anisotropicpressures, due to the
presence of a magnetic field, in the structure equations of a magnetized quark star.
We assume a cylindrical metric and an anisotropic energy momentum tensor for the
source. We found that there is a maximum magnetic field that a strange star can sus-
tain, closely related to the violation of the virial relations.
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1 INTRODUCTION

The presence of huge magnetic fields in compact objects (COs)is an established fact. Typical mea-
sured surface magnetic fields are about1012 G, although in the case of themagnetarsubclass they
can be as high as1015 G (Woods & Thompson 2006). However, there are no observations capable
of measuring the magnetic fields in the inner regions of stars, and theoretical arguments must be
used to estimate the maximum values of the field with an eye on possible modifications to the stel-
lar structure. Based on the scalar virial theorem (Lai & Shapiro 1991), it can be estimated that the
maximum magnetic field that a CO can sustain, as(4πR3/3)(B2

max/8π) ∼ GM2/R ⇒ Bmax ∼
2 × 108(M/M⊙)(R/R⊙)−2 G, is Bmax ∼ 1018 G for a neutron star with a massM = 1.4M⊙

and a radiusR ∼ 106cm = 10−4R⊙, whereM⊙ andR⊙ are the mass and the radius of the Sun
respectively. For a self-bound star a higher maximum value inside the coreBmax ∼ 1020 G has
been obtained (Ferrer et al. 2010). These numbers suggest the idea that a realistic model of a CO
must consider that matter is magnetized, and a few attempts have been done in order to construct
models that describe the microphysics of magnetized fermion systems (González Felipe et al. 2005;
Chakrabarty 1996).

In the simplest case in which the source of the magnetic field is not addressed, i.e. fermions in
an external field, it is quite clear that in fermion systems the former breaks the spherical symmetry
and produces an anisotropy in the pressure. Depending on itsactual numerical value, this anisotropy
could induce a deformation of the CO, and eventually leads toan anisotropic collapse of the object
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if ultrastrong magnetic fields are indeed present (Martı́nez et al. 2003). The limits of the absolute
maximum field and the issue of spherical symmetry in the equation of state (EoS) are the subjects of
the present paper.

It is important to stress that the anisotropy of the pressures is a main consequence of our assump-
tions of a constant external magnetic field. In Blandford & Hernquist (1982) it is argued that the pres-
sures become isotropic because of the work done against the Lorentz force density ((∇× M) × B)
when the gas is compressed in the perpendicular direction toB. This argument does not hold within
our assumptions of a constant magnetic field because we have∇ × M = 0. Moreover, a more
realistic scenario is presented in Canuto (1971) in which one could find isotropic pressures in a
magnetized fermion system, but no external magnetic field isrequired. There are many works that
recognize the existence of the anisotropic pressures as a consequence of the spherical symmetry
breaking due to the preferred direction fixed by the magneticfield (Chandrasekhar & Fermi 1953;
Haskell et al. 2008; Lattimer & Prakash 2007). In Chaichian et al. (2000); Perez Martinez et al.
(2000); Martı́nez et al. (2003) it is discussed that a fermion gas in a magnetic field could collapse
due to the anisotropies of the pressures.

In the following, we will describe a system with the most simple metric that is able to deal with
the cylindrical geometry hypothesis. The prescription forthe pressures in the energy momentum
tensor are thus very well defined and do not have ambiguities.

We must emphasize that a constant magnetic field is expected for a highly conductive material
without the Meissner effect. Hence, the constant interior magnetic field may be a better approxima-
tion than would be naively expected.

Anisotropic systems have been studied in the context of stars, but the standard approach has been
to take spherical symmetry for granted (Dev & Gleiser 2000; Mak & Harko 2003). In the presence
of pressure anisotropies due to a magnetic field, other symmetry choices (i.e. cylindrical symmetry)
could give a more complete description of the physics; this feature has been pointed out by several
authors (Paulucci et al. 2011; Dexheimer et al. 2012). Recently some works dealing with the problem
of an axisymmetric metric (Herrera et al. 2013; Quevedo 2012) have been presented, although they
remained within a theoretical perspective without application to actual systems.

Given these arguments, the introduction of acylindrical symmetric metric in the Einstein equa-
tion, together with the construction of an anisotropic energy momentum tensor for the magnetized
matter, seems a more “natural” choice. This anisotropic hydrostatic equilibrium equation could shed
some light on how the magnetic field affects the sphericity ofthe CO, and yield upper limits for the
values of the magnetic field that this object can sustain.

In a first approximation to investigate this problem we will use a general cylindrical symmetric
metric, with coordinates (t, r, φ, z), following the procedures of Trendafilova & Fulling (2011)to
solve the Einstein equations for an axisymmetric model of a CO to take into account the anisotropy
induced by the external magnetic field. In the presence of a constant, external magnetic field there
are two main directions in space, parallel and perpendicular to the magnetic field. One of the main
approximations that we shall make is that all the functions and variables of our model will only
depend on the radial(r) variable, so that we can simply describe the perpendicular (equatorial)
direction of the CO with respect to the magnetic field. We alsoconsider that the magnetic field is
constant and in thez direction. This model can give information on the effects ofthe magnetic field
in terms of the shape (oblateness) of the CO and yield upper limits for the values of the magnetic
field that this object can sustain. More realistic models will be studied in the future.

For the microscopic description of magnetized matter, we use the results obtained in Martı́nez
et al. (2010); Felipe & Martı́nez (2009) for magnetized strange quark matter (MSQM), which can
represent the composition of a strange quark star in its self-bound version or the central nucleus of
a hybrid neutron star if it is only considered at high pressure. Both possibilities can be achieved by
selecting different sets of the available parameters, as discussed in Dexheimer et al. (2012); Paulucci
et al. (2011).
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In Section 2 we review the main thermodynamical properties of a magnetized quark gas used to
describe the matter inside the star. In Section 3 we first obtain the mass-radius relation for MSQM in
a standard spherical symmetry and show the problems relatedto the existence of two pressures; next
Einstein equations are solved in cylindrical symmetry to obtain the structure equations that describe
the equilibrium of the stars taking into account both pressures. Finally in Section 5 we present the
conclusions of this study.

2 MAGNETIZED FERMION SYSTEM

The thermodynamical potential for a magnetized fermion gasin the framework of the MIT Bag
model is given by

Ωf (µf , B, T ) = −dfefB

β





∞
∑

l=0

∑

p4

∞
∫

−∞

dp3

(2π)2
ln detG−1

f (p∗)



 , (1)

with p∗ = (ip4 − µf , 0,
√

2efBl, p3) for l = 0, 1, 2, ...; β is the inverse absolute temperature,µf is
the fermionic chemical potential andG−1

f = det[p∗ · γ − mf ].
We label the electrons withf and the quark flavors areu, d and s. After performing the

Matsubara sum we obtain

Ωf (B, µf , T ) = −dfefB
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Taking the zero temperature limit (COs are considered highly degenerate (µ ≫ T ), therefore the
thermal effects can be neglected) we can write the thermodynamic potential as a sum of the vacuum
and statistical contributions

Ωf = Ωf (B, 0, 0) + Ωf (B, µ, 0) . (3)

with

Ωf (B, 0, 0) = −efB

4π2

∫

dp3|
efB

4π2

∞
∑

l=0

∫

dp3|Ef | , (4)

whereEf =
√

p2
3 + m2

f + 2|efB|l. The Ωf (B, 0, 0) is the vacuum contribution and the renor-

malized form was found in Berestetskii et al. (1980). In whatfollows we neglect it, since we are
interested here in a region of fieldseB ≤ µ2 where the statistical contributionΩf (B, µf , 0) to the
physical quantities is more important than the vacuum one.

The statistical contributionΩf (B, µf , 0) has the form

Ωf (B, µf , 0) = −dfefB

2π2
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wherelmax = [
µ2

f−m2

f

2eB
], I[z] denotes the integer part ofz, αl = 2 − δl0 is the spin degeneracy

of the l-Landau level andde = 1 anddu,d,s = 3 are degeneracy factors. The Fermi momentum is

pF =
√

µf
2 − ε2

f and the rest energy is given as

εf =
√

m2
f + 2|efB|l , (7)
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For degenerate magnetized strange quark matter, the numberdensity and magnetization are
given by the expressions

Nf = −(∂Ωf/∂µf) =
dfm2

2π2

B

Bc
f

lmax
∑

l=0

αlpF , (8)

Mf = −(∂Ωf/∂B) =
dfefmf

4π2
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, (9)

whereBc
f = m2

f/|ef | is the critical magnetic field andCf =
B

Bc
f

l

√

2l B
Bc

f
+m2

f

.

Energy density and pressures are

ǫ = Ωf + µfNf , (10a)

P‖ = −
∑

f

Ωf , (10b)

P⊥ =
∑

f

(−Ωf − BMf ) . (10c)

In order to study the matter inside the star we use the MIT Bag model, thus the EoS is obtained
from Equations (10a), (10b) and (10c) adding the bag (vacuumenergy) parameter and the classical
magnetic energy,

E = ε +
B2

8π
+ Bbag , (11)

P‖ = P‖ −
B2

8π
− Bbag , (12)

P⊥ = P⊥ +
B2

8π
− Bbag . (13)

The stellar chemical equilibrium conditions are obtained by solving the system of equations

µu + µe − µd = 0, µd − µs = 0 β equilibrium, (14a)

2Nu − Nd − Ns − 3Ne = 0 charge neutrality, (14b)

Nu + Nd + Ns − 3nB = 0 baryon number conservation. (14c)

Once the system Equation (14) is solved, we can find the thermodynamical properties of the
MSQM in stellar chemical equilibrium conditions and study how the magnetic field modified them.

In Figure 1 we show the EoS of the magnetized gas, stressing the fact that when we increase the
magnetic field the anisotropy becomes relevant. An even moreillustrative graphic is the dependence
of pressures on the magnetic field which we show in Figure 2. Itis noted that when the magnetic
field increases, the splitting of the pressures becomes greater, as expected. There is a regime where
the pressures are nearly equal (isotropic regime), but for fields aroundB ∼ 1018 G the pressure
anisotropy becomes very large. A quantitative parameter tomeasure the importance of the pressure
anisotropy (thesplitting coefficient) can be defined as

∆ =
|P⊥ − P‖|
P (B → 0)

. (15)
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Fig. 1 Equations of state for magnetized strange quark matter.
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Fig. 2 Dependence of the pressures and the splitting coefficient onthe magnetic field.

In the right panel of Figure 2 we can see how this coefficient depends on the magnetic field. A
criterion to discriminate between isotropy and anisotropyregimes is that∆ ≃ O(1) (Ferrer et al.
2010). In our case∆ = 1 for a magnetic fieldB = 5 × 1017 G, while forB = 1018 G, ∆ ≃ 3.3. In
our numerical computations we will first use magnetic field values well within the isotropic region
B = 1017 G, and after that in the anisotropic regionB = 1018 G to compare their effects on the
stellar structure.

3 TOV EQUATIONS FOR MSQM

In order to set up the problem posed by the magnetized matter EoS in the study of the structure of
COs, we will analyze the usual spherical case, solving the resulting Tolman-Oppenheimer-Volkoff
(TOV) equations (Misner et al. 1973). To find the static structure of a relativistic spherical star, we
start from Einstein’s equation

Gµ
ν ≡ Rµ

ν − 1

2
Rgµ

ν = 8πGT µ
ν , (16)
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Fig. 3 Mass-Radius diagram comparing the effects of taking parallel or perpendicular pressure.

(µ, ν = 0, 1, 2, 3), imposing the Schwarzschild metric

ds2 = −e2νdt2 + e2λdr2 + r2dΩ2, dΩ2 = dθ2 + sin2 φdφ2 , (17)

and the energy momentum tensor

T µ
ν = (E + P )uµuν + Pgµ

ν . (18)

We obtain the TOV equations

dM

dr
= 4πGE, (19)

dP

dr
= −G

(E + P )(M + 4πPr3)

r2 − 2rM
, (20)

with boundary conditionsP (R) = 0, M(0) = 0 and the EoSE → f(P ).
When we look at Equation (20) the problem of which pressure must be used in the case of a

magnetized EoS (like the one obtained in the preceding section) arises. One option is to work within
the isotropic regime(∆ < 1) whereP⊥ = P‖. However, if we want to explore the anisotropic
regime and address the issue of what is the maximum field, the problem is unavoidable.

In Figure 3 the mass–radius diagram is shown for MSQM for two values of the magnetic field,
which compares the effects of both pressures in Equation (20). ForB = 1017 G the differences are
not visible as expected because the pressures are nearly equal and we are in the isotropic regime
(∆ = 0.03). For B = 1018 G the differences between using the perpendicular or the parallel
pressure are quite large. In this case one must establish a criterion to employ one of them or improve
the structure equations to take into account the anisotropies.

4 ANISOTROPIC STRUCTURE EQUATIONS

In order to improve the structure equations in the presence of anisotropic pressures, we propose that
a more “natural” geometry of a magnetized fermion system is an axisymmetric geometry. Thus, to
obtain the structure equations, we start with the cylindrically symmetric metric

ds2 = −e2Φdt2 + e2Λdr2 + r2dφ2 + e2Ψdz2 , (21)
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whereΦ, Λ, Ω andΨ are only functions ofr.
For this metric, the nonzero Einstein tensor components are

Gt
t = e−2Λ(Ψ′′ + Ψ′2 − Ψ′Λ′ − 1

r
Λ′ +

1

r
Ψ′) ,

Gr
r = e−2Λ(Ψ′Φ′ +

1

r
Φ′ +

1

r
Ψ′) ,

Gφ
φ = e−2Λ(Φ′′ + Φ′2 − Φ′Λ′ + Ψ′′ + Ψ′2 − Ψ′Λ′ + Ψ′Φ′),

Gz
z = e−2Λ(Φ′′ + Φ′2 − Φ′Λ′ − 1

r
Λ′ +

1

r
Φ′) .

With the energy momentum tensor for magnetized matter givenby (González Felipe et al. 2005)

T µ
ν =







E 0 0 0
0 P⊥ 0 0
0 0 P⊥ 0
0 0 0 P‖






, (22)

whereE, P‖ andP⊥ are given by the EoS (11), (12) and (13) respectively.
From the Einstein field equations in natural units we then obtain the following four differential

equations:

4πE = −e−2Λ(Ψ′′ + Ψ′2 − Ψ′Λ′ − 1

r
Λ′ +

1

r
Ψ′) ,

4πP⊥ = e−2Λ(Ψ′Φ′ +
1

r
Φ′ +

1

r
Ψ′) ,

4πP⊥ = e−2Λ(Φ′′ + Φ′2 − Φ′Λ′ + Ψ′′ + Ψ′2 − Ψ′Λ′ + Ψ′Φ′) ,

4πP‖ = e−2Λ(Φ′′ + Φ′2 − Φ′Λ′ − 1

r
Λ′ +

1

r
Φ′) .

Performing some algebra with the previous system of equations, and using the energy momen-
tum conservation(T µ

ν;µ) we finally obtain

P ′
⊥ = −Φ′(E + P⊥) − Ψ′(P⊥ − P‖) , (23a)

4πe2Λ(E + P‖ + 2P⊥) = Φ′′ + Φ′(Ψ′ + Φ′ − Λ′) +
Φ′

r
, (23b)

4πe2Λ(E + P‖ − 2P⊥) = −Ψ′′ − Ψ′(Ψ′ + Φ′ − Λ′) − Ψ′

r
, (23c)

4πe2Λ(P‖ − E) =
1

r
(Ψ′ + Φ′ − Λ′) . (23d)

This form, together with the EoSE → f(P⊥), P‖ → f(E), is a system of differential equations
in the variables

P⊥, P‖, E, Φ, Λ, Ψ . (24)

Since the differential equations involve factors of1/r, we will start with a power series expan-
sion ofP⊥, Φ, Ψ andΛ aroundr = 0 to find the initial conditions suitable for numerical calculations

P⊥ = P⊥0 + P⊥1r, (25)

Λ = Λ0 + Λ1r, (26)

Φ = Φ0 + Φ1r + Φ2r
2, (27)

Ψ = Ψ0 + Ψ1r + Ψ2r
2 . (28)
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Fig. 4 Metric coefficients and pressures inside the star for two values of the magnetic field.

We take alsoΨ = Φ = Λ = 0 at r = 0 so that the corresponding metric coefficients are equal
to 1 at that point andΨ′ = Φ′ = 0 to select smooth solutions on thez-axis.

By substitution of these conditions in the system of differential equations we find

P⊥(0) = P⊥0 , (29a)

Λ(0) = 0 , (29b)

Φ(0) =
1

2
(P‖0 + 2P⊥0 + E0)(r

2
0 − 2r0) , (29c)

Ψ(0) =
1

2
(−P‖0 + 2P⊥0 − E0)(r

2
0 − 2r0) , (29d)

Φ′(0) = 0 , (29e)

Ψ′(0) = 0 . (29f)

We also impose

P⊥(R⊥) = 0 ,

which determines the radius of the star, in the equatorial (perpendicular) direction.
The solutions of the system given by Equation (23) with initial conditions Equation (29) are

shown in Figure 4. In the left panel of Figure 4 the behavior ofthe metric coefficients is shown for two
values of the magnetic field. As we can note, the increase of the magnetic field produces an increase
of the star radius in the perpendicular direction. In the right panel of Figure 4 the pressures inside
the star are depicted for a selected central density. All these quantities exhibit a regular physical
behavior.

As we have pointed out, by hypothesis all our variables just depend on the perpendicular radial
direction. Therefore, in the case of spherical symmetry, wecannot simply compute all the quantities
needed for the mass radius diagram like in Figure 3. Instead we will compute the Tolman (Tolman
1934) generalization for the mass per unit length of a source

MT =

∫ √−g(T 0
0 − T 1

1 − T 2
2 − T 3

3 )dV. (30)
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For the cylindrical metric (21) we have

MT =

∫

reΦ+Ψ+Λ(E − 2P⊥ − P‖)dV (31)

=

∫ 2π

0

∫ R‖

−R‖

∫ R⊥

0

reΦ+Ψ+Λ(E − 2P⊥ − P‖)dφ dz dr (32)

= 4πR‖

∫ R⊥

0

reΦ+Ψ+Λ(E − 2P⊥ − P‖)dr . (33)

Therefore, we cannot compute the mass of the star but rather the mass per unit length(MT /R‖)

MT

R‖
= 4π

∫ R⊥

0

reΦ+Ψ+Λ(ǫ − 2P⊥ − P‖)dr . (34)

In Figure 5 the mass per unit length versus perpendicular radius is shown. When the magnetic
field increases, the perpendicular radius and the mass per unit length of the star also increases. We
found that there is a maximum field (B ≃ 1.8 × 1018 G) beyond which the metric coefficients
exhibit a divergent behavior. This value of the magnetic field almost coincides with the threshold for
which the pressure difference has become important, and results in B = 1.8 × 1018 G, (for which
∆ = 10.5). Therefore, we infer that no stable solutions of the systemare possible beyond this point
and this indicates the end of the theoretical stellar sequences within the adopted assumptions.

Even though within our model we cannot compute the mass radius relation, the information
given in Figure 5 is important for constraining the maximum magnetic field allowed for magnetized
COs.

5 CONCLUSIONS

We have pointed out and worked on the problem of anisotropic pressures in the description of the
structure of a CO in this paper. The suggestion is that when the splitting coefficient of the pressures
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∆ becomes> 1, the differences in the pressures cannot be neglected and a different approach must
be used to study the structure of the star.

In the constant magnetic field approximation used in our calculations, the feature of the
anisotropic pressures is always present, but other possibilities, such as different geometrical con-
figurations of the magnetic field, are not excluded.

An anisotropic metric has been employed to account for the stellar structure. The choice of a
constant magnetic field allowed a simple solution containing the anisotropic features in the high
magnetic field regime.

We have obtained a regular behavior of the metric coefficients inside the star and a physically
consistent dependence of the pressures on the radii.

More importantly, the existence of a critical field (Bc ∼ 1.8×1018 G) beyond which there are no
equilibrium configurations has been found. This critical field is essentially (up to a small numerical
factor) related to the scalar virial theoremBmax ∼ 1018 G; it suggests that a magnetic instability
ends the stable sequence of stars for values of the field abovethe critical one.

Our main simplification in this model is that we have taken allthe variables as being dependent
on just the perpendicular (equatorial) radius. This allowed us to have a more tractable system of
differential equations, although as a result we cannot accurately compute the physical quantities
unless the dependence on both(r, z) for the variables of the problem is kept. Nevertheless, the
model confirms the intuitive idea of the existence of a maximum magnetic field for which the star
may undergo an anisotropic collapse due to a magnetic instability. We conjecture that a more accurate
scheme should render slightly different values, but with the same qualitative behavior found above.
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