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Abstract Using a realistic equation of state (EOS) of strange quark matter, namely,
the modified bag model, and considering the constraints on the parameters of EOS
by the observational mass limit of neutron stars, we investigate ther-mode instabil-
ity window of strange stars, and find the same result as in the brief study of Haskell,
Degenaar and Ho in 2012 that these instability windows are not consistent with the
spin frequency and temperature observations of neutron stars in low mass X-ray bina-
ries.
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1 INTRODUCTION

The realization in 1998 thatr-modes, which are restored by the Coriolis force, are subjected
to Chandrasekhar-Friedmann-Schutz (CFS) instability (Chandrasekhar 1970; Friedman & Schutz
1978) in a perfect fluid star with arbitrary rotation (Andersson 1998; Friedman & Morsink 1998),
has received a lot of attention. It is easy to understand thatfor a realistic neutron star, ther-mode
instability only happens in a range of spin frequencies and temperatures, the so-calledr-mode in-
stability window, which is decided by the competition between the gravitational-wave driven effect
and viscous-dissipation damping effect on the modes (Lindblom et al. 1998). Therefore, ther-mode
instability is an important primary physical mechanism that can prevent neutron stars from spinning
up to their Kepler frequency (ΩK, above which matter is ejected from the star’s equator) (Madsen
1998; Andersson et al. 1999), and gravitational waves emitted during the instability process could
be detected (Andersson & Kokkotas 2001; Andersson et al. 2002; Abadie et al. 2010; Alford &
Schwenzer 2014). In fact, some other aspects related tor-mode instability are also studied. For
example, as an alternative explanation to the rapid coolingof the neutron star in Cas A (which
can be well explained by the superfluidity-triggering model(Page et al. 2011; Shternin et al. 2011;
Elshamouty et al. 2013)), it is suggested that the star experiences the recovery period following the
r-mode heating process by assuming the star is differentially rotating (Yang et al. 2010, 2011).

Recently, as more and more temperature data on neutron starsin low mass X-ray binaries
(LMXBs) have been presented through X-ray and UV observations (Haskell et al. 2012; Gusakov
et al. 2014), many studies have tried to constrain the physics behind ther-mode instability of neu-
tron stars, especially the equation of state (EOS) of cold dense matter, by comparing ther-mode
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instability window with the spin frequency and temperatureobservations in these systems (Ho et al.
2011; Haskell et al. 2012; Vidaña 2012; Wen et al. 2012).

In this paper, we will investigate the case of strange stars in detail following the brief study by
Haskell et al. (2012). Different from their work and other former works aboutr-modes in strange
stars (e.g. Madsen 1998, 2000), our study is based on a realistic EOS of strange quark matter, namely,
the modified bag model (Farhi & Jaffe 1984; Haensel et al. 1986; Alcock et al. 1986; Weber 2005).
We give the timescales related tor-modes numerically; moreover, before our study of ther-mode
instability window, we fix the parameter space of EOS so that it can match the mass limit of neutron
stars, which is fixed by determining the mass of the millisecond pulsar PSR J1614-2230 to be1.97±
0.04 M⊙ (Demorest et al. 2010), and has been further updated by the recent measurement of the
2.01 ± 0.04 M⊙ PSR J0348+0432 (Antoniadis et al. 2013).

Although strange stars can also support a thin crust of normal nuclear matter up to the neutron
drip density (Glendenning & Weber 1992), it only leads to minor changes in the maximum mass
compared with bare strange stars (Zdunik 2002), and it also does not contribute significantly to the
damping ofr-modes (Andersson et al. 2002; Haskell et al. 2012). Therefore, we only study ther-
mode instability window of bare strange stars in this work, which will be very similar to strange
stars with a nuclear crust. However, ther-mode instability window of strange stars with a crystalline
superconducting quark crust will be very different, as studied by Rupak & Jaikumar (2013); we will
not consider that case in this paper. Moreover, we will not consider the case of solid strange quark
stars composed of quark clusters (Xu 2003; Yu & Xu 2011; Zhou et al. 2014), since apparently
r-mode instability could not occur in these stars.

The plan of this paper is as follows. In Section 2, we briefly show the modified strange quark
matter EOS used in our study, and calculate the allowed parameter space following certain con-
straints. In Section 3, we give the inequality through whichther-mode instability window is deter-
mined, and the related gravitational-wave driven timescale and the viscous-damping timescales are
also presented. In Section 4, we compare the theoreticalr-mode window with the spin frequency
and temperature observations of neutron stars in LMXBs, andSection 5 is our conclusions and dis-
cussion.

2 EOS OF STRANGE QUARK MATTER AND CONSTRAINTS IMPOSED BY THE
MASS OF PSR J1614-2230 AND PSR J0348+0432

For strange quark matter, we take the modified bag model (Farhi & Jaffe 1984; Haensel et al. 1986;
Alcock et al. 1986; Weber 2005), in which up (u) and down (d) quarks are treated as massless
particles while the strange (s) quark mass is a free parameter, and first-order perturbative corrections
in the strong interaction coupling constantαS are taken into account. The thermodynamic potentials
for theu, d ands quarks, and for the electrons are (Alcock et al. 1986; Na et al. 2012)
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Fig. 1 The constraints on the parameters of the EOS of strange quarkmatter, namely,B1/4 andαS .
The green shaded area corresponds to the allowed parameter space according to the constraints of the
absolute stability of strange quark matter (3-flavor line) and the existence of nuclei (2-flavor line).
The red shaded area marks the parameter space which has the maximum mass of PSR J1614-2230
(M = 1.97± 0.04 M⊙) and PSR J0348+0432 (M = 2.01± 0.04 M⊙). The combinations ofB1/4

andαS which could lead to the maximum mass of a strange star beingM =2.1M⊙, 2.2M⊙, 2.3
M⊙, 2.4M⊙, 2.5M⊙ are also presented. The two graphs are forms = 100 MeV (left panel) and
ms = 200 MeV (right panel), respectively.

wheref(us, ms) ≡ ln((µs +
√

µ2
s − m2

s)/ms), σ is a renormalization constant whose value is of
the order of the chemical potentials (Farhi & Jaffe 1984), and we takeσ = 300 MeV in this paper.
(Note, there is a typo in Na et al. 2012 before the term3m4

s ln2 ms

µs

for Ωs, it should be “−” as given
by Alcock et al. 1986 .)

Before the discussion of ther-mode instability window of strange stars and making a compar-
ison with observations of neutron stars in LMXBs, we calculate the allowed parameter space for
the EOS of strange quark matter according to the following basic constraints (Schaab et al. 1997;
Weissenborn et al. 2011; Wei & Zheng 2012). First, the existence of quark stars composed of sta-
ble strange quark matter is based on the idea that the presence of strange quarks can lower the
energy per baryon of the mixture ofu, d ands quarks in beta equilibrium below the one of56Fe
(E/A ∼ 930 MeV) (Witten 1984). This constraint results in the “3-flavorline” in Figure 1. The
second constraint is given by the assumption that non-strange quark matter (two-flavor quark matter
consists of onlyu andd quarks) in bulk has a binding energy per baryon higher than the one for the
most stable atomic nucleus,56Fe, plus a 4 MeV correction coming from surface effects (Farhi & Jaffe
1984). By imposing thatE/A ≥ 934 MeV for non-strange quark matter, one ensures that atomic
nuclei do not dissolve into their constituent quarks which leads to the “2-flavor line” in Figure 1.
The last constraint is that the maximum mass must be greater than the masses of PSR J1614-2230
(M = 1.97 ± 0.04 M⊙) and PSR J0348+0432 (M = 2.01 ± 0.04 M⊙). This constraint can also be
shown in Figure 1, since for each set of parameters of the strange quark matter EOS (namely,ms,
B1/4 andαS), one can derive a maximum mass by solving the Oppenheimer-Volkoff equations.

According to the above three constraints, the allowed parameter space is displayed in Figure 1.
The region between the “3-flavor line” and “2-flavor line” (the green shaded area) is allowed accord-
ing to the first two constraints, but considering the third constraint, only a part of the green shaded
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area is allowed, namely, the part below the red shaded area. From Figure 1, it can be found that for
our EOS model, both for the cases ofms = 100 MeV andms = 200MeV, the constraint about the
maximum mass results inαS > 0, which means the QCD corrections must be included, and it is the
same result as given by Weissenborn et al. (2011).

3 R-MODE INSTABILITY WINDOW OF STRANGE STARS

Ther-mode instability window of a strange star is defined by the inequality

1
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+
1
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+

1
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< 0, (5)

whereτGW is the timescale of the growth of anr-mode due to the emission of gravitational waves;
τη andτζ are the dissipation timescales due to shear viscosity and bulk viscosity, respectively. For a
strange star with given spin frequencyΩ and core temperatureT which satisfy the above inequality,
ther-mode in the star should increase exponentially, and the amplified r-mode will transfer angular
momentum of the star to gravitational waves; therefore, thestar should quickly leave the instability
window, making the probability of observing it in that region in theΩ − T plane (Gusakov et al.
2014) vanishingly small.

The growth timescale due to the emission of gravitational waves is given by Lindblom et al.
(1998)
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whereΩ is the spin frequency of the star andρ is the mass density in g cm−3. In this paper, we only
focus on ther-modes with quantum numberl = 2 and azimuthal projectionm = 2 because these
are the dominant ones (Lindblom et al. 1998; Madsen 1998).

The dissipation timescale due to shear viscosity is (Lindblom et al. 1998)
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The shear viscosity of strange quark matter due to quark scattering was calculated by Heiselberg &
Pethick (1993), and the results forT ≪ µ, whereT is the temperature andµ is the quark chemical
potential, can be presented as (Madsen 1998)
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whereT9 ≡ T/109 K andρ15 ≡ ρ/1015 g cm−3.
The dissipation timescale due to bulk viscosity is given by references (Lindblom & Owen 2002;

Nayyar & Owen 2006; Vidaña 2012). By considering second order effects (Lindblom et al. 1999)
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whereρ̄ ≡ M/(4πR3/3) is the average density of the nonrotating star. The bulk viscosity of strange
quark matter mainly depends on the rate of non-leptonic weakinteraction (Wang & Lu 1984; Sawyer
1989; Madsen 1992)

u + d ↔ s + u . (10)

To a good approximation, the bulk viscosity is (Madsen 1992)

ζ ≈ αT 2/[ω2 + βT 4] , (11)
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with α andβ given by Madsen (1992), andω is the angular frequency of the perturbation. During the
study ofr-mode instability,ω is the angular frequency of ther-mode perturbationωr = 2mΩ/l(l +
1), whereΩ is the spin frequency of the star. For the dominantr-mode (m = l = 2), ω = 2

3
Ω. The

low-T limit (T < 109 K) is enough for this work, and it turns out to be (Madsen 2000)

ζ ≈ 3.2 × 1028m4
100ρ15T

2
9 ω−2g cm−1 s−1 , (12)

wherem100 is the strange quark mass in units of 100 MeV and all the other quantities are in cgs
units.

4 COMPARING THE INSTABILITY WINDOW WITH OBSERVATIONS

By solving the inequality (5), together with Equations (6),(7) and (9) numerically for given parame-
ter sets for the EOS of strange quark matter, one can derive ther-mode instability window for strange
stars. Here, we want to stress that we will only discuss the parameter sets of the strange quark matter
EOS which reside in the allowed parameter space as shown in Section 2.

Figure 2 shows ther-mode instability window for a strange star with the canonical neutron star
massM = 1.4 M⊙, and the observational data on the spin frequency and internal temperature of
neutron stars in LMXBs, which are given by Gusakov et al. (2014). The left panel is forms =
100MeV andB1/4 = 140MeV, and the right panel is forms = 200 MeV andB1/4 = 135 MeV.
(For each givenms, we select the largest approximateB1/4 value that is allowed by the limit of
observational neutron star mass according to Fig. 1, because it corresponds to a smaller allowed
αS , which will lead to a smallerr-mode instability region as can be seen in Fig. 2.) For the left
panel, three curves are presented, which represent the cases of αS = 0.2, αS = 0.4 andαS = 0.6,
respectively; while for the right panel, we only show two curves, namelyαS = 0.4 andαS = 0.6.

Fig. 2 R-mode instability window for a strange star withM = 1.4 M⊙, compared with the obser-
vational data on the spin frequency and internal temperature of neutron stars in LMXBs (Gusakov
et al. 2014). The left panel is forms = 100 MeV andB1/4

= 140 MeV, and the right panel is
for ms = 200 MeV andB1/4

= 135 MeV. The dashed, dotted and solid curves correspond to
αS = 0.2, αS = 0.4 andαS = 0.6, respectively. (Note, there is no dashed curve in the right panel
because non-strange quark matter does not satisfy the condition E/A ≥ 934 MeV for the parameter
setαS = 0.2, ms = 200 MeV andB1/4

= 135 MeV, which can be seen in Fig. 1.)
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Fig. 3 Similar to Fig. 2, but for strange stars withM = 1.0 M⊙ (thick lines) andM = 2.0 M⊙

(thin lines).

The reason is that the parameter setαS = 0.2, ms = 200 MeV andB1/4 = 135 MeV is not located
in the allowed parameter space as discussed in Section 2; more exactly, non-strange quark matter
does not satisfy the conditionE/A ≥ 934MeV for this parameter set. It can be seen that all the
possible instability windows are not consistent with the spin frequency and temperature observations
of neutron stars in LMXBs, which turns out to be the same conclusion as drawn by Haskell et al.
(2012).

In Figure 3, we present ther-mode instability window for strange stars withM = 1.0 M⊙ and
M = 2.0 M⊙. From this graph, one can draw the same conclusion as stated above from Figure 2.
However, as one can see from the thick curves in the right panel of Figure 3, for fixed parameter set
M = 1.0 M⊙, ms = 200 MeV andB1/4 = 135 MeV, both of the two curves (forαS = 0.4 and
αS = 0.6, respectively) can explain well all the observational dataexcept the data point representing
SAX J1808.4–3658. Therefore, the source SAX J1808.4–3658 is very important for us to consider
when drawing any conclusions.

5 CONCLUSIONS AND DISCUSSION

Following the brief study by Haskell et al. (2012), we examine the instability window of strange
stars in detail, and compare it with the spin frequency and temperature observations of neutron stars
in LMXBs. Our work is based on a realistic EOS of strange quarkmatter, namely, the modified bag
model. Besides the numerical calculation of the timescalesrelated tor-modes, we also employ a
delicate strategy, in which firstly, we calculate the allowed parameter space of EOS so that it can
match the observed mass limit of neutron stars, and then the study of the instability window of
strange stars and its comparison with the observations are carried out.

Our study confirms the conclusion given by Haskell et al. (2012) that all the possible instability
windows of strange stars are not consistent with the spin frequency and temperature observations
of neutron stars in LMXBs. However in this paper, as far as thebulk viscosity of strange quark
matter is concerned, it is calculated under the non-interacting Fermi liquid model (Madsen 1992).
If the interactions which lead to non-Fermi liquid effects are included, the bulk viscosityζ can be
increased by many orders of magnitude (Zheng et al. 2002, 2003, 2005; Schwenzer 2012), and the
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Fig. 4 Similar to Fig. 2, butζ is artificially taken to be 100 times larger in the left panel and 10 times
larger in the right panel.

instability window may be consistent with the observations. This possibility is shown roughly in
Figure 4, using the same parameter sets of EOS as Figure 2 but the bulk viscosityζ is artificially
taken to be 100 times larger in the left panel and 10 times larger in the right panel. It can be seen
from Figure 4 that the instability window could almost be consistent with observations under the
above assumptions. A detailed study about that possibilitywill be carried out in our future work.

Acknowledgements The authors want to thank the anonymous referee for his/her kind suggestions.
One of the authors, S. H. Yang, is grateful to F. Weber for useful discussions related to this work. C.
M. Pi is supported by the Scientific Research Program of the National Natural Science Foundation
of China (NSFC, Grant No. 11447012) and the CCNU-QLPL Innovation Fund (QLPL 2013P01).
S. H. Yang is supported by the NSFC (Grant No. 11203010) and the college basic research and
operation of MOE of China (Grant No. CCNU13A05038). X. P. Zheng is supported by the Key
Program Project of Joint Fund of Astronomy by the NSFC and theChinese Academy of Sciences
(No. 11178001).

References

Abadie, J., Abbott, B. P., Abbott, R., et al. 2010, ApJ, 722, 1504
Alcock, C., Farhi, E., & Olinto, A. 1986, ApJ, 310, 261
Alford, M. G., & Schwenzer, K. 2014, ApJ, 781, 26
Andersson, N. 1998, ApJ, 502, 708
Andersson, N., Kokkotas, K. D., & Stergioulas, N. 1999, ApJ,516, 307
Andersson, N., & Kokkotas, K. D. 2001, International Journal of Modern Physics D, 10, 381
Andersson, N., Jones, D. I., & Kokkotas, K. D. 2002, MNRAS, 337, 1224
Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Science, 340, 448
Chandrasekhar, S. 1970, ApJ, 161, 561
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081
Elshamouty, K. G., Heinke, C. O., Sivakoff, G. R., et al. 2013, ApJ, 777, 22
Farhi, E., & Jaffe, R. L. 1984, Phys. Rev. D, 30, 2379
Friedman, J. L., & Schutz, B. F. 1978, ApJ, 221, 937



878 C. M. Pi et al.

Friedman, J. L., & Morsink, S. M. 1998, ApJ, 502, 714
Glendenning, N. K., & Weber, F. 1992, ApJ, 400, 647
Gusakov, M. E., Chugunov, A. I., & Kantor, E. M. 2014, Physical Review Letters, 112, 151101
Haensel, P., Zdunik, J. L., & Schaefer, R. 1986, A&A, 160, 121
Haskell, B., Degenaar, N., & Ho, W. C. G. 2012, MNRAS, 424, 93
Heiselberg, H., & Pethick, C. J. 1993, Phys. Rev. D, 48, 2916
Ho, W. C. G., Andersson, N., & Haskell, B. 2011, Physical Review Letters, 107, 101101
Lindblom, L., Owen, B. J., & Morsink, S. M. 1998, Physical Review Letters, 80, 4843
Lindblom, L., Mendell, G., & Owen, B. J. 1999, Phys. Rev. D, 60, 064006
Lindblom, L., & Owen, B. J. 2002, Phys. Rev. D, 65, 063006
Madsen, J. 1992, Phys. Rev. D, 46, 3290
Madsen, J. 1998, Physical Review Letters, 81, 3311
Madsen, J. 2000, Physical Review Letters, 85, 10
Na, X., Xu, R., Weber, F., & Negreiros, R. 2012, Phys. Rev. D, 86, 123016
Nayyar, M., & Owen, B. J. 2006, Phys. Rev. D, 73, 084001
Page, D., Prakash, M., Lattimer, J. M., & Steiner, A. W. 2011,Physical Review Letters, 106, 081101
Rupak, G., & Jaikumar, P. 2013, Phys. Rev. C, 88, 065801
Sawyer, R. F. 1989, Physics Letters B, 233, 412
Schaab, C., Hermann, B., Weber, F., & Weigel, M. K. 1997, Journal of Physics G Nuclear Physics, 23, 2029
Schwenzer, K. 2012, arXiv:1212.5242
Shternin, P. S., Yakovlev, D. G., Heinke, C. O., Ho, W. C. G., &Patnaude, D. J. 2011, MNRAS, 412, L108
Vidaña, I. 2012, Phys. Rev. C, 85, 045808
Wang, Q. D., & Lu, T. 1984, Physics Letters B, 148, 211
Weber, F. 2005, Progress in Particle and Nuclear Physics, 54, 193
Wei, W., & Zheng, X.-P. 2012, Astroparticle Physics, 37, 1
Weissenborn, S., Sagert, I., Pagliara, G., Hempel, M., & Schaffner-Bielich, J. 2011, ApJ, 740, L14
Wen, D.-H., Newton, W. G., & Li, B.-A. 2012, Phys. Rev. C, 85, 025801
Witten, E. 1984, Phys. Rev. D, 30, 272
Xu, R. X. 2003, ApJ, 596, L59
Yang, S.-H., Zheng, X.-P., Pi, C.-M., & Yu, Y.-W. 2010, MNRAS, 403, 2007
Yang, S.-H., Pi, C.-M., & Zheng, X.-P. 2011, ApJ, 735, L29
Yu, M., & Xu, R. X. 2011, Astroparticle Physics, 34, 493
Zdunik, J. L. 2002, A&A, 394, 641
Zheng, X., Yang, S., Li, J., & Cai, X. 2002, Physics Letters B,548, 29
Zheng, X., Yang, S., & Li, J. 2003, ApJ, 585, L135
Zheng, X. P., Kang, M., Liu, X. W., & Yang, S. H. 2005, Phys. Rev. C, 72, 025809
Zhou, E. P., Lu, J. G., Tong, H., & Xu, R. X. 2014, MNRAS, 443, 2705


