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Abstract We apply the Lorentz boosting method to the Kerr-Newman imatrhar-
monic coordinates, and obtain the second post-Minkowssider harmonic metric
for a moving Kerr-Newman black hole with an arbitrary constspeed. This met-
ric may be useful for investigating observable relaticigtifects due to the motion of
the moving source. As an application, the post-Newtoniaraggns of motion for a
particle and a photon in the far field of this black hole aregkited.
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1 INTRODUCTION

The deflection of test particles by a moving gravitationalrse is attracting more and more at-
tention. Previous works have mainly concentrated on thecefif velocity in first-order deflection
(Pyne & Birkinshaw 1993; Kopeikin & Schafer 1999; Seren®202005; Wucknitz & Sperhake
2004; Heyrovsky 2005; Kopeikin & Makarov 2007), since thagnitude of the bending angle is
rather small in astronomy measurements. Kopeikin & Sah@f@99) investigated the relativistic
perturbation on light propagation by the motion of an agsity moving N-body system, which was
later extended to study light deflection due to gravitomégneto leading order by sources with
angular momentum (Kopeikin & Mashhoon 2002). Based on threhiz boost technique, Wucknitz
& Sperhake (2004) tackled the effect of relativistic vetpaf a uniformly moving deflector on
gravitational deflection of light and a particle. Howeveithaprogress associated witkarcsec res-
olution in astronomical observations, such as the prop&pade Interferometry Mission (Laskin
2006; Turyshev 2009) and tt@aia mission (Lindegren et al. 2008), detection of the effect®f v
locity to higher-order (especially second order) graiotal deflection may be feasible in the near
future. In order to consider the effect of motion in secondeordeflection, one must obtain the
time-dependent metric of the background. Recently, haiomoetrics of arbitrarily and constantly
moving Schwarzschild and Kerr black holes have been denivet® & Lin (2014a,b).

In this paper we take a step further, and extend the methodrefitz transformation to calculat-
ing the harmonic metric to the second post-Minkowskian p(@BM) for a moving Kerr-Newman
black hole with an arbitrary and constant speed. The posttdigan equations of motion for a par-
ticle and a photon in this field are also given. We work in gewined units wherés = ¢ = 1.
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2 2PM HARMONIC METRIC FOR A MOVING KERR-NEWMAN BLACK HOLE

Let us begin with the harmonic metric of a Kerr-Newman blaolehWe assume; (i = 1,2,3) to
be the unit vector in 3-dimensional Cartesian coordin@&sshown in Lin & Jiang (2014), the exact
harmonic metric of a Kerr-Newman black hole in the barycestest frame(X,, X, X», X3)
takes the form
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wherem, a andQ stand for the rest mass, angular momentum per mass andetdwrge of the
black hole, respectively. The angular momentiliraf the Kerr-Newman black hole is expressed as

J63 (: ameg) .

X-dX = X1dX+X2d X+ X3d X3,

XP+Xx3 X3
R2 + a? R?

and the relatiomn? > a2 + Q% has been used to avoid a naked singularity for the black Naltce
thatX,, denotes the contravariant vectdt = (¢', z’, y’, 2’) for notational convenience.

Here we only consider the approximate metric to second lgaskowskian order within which
the leading effects of electric charge and intrinsic angoiamentum of the black hole emerge.
According to Equation (1), the harmonic metric up to the oafe / R? for the Kerr-Newman black
hole is simplified to
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goi = G+ O(1/R%), (3)
m2 — 2 XlX

gij = (1= ®)%6;; + TQ? +0(1/R%), (4)

wherei, j = 1, 2, 3, andd;; denotes Kronecker delta¢ = 21‘}221 (X xegz)and® = —m/R
represents the Newtonian gravitational potential.

According to the general covariance of field equations, we apply a Lorentz boost to
Equations (2)—(4) to get the metric of a constantly movingriéewman black hole. We denote
the coordinate frame of the background asz, y, z), and the translational velocity in an arbitrary
direction of the moving Kerr-Newman black hole is generehtpressed as = v, e +v2es+vzes .
The Lorentz transformation betweén z, y, z) and comoving framét’, «’, ¢, z’) of the moving
black hole is

b Ag‘xﬁ , (5)
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wherey = (1 — v2)~ 2 is the Lorentz factor and? = v? + v + v2. The 2PM harmonic metric for
the arbitrarily constantly moving Kerr-Newman black hossde obtained as follows:
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Equations (7)—(9) reduce to the 2PM metric of a moving Keacklhole (He & Lin 2014b) when

there is no electric charg&€)(= 0). When both the charge and the angular momentum are zero

(Q = a = 0), these equations reduce to the 2PM harmonic metric of amgddchwarzschild black
hole with an arbitrary constant speed, which reads

2
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3 POST-NEWTONIAN DYNAMICS OF A PARTICLE AND A PHOTON

The resulting metric can be used to calculate the post-Neamoequations of motion for a test
particle. We consider a particle or a photon in the far field ahoving Kerr-Newman black hole.
The geometrical relations of the gravitational source &edést particle are shown in Figure 1.
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Fig.1 Schematic geometrical relations of the moving Kerr-Newiblack hole a(0, 0 ,0) and test
particle at(r, 6 , ¢) for some moment. v andw are the instantaneous velocity vectors of the source
and a test particle, respectively. The blue line is the nmatiajectory of a particle or null path in the
time-dependent gravitational field.€ [0, 7] denotes the angle between the constant velacépd

the angular momentunf of the black hole ang is the angle between andw.

When the source’s velocity is non-relativistic, Equati¢ns-(9) can be simplified as

2
goo = —1—2(1420%)® — 20% — 20 - ¢ — % +0(@), (13)
goi = 4u;® + G + 0@, (14)
gii = (1-29)d;; + 0@, (15)

wherew denotes the typical velocity of a non-relativistic systenttie post-Newtonian approxima-
tion (Weinberg 1972). Notice thatis different from the magnitude of the gravitational source’s
velocity.

For a particle, up to the order @f /7 with 7 being the typical separation of a non-relativistic
system, we obtain the equation of motion as follows

du o¢ o
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where¢ = 4v® + ¢. The equation of motion for a photon up to the ordéreads

C;—q: = —(1+uv)VP+4(1 —v-uw)u(u-V)® +u x [V x (4vd)]
+(3—u2)u%—(f . (17)

It is worth pointing out that Equations (16)—(17) are cotesis with the results for the case of the
uncharged source, see equations (9.2.1) and (9.2.6) iextti®bk Weinberg (1972).

4 CONCLUSIONS

In this paper, we have derived the 2PM harmonic metric of éoumily moving Kerr-Newman black
hole. We also apply this metric to obtain the post-Newtomgnations of motion for a particle and
a photon in this field. The resulting metric can also be usesiudy relativistic effects, e.g., in the
second post-Minkowskian deflection or the time delay oftligic.
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