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Abstract We apply the Lorentz boosting method to the Kerr-Newman metric in har-
monic coordinates, and obtain the second post-Minkowskianorder harmonic metric
for a moving Kerr-Newman black hole with an arbitrary constant speed. This met-
ric may be useful for investigating observable relativistic effects due to the motion of
the moving source. As an application, the post-Newtonian equations of motion for a
particle and a photon in the far field of this black hole are calculated.
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1 INTRODUCTION

The deflection of test particles by a moving gravitational source is attracting more and more at-
tention. Previous works have mainly concentrated on the effect of velocity in first-order deflection
(Pyne & Birkinshaw 1993; Kopeikin & Schäfer 1999; Sereno 2002, 2005; Wucknitz & Sperhake
2004; Heyrovský 2005; Kopeikin & Makarov 2007), since the magnitude of the bending angle is
rather small in astronomy measurements. Kopeikin & Schäfer (1999) investigated the relativistic
perturbation on light propagation by the motion of an arbitrarily moving N-body system, which was
later extended to study light deflection due to gravitomagnetism to leading order by sources with
angular momentum (Kopeikin & Mashhoon 2002). Based on the Lorentz boost technique, Wucknitz
& Sperhake (2004) tackled the effect of relativistic velocity of a uniformly moving deflector on
gravitational deflection of light and a particle. However, with progress associated withµarcsec res-
olution in astronomical observations, such as the proposedSpace Interferometry Mission (Laskin
2006; Turyshev 2009) and theGaia mission (Lindegren et al. 2008), detection of the effect of ve-
locity to higher-order (especially second order) gravitational deflection may be feasible in the near
future. In order to consider the effect of motion in second order deflection, one must obtain the
time-dependent metric of the background. Recently, harmonic metrics of arbitrarily and constantly
moving Schwarzschild and Kerr black holes have been derivedin He & Lin (2014a,b).

In this paper we take a step further, and extend the method of Lorentz transformation to calculat-
ing the harmonic metric to the second post-Minkowskian order (2PM) for a moving Kerr-Newman
black hole with an arbitrary and constant speed. The post-Newtonian equations of motion for a par-
ticle and a photon in this field are also given. We work in geometrized units whereG = c = 1.
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2 2PM HARMONIC METRIC FOR A MOVING KERR-NEWMAN BLACK HOLE

Let us begin with the harmonic metric of a Kerr-Newman black hole. We assumeei (i = 1, 2, 3) to
be the unit vector in 3-dimensional Cartesian coordinates.As shown in Lin & Jiang (2014), the exact
harmonic metric of a Kerr-Newman black hole in the barycenter’s rest frame(X0, X1, X2, X3)
takes the form
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wherem, a andQ stand for the rest mass, angular momentum per mass and electric charge of the
black hole, respectively. The angular momentumJ of the Kerr-Newman black hole is expressed as

Je3(= ame3) .

X · dX ≡ X1dX1+X2dX2+X3dX3 ,
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and the relationm2 ≥ a2 + Q2 has been used to avoid a naked singularity for the black hole.Notice
thatXµ denotes the contravariant vectorx′µ = (t′, x′, y′, z′) for notational convenience.

Here we only consider the approximate metric to second post-Minkowskian order within which
the leading effects of electric charge and intrinsic angular momentum of the black hole emerge.
According to Equation (1), the harmonic metric up to the order of 1/R2 for the Kerr-Newman black
hole is simplified to

g00 = −1 − 2Φ − 2Φ2 −
Q2

R2
+ O(1/R3) , (2)

g0i = ζi + O(1/R3) , (3)

gij = (1 − Φ)2δij +
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XiXj

R2
+ O(1/R3) , (4)

wherei, j = 1, 2, 3, andδij denotes Kronecker delta.ζ ≡ 2am
R3 (X × e3) andΦ ≡ −m/R

represents the Newtonian gravitational potential.
According to the general covariance of field equations, we can apply a Lorentz boost to

Equations (2)–(4) to get the metric of a constantly moving Kerr-Newman black hole. We denote
the coordinate frame of the background as(t, x, y, z) , and the translational velocity in an arbitrary
direction of the moving Kerr-Newman black hole is generallyexpressed asv = v1e1+v2e2+v3e3 .
The Lorentz transformation between(t, x, y, z) and comoving frame(t′, x′, y′, z′) of the moving
black hole is

x′α = Λα
βxβ , (5)



648 G.-S. He & W.-B. Lin
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whereγ = (1 − v2)−
1

2 is the Lorentz factor andv2 = v2
1 + v2

2 + v2
3 . The 2PM harmonic metric for

the arbitrarily constantly moving Kerr-Newman black hole can be obtained as follows:
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Equations (7)–(9) reduce to the 2PM metric of a moving Kerr black hole (He & Lin 2014b) when
there is no electric charge (Q = 0). When both the charge and the angular momentum are zero
(Q = a = 0), these equations reduce to the 2PM harmonic metric of a moving Schwarzschild black
hole with an arbitrary constant speed, which reads
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3 POST-NEWTONIAN DYNAMICS OF A PARTICLE AND A PHOTON

The resulting metric can be used to calculate the post-Newtonian equations of motion for a test
particle. We consider a particle or a photon in the far field ofa moving Kerr-Newman black hole.
The geometrical relations of the gravitational source and the test particle are shown in Figure 1.
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Fig. 1 Schematic geometrical relations of the moving Kerr-Newmanblack hole at(0, 0 , 0) and test
particle at(r, θ , ϕ) for some momentt. v andu are the instantaneous velocity vectors of the source
and a test particle, respectively. The blue line is the motion trajectory of a particle or null path in the
time-dependent gravitational field.φ ∈ [0, π] denotes the angle between the constant velocityv and
the angular momentumJ of the black hole andψ is the angle betweenv andu.

When the source’s velocity is non-relativistic, Equations(7)–(9) can be simplified as

g00 = −1 − 2(1 + 2v2)Φ − 2Φ2
− 2v · ζ −
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+ O(v6) , (13)
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wherev denotes the typical velocity of a non-relativistic system in the post-Newtonian approxima-
tion (Weinberg 1972). Notice thatv is different from the magnitudev of the gravitational source’s
velocity.

For a particle, up to the order ofv5/r with r being the typical separation of a non-relativistic
system, we obtain the equation of motion as follows
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whereξ = 4vΦ + ζ. The equation of motion for a photon up to the orderv3 reads
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∂Φ
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It is worth pointing out that Equations (16)–(17) are consistent with the results for the case of the
uncharged source, see equations (9.2.1) and (9.2.6) in the textbook Weinberg (1972).

4 CONCLUSIONS

In this paper, we have derived the 2PM harmonic metric of a uniformly moving Kerr-Newman black
hole. We also apply this metric to obtain the post-Newtonianequations of motion for a particle and
a photon in this field. The resulting metric can also be used tostudy relativistic effects, e.g., in the
second post-Minkowskian deflection or the time delay of light, etc.
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