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Abstract A numerical solution to the Earth’s precession in a relatigiframework
for along time span is presented here. We obtain the motitmec$olar system in the
Barycentric Celestial Reference System by numerical natémn with a symplectic in-
tegrator. Special Newtonian corrections accounting ftaltilissipation are included in
the force model. The part representing Earth’s rotatiomisutated in the Geocentric
Celestial Reference System by integrating the post-Ndamoequations of motion
published by Klioner et al. All the main relativistic effecare included following
Klioner et al. In particular, we consider several relaticiseference systems with cor-
responding time scales, scaled constants and paramepgnadmate expressions for
Earth’s precession in the intervall Myr around J2000.0 are provided. In the interval
42000 years around J2000.0, the difference compared to the P@8gmien theory is
only several arcseconds and the results are consistentthigh long-term precession
theories.
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1 INTRODUCTION

The P03 precession theory (Capitaine et al. 2003) was adigtéAU 2006 Resolution B1 as the
IAU precession model to replace the precession componeghedAU 2000A precession-nutation
model, beginning on 2009 January 1. The precession of thiptiedn P03 is derived from the
analytical theory VSOP87 (Bretagnon & Francou 1988) that fitked to the JPL ephemeris DE406;
it has taken advantage of VLBI observations and incorpdratdynamical theory of the Moon to
develop expressions for the precession of the equator loastbéoretical contributions to precession
(Williams 1994, W94) and on MHB (Mathews et al. 2002) estiesaif the precession rates. The P03
theory is given as polynomial expressions of various pioagjuantities, which are known to be
very accurate over a few centuries, but to diverge rapidignfnumerical integration for more distant
epochs.

Precession expressions valid for long time intervals haentderived by Vondrak et al. (2011)
to provide an extension of IAU 2006 to scales of several thndsenturies. They use the Mercury
6 package (Chambers 1999) for the ecliptic and the La93 @raskal. 1993) solution to represent
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general precessiopy and the precession of obliquits. Some corrections are added due to the
IAU 2006 solutions. This long-term precession is then egged in the form of a cubic polynomial
plus 8 to 14 periodic terms. It is consistent with the IAU 2@décession in the vicinity of J2000.0,
with differences being less than a few arcseconds throughethistorical period. The accuracy of
this precession model reaches a few tenths of a degree atttleene epochs-200 millennia from
J2000.0. The interval was intentionally reduced to two #amd centuries, because of the limited
predictive knowledge of the changes in the dynamical édliggtof the Earth and the tidal dissipation
in the Earth-Moon system. However, this work does not carsffects from General Relativity.

Some other authors also investigated the orbital motiorhefEarth and Earth’s rotation for
longer time spans. B Myr integration was made by Quinn et al. (1991). The modeturehis
work is based on classical mechanics and it replaced the Mganring lying in the plane of the
ecliptic. They estimated that their errors in the Earth’sippon and the direction of Earth’s pole are
within about6 200”. In addition, Laskar et al. derived solutions for the gehpracessiorm, and
obliquity e of the Earth in La93 (Laskar et al. 1993) and La2004 (Laskat.€1004) based on the
rigid-Earth theory of Kinoshita (Kinoshita 1977), and thdital motion of the Earth spanning the
time from —250 to 0 Myr in La2010 (Laskar et al. 2011). Their dynamical modelsratlude the
dominant relativistic corrections: the 1PN correctiong doi the Sun and the geodetic precession.
Their standard way to account for geodetic precession islt@ she purely Newtonian equations of
rotational motion and add the geodetic precession as aatimmeo the solution, which is not fully
consistent with General Relativity.

Recently, Klioner et al. (2010) have constructed a relstiivitheory of Earth’s rotation.
According to the post-Newtonian equations of rotationatiorogiven by Klioner et al. (2003),
they explain how to calculate relativistic torque, and d&how to deal with different relativistic
reference systems including time scales and relativistitirsg. Geodetic precession and nutation are
also taken into account in a natural way. This theory of Esartitation is consistent with General
Relativity. A numerical integration of Earth’s rotationtime limit of rigidly rotating multipoles over
several centuries is made and a comparison of the resultSMART97 shows that they have suc-
ceeded in repeating SMART97 within the full accuracy of thgdr. This approach allows us to
obtain the long-term precession of the Earth in a more rigerelativistic framework.

Our work is to obtain the Earth’s long-term precession inlatngstic framework. The preces-
sion of the ecliptic is obtained by numerical integrationirmasnost previous works. However, the
precession of the equator is calculated with a relativtsgory of Earth rotation which is mentioned
above. This part of the work starts with a post-Newtoniamdrigultipole formalism that has been
published by Klioner et al. (2003). Then, the equationsmegrated numerically and the results are
modified due to the effect from tidal dissipation, and an agjnation for the precession is derived
and expressed in the form of a linear polynomial [@0s30 periodic terms. Finally the relativistic
effects on the precession are obtained and analyzed.

In this paper, expressions for the relativistic long terragasssion of the Earth are given. In
Section 2, we describe the way to calculate the precessidatail. An approximation for the pre-
cession is provided in Section 3. Finally in Section 4, thituences of relativistic effects on the
precession are discussed.

2 NUMERICAL INTEGRATION FOR THE PRECESSION
2.1 Precession of the Ecliptic

The precession of the ecliptic represents the motion of dtipte pole, relative to a fixed eclip-
tic, due to planetary perturbations. The basic quantitiesfa, = sinma sinlly and Qa =
sin 7 cos I1s, wherenr andIl are the osculating elements of the orbit of the Earth-Moaoyden-
ter (r, the inclination andlI, the longitude of ascending node), and these angles retbettixed
ecliptic at J2000.0. Here the motion of the solar system tisgirated in the Barycentric Celestial
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Reference System (BCRS), with the— y plane rotated into the J2000 ecliptic frame, that has its
z-axis through the J2000 (inertial) mean equinox and:itsxis through the J2000 ecliptic pole.
Barycentric Dynamical Time (TDB) is used as the coordinatet The P03 theory gives the trans-
formation from the DE406 frame to the J2000 ecliptic frame JR000 in the form of the rotation
matrix R, (0.03862") R, (84381.40889") R, (—0.05132") in the DE406 heliocentric coordinates
(Capitaine et al. 2003). Then the motion of the solar systéibe/ obtained in the BCRS.

For the barycentric translational motion, we use a similarasmical model as in La2010. The
Sun, all eight planets of the solar system and Pluto arelahténto account. The Moon is treated
as a separate object. The first post-Newtonian correctiertathe Sun is considered by following
Saha & Tremaine (1994). We also take into account the eftddtee quadruple moment of the Sun
and the Earth, the solar mass loss and tidal dissipatioreik#nmth-Moon System.

Our numerical integrator is based on the symplectic SABA¥este (Laskar & Robutel 2001;
Wu et al. 2003). The results are modified due to tidal disgpain the Earth-Moon system. To
reduce round-off errors, we use compensated summatiorriprogram. The integration is started
at J2000.0 and goes tbl Myr. With regard to the period of the Moon’s orbit, the stegasis set to
one day. The initial conditions of the integration are takem the JPL DE406 ephemeris. The main
constants used here are listed in Appendix A.

After integrating the solar system motion, we directly cdd¢e the orbit of the Earth-Moon
System from their positions and velocities, and then smal¢horbit by the Vondrak method
(Vondrak 1969). The precession paramefésnd( are finally obtained.

The motion of the Earth-Moon barycenter in the solar systeen this time span is well known.
Quinn et al. (1991) calculate = sin w sin IT andq = sin 7 cos IT measured in ecliptic coordinates
and give a solution (QTD) for the motion of this barycenteeid3.05 Myr with an accuracy better
than6200”. Furthermore, orbital solutions for the long term motiortref Earth are given by Laskar
etal. (2011). Our aim is to test our integrator and get a gniuhat is consistent with those solutions.

Figures 1 and 2 show comparisons of our solution with thetemQTD for p andq over the
pastl Myr from J2000.0; relative differences are smaller tbai .

2.2 Precession of the Equator

The precession of the equator describes the motion of tha Bp#ator with respect to a fixed plane,
due to the luni-solar and planetary torques acting on thatelttarth. In this paper, we represent it
by the general precession in longitygdeand the mean obliquity of datg , which is the orientation
angle of the mean equatorial plane with respect to the &cfitdne. These precession quantities are
obtained from the motion of the Earth’s spin axis, mostlyed®ined by torques from the Sun and
the Moon, with a small contribution from General Relativity

Rotation of the Earth is modeled in the Geocentric CeleR@&erence System (GCRS) as indi-
cated in Klioner et al. (2010). IAU 2000 resolutions B give transformation between the BCRS and
the GCRS. Another important reference system is the teiabstference system in which the model
of Earth’s gravity field with potential coefficients;,,, and.S;,, is defined. The spatial coordinates
of this terrestrial reference systef§, 7, ¢) are obtained by rotating the GCRS spatial coordinates
(X,Y, Z) with a time-dependent matriR*® = R, (¢) R, (w) R. (v). The meaning of the angles
¢, 1, w and the terrestrial syste(q, n, ¢) here is the same as in Bretagnon et al. (1997). This implies
that the sign convention faf is not in agreement with the traditional astronomical orteeSe Euler
angles are defined in the GCRS.

The post-Newtonian equation of Earth’s rotation that weresels

Cab b Z l' 6abc]\4bLGcL + Each?nerCCde + Lother? (1)
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Fig.1 Top panel comparision between our so- Fig.2 Top panel comparision between our so-
lution (solid line) and the QTD solutiondotted lution (solid line) and the QTD solutiondotted
line) (Quinn et al., 1991) for p over the past 1 Myr line) (Quinn et al., 1991) fog over the past 1 Myr
from J2000.0.Bottom panel the difference be-  from J2000.0.Bottom panel the difference be-
tween the two solutions (dotted line). tween the two solutionsdptted ling.

whereC =C® is the post-Newtonian inertia tensor asd= w® is the angular velocity of the
post-Newtonian Tisserand axis (Klioner 1996) defined bydtieogonal matrixP®(T'). The first
term on the right hand side is the relativistic inertial toeq(without relativistic precessions). The
second term is the additional torque due to the relativiscessions (Geodetic, Lense-Thirring and
Thomas precessions). The third term describes tidal dissip Details will be given below.

The motion of the solar system is described in the BCRS witlBEB time scales, while the
rotation of the Earth is described in the GCRS using Geoe@mordinate Time (TCG) as the
coordinate time scale parameterizing the equations. ®optbblem of how to treat these differ-
ent relativistic time scales is inevitable. For differeddB times, we calculate the corresponding
Barycentric Coordinate Times (TCB), Terrestrial Times JBhd TCG times, as described in Irwin
& Fukushima (1999) and Klioner (2008). The differential atjans for these time scales are numer-
ically integrated by Romberg’s method using our soluti@rsiiotion in the solar system. Another
important part of our program is to deal with the relatidssicaling of various parameters. The

proper relativistic scaling of constants and parameterhasen to be like that described in Klioner
et al. (2010):

(a) The positionz,, velocity v, the acceleratiom which we calculate and the mass param-
eter GMa of a massive solar system body A (given by IAU 2009 ResoluB@j are TDB-
compatible.

(b) The radius of the EartRg (given by IAU 2009 Resolution B2) and the values of the Earth’
moments of inertia” are TT-compatible.

(c) The post-Newtonian inertial torque® = Z[’il ll—!eabchLGcL is calculated by using TDB-
compatible parameters (see Klioner et al. 2010).

To compute the torque, we only take into account the influefdbe Sun and the Moon. It
contains the following:
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(a) The relativistic inertial torque is expressed with Syetnc and Trace-Free Cartesian (STF)
tensors.M, are the multipole moments of the Earth defined in the GCRSlewhj, are the
multipole moments of the external tidal gravitoelectridtdim the GCRS. The formulas fav/,
are given by equations (5.1)—(5.6) of Klioner et al. (2018) &, are from equations (19)—(23)
of Klioner et al. (2003). Here we only consider terms with 2.

(b) The additional torque,;.2?,..C°4w? depends oi”, w and the angular velocit§;,., describ-
ing the relativistic precessions. In our work, only geodetiecession and nutation are consid-
ered (Fukushima 1991).

(c) The torque from the tidal dissipation describes anatheortant effect in the Earth-Moon sys-
tem. It results from the tidal forces of the Sun (neglecte@hand the Moon on the Earth, and
induces small changes in the speed of rotation of the Eadlirethe mean motion of the Moon.
Here we use the tidal dissipation model given by Mignard @@nd Touma & Wisdom (1994).
It assumes that the torque resulting from tidal frictionrisgortional to the time lag\¢ that the
deformation takes to reach equilibrium. This time lag ispaged to be constant.

Explicitly, the tidal torque acting on Earth reads
2 PS5
AL = 3%At [(TEM . wE) TEM — T]%:MwE + rem X 'UEM] R (2)
EM
whereks is the potential Love number of the Earth. There is also agfating on the Moon due to
a delayed tidal bulge on the Earth
2 pb5
F = —3@/[701\4}%}3 {rEmrem + At [2rem (TEM - vEM) + rEy (TEM X we +vEM)] . (3)
EM

This force is added to the equation of motion for the EartheMaystem. As a consequence of
the decreasing angular rotation rate of the Earth, the momeof the Earth will also change in
proportion tow?.

Klioner et al. (2010) try to get the most accurate resultgpfe@cession/nutation for a relatively
short interval of time including relativistic effects. lhis paper, we focus on very long time scales
and integrate the rotational equation of motion, Equatignysing a 4th-order Runge-Kutta method
with a stepsize of 0.1 day. The potential coefficients of travigy field of the Earth in the terrestrial
system are computed from the GEM2008 normalized coeffigient

Co = —1082.626173852223 x 1076,
Coy = 1.574615325722917 x 1076,
Soo = —0.9038727891965667 x 107° .

Because of this and the different values of the constantsseethe moments of inertia are slightly
different from the ones of SMART97 (Bretagnon et al. 1998):

A = 1.799538227025858 x 10~1° Mg au?,
= 1.799577876994722 x 10~ 15 Mg au?,

C = 1.805468786696834 x 10715 Mg au?.
The initial conditions forty = J2000.0 are from SMART97:

¥ (tg) = 0.00006789546085 rad ,

(tg) = —0.4090646190715125rad ,
o (to) = 4.8948989303002346 rad ,
¥ (tg) = —0.7010549586589918 x 10~ rad d—*,
w (to)
¢ (to)

Sy

= 0.0960673662260632 x 10 rad d—*,
= 6.30038813041313radd ' .
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Fig.3 Top panel comparison of our solution Fig.4 Top panel comparison of our solution
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With these parameters and initial conditions, the rotati@guation of motion will be numerically
integrated. The parameterg ande are computed front, I1, 1) andw.

The values for longitude of perihelion from moving equindtte datew* and obliquity of the
Earth from—>50 to 20 Myr are provided by La2004 (Laskar et al., 2004) in whicl precession
guantities are integrated using the rigid-Earth theory iodshita (Kinoshita 1977; Neron de Surgy
& Laskar 1997).

The longitude of perihelion from the equinox of referencg’also a termw™ is defined as
w* = w + pa, Wherew is the longitude of perihelion derived from the equinox tisatised as a
reference. We made a comparisonddrande over+1 Myr with the results of Laskar et al. (2004).
Figures 3 and 4 show that our numerical solution is close ¢orésults of La2004, with relative
differences being smaller thar01.

3 ANALYTICAL EXPRESSIONS FOR THE PRECESSION
3.1 Numerical Analysis

Some algorithms are applied to our data to get approximsifmrthe precession parameters. To this
end, we use a polynomial curve fitting with the least squarethod. After removing the linear drift,
a frequency analysis algorithm is used to search for pearimdms.

Frequency analysis has the goal of determining the fundeahfaquencies for the numerical
solution of a dynamical system and enables us to derive appade analytic theories for the long-
term behavior of the solar system. The method we use is a catidn of the Numerical Analysis
of Fundamental Frequency (NAFF) (Laskar et al. 1992) anddék’s method (Vanicek 1971):

(1) AFastFourier Transform (FFT) is applied to determireeftequencyf of the largest amplitude.

(2) The least squares method is used to make a small charfganid derive good approximations
for sine/cosine amplitudes of the corresponding term. Artfagnwindow is used to improve the
frequency determination.

(3) The contribution with frequency is removed from the data.
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(4) The steps above are repeated to find other frequencies.

Precession represents the secular part of the motion. Foorék et al. (2011), we assume that
precession covers all periods longer tHan yr, while shorter ones are included in the nutation. In
this paper, we use this frequency analysis method to extiedong periodic terms to get the pre-
cession of the Earth and remove the nutation part. The appadions of the precession parameters
are given below in the general form + a1 T + > (C; cos 2T/ P; + S; sin 27T/ P;). T is the time
from J2000.0 in yearsP terms are the periods in years. The unit of the cosine/sirgitutes of
the periodic parts is arcseconds. All the coefficients aoeiged in Appendix B.

3.2 Precession Parameters

The long-term approximations for the precession of thepcliP, and@ are presented as
Pa = 5540 — 1.98" x 10747 + 3°2° | Ci cos(2nT/ P;) + S;sin(2xT/ P;)
Qa = —1608" —2.06"” x 107*T 4 3°2° C; cos(2xT/P;) + S; sin(2nT/ ),

(4)

whereT is in TDB years, and the main period$ with the amplitudes”; and .S, are given in
Table 1. In the first column, the names of some special frecjases; are from Laskar (1985}, is

the secular frequency related to the node of the plaimethe solar system, and can be obtained from
the Lagrange solution of the autonomous system of order hlanalytical treatment. Comparisons
of our numerical solutions faP and(@ with their approximations (given in Eq. (4)) are depicted in
Figures 5 and 6 from-1 Myr to 1 Myr. The difference in the two solutions is less thz9"” over the
whole period.

Table1 The Main Periodic Terms if?a andQa

Pa Qa
Term  C; "] Si["1  Ci["1  Si["] Plyn
—s3 -3720 1259 -1290 -3698 68975
—s1 657 —-2585 2508 736 235535
—S4 -2068 -302 288 —-2056 72488
—S2 —-855 570 548 —-838 192342
—sg 438 338 -334 435 49178

Table2 The Main Periodic Terms ipa andea

PA €A
Term  CGi["]  Si["1 Gi"1 Sl Py
p+s; —6651 -2197 738  —2216 40938

p+ss —3349 540 -175 -1126 39803
p+ se 1526  -1218 376 469 53789
P+ s1 227 874 -313 84 28832
p+s2 =370 255 -91 -129 29639

The long-term approximations for the general precesgipand obliquitye, are
pa = 6221”7 +50.44766"T + 5.0, Ci cos(2nT/P;) + S;sin(2nT/P;), -
ea = 83953” —8.9" x 10757 + 3220 C; cos(2nT/ P;) + S;sin(2xT/ P;)

whereT is in TCG years, and the cosine/sine amplitudes of the maiioglie parts are given in
Table 2.pA in Table 2 designates the main precession frequency as git@adgkar et al. (2004).
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The comparisons of these approximations with the comptdtgisns are given in Figures 7 and 8.
Twenty periodic terms are used for the obliquity to keep the difference less thaao” over the
whole time span, but ten more periodic terms are needed te thaldifference between the solution
for pa and its approximation smaller thdaB00”. The parameters, ande, mix the motion of the
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equator in the GCRS and the movement of the ecliptic of dateddition, it is known that the
calculation of a moving ecliptic in relativity frameworkgsents a serious problem, when it is used
in the GCRS.

In this paper, we simply transfer the orientation of themaiin the BCRS to the GCRS in
a ‘Newtonian manner’ providing some sort of definition for £&S ecliptic.po andea are not
regarded as the primary precession quantities. We will theeexpressions of other parameters,
such asX 4 andYy, which are the precession part of the coordinates of the @lPvactor in the
GCRS to represent the precession of the equator in a futinieption.

Vondrak et al. (2011) mention that their model is only valiithin the intervad-200 millennia
from J2000.0, whereas outside this interval of time, thersrgrow rapidly as can be seen in the
figures above. Similarly, our model has a range of validity-¢Myr around J2000.0. The difference
between these two models is abab” for Py, Qa, ea and several degrees fpi at the end of
the +-200 millennia time span. Compared with the P03 theory, the aguof our model is several
arcseconds fot-2000 years around J2000.0.

4 RELATIVISTIC EFFECTSIN THE PRECESSION

Our program calculates the precession for both the Newtoaral the post-Newtonian cases. A
series of numerical calculations were made to compare ttvesecases in order to identify the
effects due to relativity on the precession of the Earth.

Figures 9 and 10 show the relativistic effects on the précesd the ecliptic parametei3, and
Q. Due to the first post-Newtonian effect of the Sun, the differes ofP» and@ are increasing
with time and reach abowit300” in 4=1 Myr. These differences also have periodic parts, and tha mai
period is about 95 000 yr. Because the precession of the ecliptic is due to playp@irturbations,
the complicated motion of the solar system makes it hard silyeanderstand this period. The
task of finding a reasonable explanation will be undertakeartalytical methods in the near future.
Furthermore, the influence of the relativistic effects igfier than10” within 0.2 Myr. This shows
that the model of Vondrak et al. (2011) that does not comsiffects from General Relativity is
suitable in this interval of time. Some other relativistiteets are too small to be considered in this
work, such as the first post-Newtonian effect of the planets.
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Fig. 11 The effect of the geodetic precession on the precessiomgdea o from —1 Myr to 1 Myr.
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Fig.12 The effect of the post-Newtonian iner- Fig.13 The effect of the relativistic scaling and
tial torque on the precession parametgrfrom time scales on the precession parametefrom
—1Myrto 1 Myr. —1Myrto 1 Myr.

For the rotation of the Earth, the geodetic precession iskmnelwn and considered by all pre-
vious works. Traditionally, geodetic precession is aiiiflg added to a purely Newtonian solu-
tion which was already shown to not be correct (Klioner et2@10). Our result was integrated
in a more rigorous relativistic framework and several ieistic features were included: (1) the
post Newtonian inertial torque, (2) rigorous treatment@ddetic precession/nutation, (3) four time
scales, TDB, TCB, TT and TCG, which are all evaluated at tloegeter, and (4) correct relativistic
scaling of constants and parameters. To know the relatipgitance of the different contributions
of relativity, we first repeated the Newtonian dynamicalusioh. Then another code was written
to integrate the post-Newtonian equations of Earth’s imtatAll these relativistic effects can be
switched on or off independently of each other.

Figure 11 shows the effect of the geodetic precession onttlguity of the Earth. The influence
is about300” in 41 Myr. It is the most important relativistic effect in Earthrstation. The effect
of the post-Newtonian inertial torque and the effect of thkativistic scaling and time scales are
respectively depicted in Figures 12 and 13. Although thelsgivistic effects (except for the geodetic
precession) accumulate with time, they are still too snwalié considered in most cases over this

time span. The amplitude of these effects for the obliquitthe Earth is less than one tenth of an
arcsecond withint1 Myr.
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5 CONCLUSIONS

The aim of the work described in this paper is to compute thehEaprecession in a way that it
consistent with General Relativity, for a long time intdrviéhe motion of the solar system was inte-
grated in a numerically similar way as Quinn et al. (1991) Kfidner et al. (2010). Our framework
is basically relativistic since it employs the post-Newgntheory of Earth’s rotation in the limit
of rigidly rotating multipoles as designed by Klioner et 2010). The motion of the solar sys-
tem and Earth’s rotation axis in the interval Myr from J2000.0 was calculated by our integrator,
and approximations for the precession paramefarsi)a, pa andea are provided. Our solutions
have very small discrepancies with respect to P03 near J208bBout several arcseconds within
+2000yr, and display good consistency with other long-term pssimm theories. This work, for
the first time, involves a fully relativistic framework of Bl's rotation. The problem of a moving
ecliptic in the framework of relativity will be investigaddurther.

The relativistic features considered by our work are: (¥ finst post-Newtonian effects re-
lated to the Sun, (2) the geodetic precession/nutationhé3post-Newtonian inertial torque, and (4)
several relativistic reference systems with correspantime scales and relativistic scaling of pa-
rameters. We integrated the equations of translationat@ational motion with rigorous treatment
of relativistic effects. This approach differs from therstard way to add the relativistic corrections
to the purely Newtonian solution. The relativistic effeate treated as an additional force or torque
in the equations of motion. All the motions are integratethmcorresponding proper reference sys-
tem: the motion of the solar system in the BCRS and the Eaxtésion in the GCRS. The treatment
of these systems follows the relevant IAU resolutions. l§nthe influences of these relativistic ef-
fects on the precession are obtained and discussed. Iteaireference to pursue and improve the
long-term precession theory and Earth’s rotation theothénframework of relativity.
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Appendix A: MAIN CONSTANTS

Table A.1 Main Constants Used in Our Solutions

Symbol Value Name Ref.
c 2.99792458 x 103 m s~ ! Speed of light IAU2009
e 6.969290134 x 10— 10 1-d(TT)/d(TCG) IAU2009
Ly 1.550519768 x 10—8 1-d(TDB)/d(TCB) IAU2009
Lc 1.48082686741 x 10~8 Average value of 1-d(TCG)/d(TCB)  |AU2009
TDBg —6.55 x 107 %5 TDB-TCB at7p=2443144.5003725 |AU2009
au 1.49597870700 x 10 m Astronomical unit IAU2009

GMg 1.32712440041 x 102°m3s=2  Heliocentric gravitational constant  1AU2009
[TDB-compatible]
GMg 3.986004415 x 104 m3s—2 Geocentric gravitational constant IAU2009
[TT-compatible]
3.986004356 x 10 m3s—2
[TDB-compatible]
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Table A.1 — Continued.

Symbol Value Name Ref.

as 696000000 m Equatorial radius of the Sun

ap 6.3781366 x 10 m Equatorial radius of the Earth 1AU2009
Josg 2.0 x10~7 Dynamical form factor of the Sun IERS2010
Jor 1.0826359 x 10~3 Dynamical form factor of the Earth 1AU2009
H 3273795 x 1077 Dynamical flattening of the Earth 1AU2006
My /Mg 1.23000371 x 102 Moon-Earth mass ratio 1AU2009
Ms /Mo 6.0236 x 10° Sun-Mercury mass ratio 1AU2009
Ms /My, 4.08523719 x 10° Sun-Venus mass ratio 1AU2009
Ms /Mya 3.09870359 x 106 Sun-Mars mass ratio 1AU2009
Mg /My 1.047348644 x 103 Sun-Jupiter mass ratio I1AU2009
Mg /Msa 3.4979018 x 103 Sun-Saturn mass ratio IAU2009
Mg /My 2.290298 x 10% Sun-Uranus mass ratio IAU2009
Ms /My 1.941226 x 10* Sun-Neptune mass ratio I1AU2009
Ms/Mp 1.36566 x 108 Sun-Pluto mass ratio 1AU2009
ko 0.305 ko of the Earth Lambeck 1988

At 638 s Time lag of the Earth

Appendix B: ALL PERIODIC TERMSIN THE EARTH PRECESSION

TableB.1 The Periodic Terms ifPa andQa

Pa Qa

i Term Ci (") Si (") ci (") Si (") P (yr) fi (arcsec yr—1)

1 —s3 -3720 1260 -1290 -3698 68975 18.789505
2 —s1 657 —2585 2508 736 235535 5.502369
3 —S4 —2068 -302 288 —2056 72488 17.878769
4 —s2 —-855 -570 548 —-838 192342 6.737991
5 —s5 438 338 -334 435 49178 26.35311

6 309 255 -225 289 67341 19.245403
7 217 322 -191 5 424863 3.050395

8 168 -313 288 183 65723 19.719017
9 —278 130 -112 —294 173673 7.462318
10 —278 79 89 —285 75817 17.093767
11 =77 258 -157 -194 255871 5.065059
12 —24 124 -106 -33 64138 20.206412
13 29 3 -91 187 496536 2.610082

14 -135 —153 176 -151 70820 18.300011
15 -85 124 —257 187 1080090 1.1999
16 153 —276 395 -117 1309223 0.9899
17 14 -12 77 -94 663722 1.952624

18 55 -11 46 20 214239 6.049326

20 81 39 -41 92 7T7 16.663106

21 -55 -16 19 -61 80440 16.111345
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TableB.2 The Periodic Terms ipa andea

PA €A
Term G (") S () Gi(")  Si(Y) P (yr) fi (arcsec yr—)

.

1 p+ s3 -6653 -2199 739 —2217 40938 31.657719
2 p+ 54 -3349 541 -175 1126 39803 32.560229
3 p+ se 1526 -1218 376 469 53789 24.094137
4 p+ s1 227 874 -313 84 28832 44.949527
5 p+ s2 -370 256 -91 —-129 29639 43.726687
6 518 —-353 110 174 41557 31.186031
7 324 542 -174 107 42171 30.73167
8 -482 200 72 -158 38875 33.337421
9 —46 —201 63 -17 42847 30.24716
10 —140 —45 16 -50 30127 43.017971
11 —224 404 -143 -69 40316 32.145966
12 181 -98 38 55 38379 33.768806
13 -121 59 24 -35 37783 34.301326
14 -9 -73 27 -6 28550 45.394546
15 35 —42 15 13 27300 47.472248
16 63 -35 15 16 37225 34.815702
17 56 —64 15 12 20459 63.347185
18 18 77 18 3 20151 64.314835
19 -8 41 -9 -13 170984 7.57967
20 51 9 -2 16 29197 44.387641
21 3425 —2525 1309223 0.9899
22 —2951 1938 991814 1.306696
23 2117 —704 716770 1.808112
24 877 -993 416787 3.109503
25 -805 226 554293 2.338115
26 -710 -52 371201 3.491368
27 448 -33 324763 3.990599
28 217 111 122237 10.602338
29 224 -55 94370 13.733109
30 228 37 287695 4.504774
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