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Abstract A numerical solution to the Earth’s precession in a relativistic framework
for a long time span is presented here. We obtain the motion ofthe solar system in the
Barycentric Celestial Reference System by numerical integration with a symplectic in-
tegrator. Special Newtonian corrections accounting for tidal dissipation are included in
the force model. The part representing Earth’s rotation is calculated in the Geocentric
Celestial Reference System by integrating the post-Newtonian equations of motion
published by Klioner et al. All the main relativistic effects are included following
Klioner et al. In particular, we consider several relativistic reference systems with cor-
responding time scales, scaled constants and parameters. Approximate expressions for
Earth’s precession in the interval±1 Myr around J2000.0 are provided. In the interval
±2000 years around J2000.0, the difference compared to the P03 precession theory is
only several arcseconds and the results are consistent withother long-term precession
theories.
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1 INTRODUCTION

The P03 precession theory (Capitaine et al. 2003) was adopted by IAU 2006 Resolution B1 as the
IAU precession model to replace the precession component ofthe IAU 2000A precession-nutation
model, beginning on 2009 January 1. The precession of the ecliptic in P03 is derived from the
analytical theory VSOP87 (Bretagnon & Francou 1988) that was fitted to the JPL ephemeris DE406;
it has taken advantage of VLBI observations and incorporated a dynamical theory of the Moon to
develop expressions for the precession of the equator basedon theoretical contributions to precession
(Williams 1994, W94) and on MHB (Mathews et al. 2002) estimates of the precession rates. The P03
theory is given as polynomial expressions of various precession quantities, which are known to be
very accurate over a few centuries, but to diverge rapidly from numerical integration for more distant
epochs.

Precession expressions valid for long time intervals have been derived by Vondrák et al. (2011)
to provide an extension of IAU 2006 to scales of several thousand centuries. They use the Mercury
6 package (Chambers 1999) for the ecliptic and the La93 (Laskar et al. 1993) solution to represent
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general precessionpA and the precession of obliquityǫA. Some corrections are added due to the
IAU 2006 solutions. This long-term precession is then expressed in the form of a cubic polynomial
plus 8 to 14 periodic terms. It is consistent with the IAU 2006precession in the vicinity of J2000.0,
with differences being less than a few arcseconds throughout the historical period. The accuracy of
this precession model reaches a few tenths of a degree at the extreme epochs±200 millennia from
J2000.0. The interval was intentionally reduced to two thousand centuries, because of the limited
predictive knowledge of the changes in the dynamical ellipticity of the Earth and the tidal dissipation
in the Earth-Moon system. However, this work does not consider effects from General Relativity.

Some other authors also investigated the orbital motion of the Earth and Earth’s rotation for
longer time spans. A3 Myr integration was made by Quinn et al. (1991). The model used in this
work is based on classical mechanics and it replaced the Moonby a ring lying in the plane of the
ecliptic. They estimated that their errors in the Earth’s position and the direction of Earth’s pole are
within about6 200′′. In addition, Laskar et al. derived solutions for the general precessionpA and
obliquity ǫA of the Earth in La93 (Laskar et al. 1993) and La2004 (Laskar etal. 2004) based on the
rigid-Earth theory of Kinoshita (Kinoshita 1977), and the orbital motion of the Earth spanning the
time from−250 to 0 Myr in La2010 (Laskar et al. 2011). Their dynamical models all include the
dominant relativistic corrections: the 1PN corrections due to the Sun and the geodetic precession.
Their standard way to account for geodetic precession is to solve the purely Newtonian equations of
rotational motion and add the geodetic precession as a correction to the solution, which is not fully
consistent with General Relativity.

Recently, Klioner et al. (2010) have constructed a relativistic theory of Earth’s rotation.
According to the post-Newtonian equations of rotational motion given by Klioner et al. (2003),
they explain how to calculate relativistic torque, and discuss how to deal with different relativistic
reference systems including time scales and relativistic scaling. Geodetic precession and nutation are
also taken into account in a natural way. This theory of Earth’s rotation is consistent with General
Relativity. A numerical integration of Earth’s rotation inthe limit of rigidly rotating multipoles over
several centuries is made and a comparison of the result withSMART97 shows that they have suc-
ceeded in repeating SMART97 within the full accuracy of the latter. This approach allows us to
obtain the long-term precession of the Earth in a more rigorous relativistic framework.

Our work is to obtain the Earth’s long-term precession in a relativistic framework. The preces-
sion of the ecliptic is obtained by numerical integration asin most previous works. However, the
precession of the equator is calculated with a relativistictheory of Earth rotation which is mentioned
above. This part of the work starts with a post-Newtonian rigid-multipole formalism that has been
published by Klioner et al. (2003). Then, the equations are integrated numerically and the results are
modified due to the effect from tidal dissipation, and an approximation for the precession is derived
and expressed in the form of a linear polynomial plus20-30 periodic terms. Finally the relativistic
effects on the precession are obtained and analyzed.

In this paper, expressions for the relativistic long term precession of the Earth are given. In
Section 2, we describe the way to calculate the precession indetail. An approximation for the pre-
cession is provided in Section 3. Finally in Section 4, the influences of relativistic effects on the
precession are discussed.

2 NUMERICAL INTEGRATION FOR THE PRECESSION

2.1 Precession of the Ecliptic

The precession of the ecliptic represents the motion of the ecliptic pole, relative to a fixed eclip-
tic, due to planetary perturbations. The basic quantities are PA = sinπA sinΠA and QA =
sinπA cosΠA, whereπ andΠ are the osculating elements of the orbit of the Earth-Moon barycen-
ter (π, the inclination andΠ, the longitude of ascending node), and these angles refer tothe fixed
ecliptic at J2000.0. Here the motion of the solar system is integrated in the Barycentric Celestial
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Reference System (BCRS), with thex − y plane rotated into the J2000 ecliptic frame, that has its
x-axis through the J2000 (inertial) mean equinox and itsz-axis through the J2000 ecliptic pole.
Barycentric Dynamical Time (TDB) is used as the coordinate time. The P03 theory gives the trans-
formation from the DE406 frame to the J2000 ecliptic frame the J2000 in the form of the rotation
matrixRz (0.03862′′)Rx (84381.40889′′)Rz (−0.05132′′) in the DE406 heliocentric coordinates
(Capitaine et al. 2003). Then the motion of the solar system will be obtained in the BCRS.

For the barycentric translational motion, we use a similar dynamical model as in La2010. The
Sun, all eight planets of the solar system and Pluto are all taken into account. The Moon is treated
as a separate object. The first post-Newtonian correction due to the Sun is considered by following
Saha & Tremaine (1994). We also take into account the effectsof the quadruple moment of the Sun
and the Earth, the solar mass loss and tidal dissipation in the Earth-Moon System.

Our numerical integrator is based on the symplectic SABA4 scheme (Laskar & Robutel 2001;
Wu et al. 2003). The results are modified due to tidal dissipation in the Earth-Moon system. To
reduce round-off errors, we use compensated summation in our program. The integration is started
at J2000.0 and goes to±1 Myr. With regard to the period of the Moon’s orbit, the stepsize is set to
one day. The initial conditions of the integration are takenfrom the JPL DE406 ephemeris. The main
constants used here are listed in Appendix A.

After integrating the solar system motion, we directly calculate the orbit of the Earth-Moon
System from their positions and velocities, and then smooththe orbit by the Vondrák method
(Vondrák 1969). The precession parametersP andQ are finally obtained.

The motion of the Earth-Moon barycenter in the solar system over this time span is well known.
Quinn et al. (1991) calculatep = sinπ sin Π andq = sinπ cosΠ measured in ecliptic coordinates
and give a solution (QTD) for the motion of this barycenter over3.05 Myr with an accuracy better
than6200′′. Furthermore, orbital solutions for the long term motion ofthe Earth are given by Laskar
et al. (2011). Our aim is to test our integrator and get a solution that is consistent with those solutions.

Figures 1 and 2 show comparisons of our solution with the solution QTD for p andq over the
past1 Myr from J2000.0; relative differences are smaller than0.01.

2.2 Precession of the Equator

The precession of the equator describes the motion of the mean equator with respect to a fixed plane,
due to the luni-solar and planetary torques acting on the oblate Earth. In this paper, we represent it
by the general precession in longitudepA and the mean obliquity of dateǫA, which is the orientation
angle of the mean equatorial plane with respect to the ecliptic plane. These precession quantities are
obtained from the motion of the Earth’s spin axis, mostly determined by torques from the Sun and
the Moon, with a small contribution from General Relativity.

Rotation of the Earth is modeled in the Geocentric CelestialReference System (GCRS) as indi-
cated in Klioner et al. (2010). IAU 2000 resolutions B give the transformation between the BCRS and
the GCRS. Another important reference system is the terrestrial reference system in which the model
of Earth’s gravity field with potential coefficientsClm andSlm is defined. The spatial coordinates
of this terrestrial reference system(ξ, η, ζ) are obtained by rotating the GCRS spatial coordinates
(X,Y, Z) with a time-dependent matrixP ab = Rz (φ)Rx (ω)Rz (ψ). The meaning of the angles
φ, ψ, ω and the terrestrial system(ξ, η, ζ) here is the same as in Bretagnon et al. (1997). This implies
that the sign convention forψ is not in agreement with the traditional astronomical one. These Euler
angles are defined in the GCRS.

The post-Newtonian equation of Earth’s rotation that we usereads

d

dT

(

Cabωb
)

=

∞
∑

l=1

1

l!
ǫabcMbLGcL + ǫabcΩ

b

inerC
cdωd + La

other, (1)



586 K. Tang et al.

-1 -0.8 -0.6 -0.4 -0.2 0
-2000

0

2000

4000

6000

8000

p
 (

")

-1 -0.8 -0.6 -0.4 -0.2 0
-50

0

50

time (Myr)

p
 (

")

our solution
QTD

Fig. 1 Top panel: comparision between our so-
lution (solid line) and the QTD solution (dotted
line) (Quinn et al., 1991) for p over the past 1 Myr
from J2000.0.Bottom panel: the difference be-
tween the two solutions (dotted line).
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Fig. 2 Top panel: comparision between our so-
lution (solid line) and the QTD solution (dotted
line) (Quinn et al., 1991) forq over the past 1 Myr
from J2000.0.Bottom panel: the difference be-
tween the two solutions (dotted line).

whereC =Cab is the post-Newtonian inertia tensor andω = ωa is the angular velocity of the
post-Newtonian Tisserand axis (Klioner 1996) defined by theorthogonal matrixP ab(T ). The first
term on the right hand side is the relativistic inertial torque (without relativistic precessions). The
second term is the additional torque due to the relativisticprecessions (Geodetic, Lense-Thirring and
Thomas precessions). The third term describes tidal dissipation. Details will be given below.

The motion of the solar system is described in the BCRS with TDB as time scales, while the
rotation of the Earth is described in the GCRS using Geocentric Coordinate Time (TCG) as the
coordinate time scale parameterizing the equations. So, the problem of how to treat these differ-
ent relativistic time scales is inevitable. For different TDB times, we calculate the corresponding
Barycentric Coordinate Times (TCB), Terrestrial Times (TT) and TCG times, as described in Irwin
& Fukushima (1999) and Klioner (2008). The differential equations for these time scales are numer-
ically integrated by Romberg’s method using our solutions for motion in the solar system. Another
important part of our program is to deal with the relativistic scaling of various parameters. The
proper relativistic scaling of constants and parameters ischosen to be like that described in Klioner
et al. (2010):

(a) The positionxA, velocity vA, the accelerationaA which we calculate and the mass param-
eterGMA of a massive solar system body A (given by IAU 2009 ResolutionB2) are TDB-
compatible.

(b) The radius of the EarthRE (given by IAU 2009 Resolution B2) and the values of the Earth’s
moments of inertiaC are TT-compatible.

(c) The post-Newtonian inertial torqueLa =
∑

∞

l=1

1

l!
ǫabcMbLGcL is calculated by using TDB-

compatible parameters (see Klioner et al. 2010).

To compute the torque, we only take into account the influenceof the Sun and the Moon. It
contains the following:
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(a) The relativistic inertial torque is expressed with Symmetric and Trace-Free Cartesian (STF)
tensors.ML are the multipole moments of the Earth defined in the GCRS, while GL are the
multipole moments of the external tidal gravitoelectric field in the GCRS. The formulas forML

are given by equations (5.1)–(5.6) of Klioner et al. (2010) andGL are from equations (19)–(23)
of Klioner et al. (2003). Here we only consider terms withl = 2.

(b) The additional torqueǫabcΩ
b

iner
Ccdωd depends onC, ω and the angular velocityΩiner describ-

ing the relativistic precessions. In our work, only geodetic precession and nutation are consid-
ered (Fukushima 1991).

(c) The torque from the tidal dissipation describes anotherimportant effect in the Earth-Moon sys-
tem. It results from the tidal forces of the Sun (neglected here) and the Moon on the Earth, and
induces small changes in the speed of rotation of the Earth and in the mean motion of the Moon.
Here we use the tidal dissipation model given by Mignard (1979) and Touma & Wisdom (1994).
It assumes that the torque resulting from tidal friction is proportional to the time lag∆t that the
deformation takes to reach equilibrium. This time lag is supposed to be constant.

Explicitly, the tidal torque acting on Earth reads

∆L = 3
k2GM

2
M
R5

E

r8
EM

∆t
[

(rEM · ωE) rEM − r2EMωE + rEM × vEM

]

, (2)

wherek2 is the potential Love number of the Earth. There is also a force acting on the Moon due to
a delayed tidal bulge on the Earth

F = −3
k2GM

2
M
R5

E

r10
EM

{

r2EMrEM + ∆t
[

2rEM (rEM · vEM) + r2EM (rEM × ωE + vEM)
]}

. (3)

This force is added to the equation of motion for the Earth-Moon system. As a consequence of
the decreasing angular rotation rate of the Earth, the moment J2 of the Earth will also change in
proportion toω2.

Klioner et al. (2010) try to get the most accurate results forprecession/nutation for a relatively
short interval of time including relativistic effects. In this paper, we focus on very long time scales
and integrate the rotational equation of motion, Equation (1), using a 4th-order Runge-Kutta method
with a stepsize of 0.1 day. The potential coefficients of the gravity field of the Earth in the terrestrial
system are computed from the GEM2008 normalized coefficients:

C20 = −1082.626173852223× 10−6 ,

C22 = 1.574615325722917× 10−6 ,

S22 = −0.9038727891965667× 10−6 .

Because of this and the different values of the constants we use, the moments of inertia are slightly
different from the ones of SMART97 (Bretagnon et al. 1998):

A = 1.799538227025858× 10−15MS au2 ,

B = 1.799577876994722× 10−15MS au2 ,

C = 1.805468786696834× 10−15MS au2 .

The initial conditions fort0 = J2000.0 are from SMART97:

ψ (t0) = 0.00006789546085 rad ,

ω (t0) = −0.4090646190715125 rad ,

ϕ (t0) = 4.8948989303002346 rad ,

ψ̇ (t0) = −0.7010549586589918× 10−6 rad d−1 ,

ω̇ (t0) = 0.0960673662260632× 10−6 rad d−1 ,

ϕ̇ (t0) = 6.30038813041313 rad d−1 .
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Fig. 3 Top panel: comparison of our solution
(solid line) and La2004 (dotted line) (Laskar et
al., 2004) forω∗ from −1 Myr to 1 Myr. Bottom
panel: the difference between the two solutions
(dotted line).

Fig. 4 Top panel: comparison of our solution
(solid line) and La2004 (dotted line) (Laskar et
al., 2004) for the obliquity of the Earthǫ from
−1 Myr to 1 Myr. Bottom panel: the difference
between the two solutions (dotted line).

With these parameters and initial conditions, the rotational equation of motion will be numerically
integrated. The parameterspA andǫ are computed fromπ, Π, ψ andω.

The values for longitude of perihelion from moving equinox of the dateω∗ and obliquity of the
Earth from−50 to 20 Myr are provided by La2004 (Laskar et al., 2004) in whichthe precession
quantities are integrated using the rigid-Earth theory of Kinoshita (Kinoshita 1977; Neron de Surgy
& Laskar 1997).

The longitude of perihelion from the equinox of reference’ is also a term.ω∗ is defined as
ω∗ = ̟ + pA, where̟ is the longitude of perihelion derived from the equinox thatis used as a
reference. We made a comparison forω∗ andǫ over±1 Myr with the results of Laskar et al. (2004).
Figures 3 and 4 show that our numerical solution is close to the results of La2004, with relative
differences being smaller than0.01.

3 ANALYTICAL EXPRESSIONS FOR THE PRECESSION

3.1 Numerical Analysis

Some algorithms are applied to our data to get approximations for the precession parameters. To this
end, we use a polynomial curve fitting with the least squares method. After removing the linear drift,
a frequency analysis algorithm is used to search for periodic terms.

Frequency analysis has the goal of determining the fundamental frequencies for the numerical
solution of a dynamical system and enables us to derive approximate analytic theories for the long-
term behavior of the solar system. The method we use is a combination of the Numerical Analysis
of Fundamental Frequency (NAFF) (Laskar et al. 1992) and Vanı́ček’s method (Vanı́ček 1971):

(1) A Fast Fourier Transform (FFT) is applied to determine the frequencyf of the largest amplitude.
(2) The least squares method is used to make a small change inf and derive good approximations

for sine/cosine amplitudes of the corresponding term. A Hanning window is used to improve the
frequency determination.

(3) The contribution with frequencyf is removed from the data.
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(4) The steps above are repeated to find other frequencies.

Precession represents the secular part of the motion. From Vondrák et al. (2011), we assume that
precession covers all periods longer than104 yr, while shorter ones are included in the nutation. In
this paper, we use this frequency analysis method to extractthe long periodic terms to get the pre-
cession of the Earth and remove the nutation part. The approximations of the precession parameters
are given below in the general forma0 + a1T +

∑

(Ci cos 2πT/Pi + Si sin 2πT/Pi). T is the time
from J2000.0 in years.P terms are the periods in years. The unit of the cosine/sine amplitudes of
the periodic parts is arcseconds. All the coefficients are provided in Appendix B.

3.2 Precession Parameters

The long-term approximations for the precession of the ecliptic PA andQA are presented as

PA = 5540′′ − 1.98′′ × 10−4T +
∑26

i=1
Ci cos(2πT/Pi) + Si sin(2πT/Pi) ,

QA = −1608′′ − 2.06′′ × 10−4T +
∑26

i=1
Ci cos(2πT/Pi) + Si sin(2πT/Pi) ,

(4)

whereT is in TDB years, and the main periodsPi with the amplitudesCi andSi are given in
Table 1. In the first column, the names of some special frequenciessi are from Laskar (1985).si is
the secular frequency related to the node of the planeti in the solar system, and can be obtained from
the Lagrange solution of the autonomous system of order 1 by an analytical treatment. Comparisons
of our numerical solutions forP andQ with their approximations (given in Eq. (4)) are depicted in
Figures 5 and 6 from−1 Myr to 1 Myr. The difference in the two solutions is less than200′′ over the
whole period.

Table 1 The Main Periodic Terms inPA andQA

PA QA

Term Ci [′′] Si[′′] Ci [′′] Si [′′] P [yr]

–s3 –3720 1259 –1290 –3698 68975
–s1 657 –2585 2508 736 235535
–s4 –2068 –302 288 –2056 72488
–s2 –855 –570 548 –838 192342
–s6 438 338 –334 435 49178

Table 2 The Main Periodic Terms inpA andǫA

pA ǫA
Term Ci[′′] Si [′′] Ci [′′] Si [′′] P [yr]

p + s3 –6651 –2197 738 –2216 40938
p + s4 –3349 540 –175 –1126 39803
p + s6 1526 –1218 376 469 53789
p + s1 227 874 –313 84 28832
p + s2 –370 255 –91 –129 29639

The long-term approximations for the general precessionpA and obliquityǫA are

pA = 6221′′ + 50.44766′′T +
∑30

i=1
Ci cos(2πT/Pi) + Si sin(2πT/Pi) ,

ǫA = 83953′′ − 8.9′′ × 10−5T +
∑20

i=1
Ci cos(2πT/Pi) + Si sin(2πT/Pi) ,

(5)

whereT is in TCG years, and the cosine/sine amplitudes of the main periodic parts are given in
Table 2.pA in Table 2 designates the main precession frequency as give by Laskar et al. (2004).
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Fig. 5 Top panel: comparison of our numerical
solution for PA (dotted line) with its approxi-
mation given by Eq. (4) (solid line). The model
of Vondrák et al. (2011) (circles) is also plotted.
Bottom panel: the difference between the numer-
ical solution and its approximation (dotted line).

Fig. 6 Top panel: comparison of our numerical
solution forQA (dotted line) with its approxima-
tion given by Eq. (4) (solid line). The model of
Vondrák et al. (2011) (circles) is also plotted.
Bottom panel: the difference between the numer-
ical solution and its approximation (dotted line).
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Fig. 7 Top panel: comparison of our numerical
solution ofpA (dotted line) with its approxima-
tion given by Eq. (5) (solid line). The model of
Vondrák et al. (2011) (circles) is also plotted.
Bottom panel: the difference between the numer-
ical solution and its approximation (dotted line).

Fig. 8 Top panel: comparison of our numerical
solution of ǫA (dotted line) with its approxima-
tion given by Eq. (5) (solid line). The model of
Vondrák et al. (2011) (circles) is also plotted.
Bottom panel: the difference between the numer-
ical solution and its approximation (dotted line).

The comparisons of these approximations with the complete solutions are given in Figures 7 and 8.
Twenty periodic terms are used for the obliquityǫA to keep the difference less than200′′ over the
whole time span, but ten more periodic terms are needed to make the difference between the solution
for pA and its approximation smaller than1300′′. The parameterspA andǫA mix the motion of the
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equator in the GCRS and the movement of the ecliptic of date. In addition, it is known that the
calculation of a moving ecliptic in relativity framework presents a serious problem, when it is used
in the GCRS.

In this paper, we simply transfer the orientation of the ecliptic in the BCRS to the GCRS in
a ‘Newtonian manner’ providing some sort of definition for a GCRS ecliptic.pA andǫA are not
regarded as the primary precession quantities. We will givethe expressions of other parameters,
such asXA andYA, which are the precession part of the coordinates of the CIP unit vector in the
GCRS to represent the precession of the equator in a future publication.

Vondrák et al. (2011) mention that their model is only validwithin the interval±200 millennia
from J2000.0, whereas outside this interval of time, the errors grow rapidly as can be seen in the
figures above. Similarly, our model has a range of validity of±1 Myr around J2000.0. The difference
between these two models is about150′′ for PA, QA, ǫA and several degrees forpA at the end of
the±200 millennia time span. Compared with the P03 theory, the accuracy of our model is several
arcseconds for±2000 years around J2000.0.

4 RELATIVISTIC EFFECTS IN THE PRECESSION

Our program calculates the precession for both the Newtonian and the post-Newtonian cases. A
series of numerical calculations were made to compare thesetwo cases in order to identify the
effects due to relativity on the precession of the Earth.

Figures 9 and 10 show the relativistic effects on the precession of the ecliptic parametersPA and
QA. Due to the first post-Newtonian effect of the Sun, the differences ofPA andQA are increasing
with time and reach about1 300′′ in ±1 Myr. These differences also have periodic parts, and the main
period is about195 000 yr. Because the precession of the ecliptic is due to planetary perturbations,
the complicated motion of the solar system makes it hard to easily understand this period. The
task of finding a reasonable explanation will be undertaken by analytical methods in the near future.
Furthermore, the influence of the relativistic effects is smaller than10′′ within ±0.2 Myr. This shows
that the model of Vondrák et al. (2011) that does not consider effects from General Relativity is
suitable in this interval of time. Some other relativistic effects are too small to be considered in this
work, such as the first post-Newtonian effect of the planets.
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Fig. 11 The effect of the geodetic precession on the precession parameterǫA from−1 Myr to 1 Myr.
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Fig. 12 The effect of the post-Newtonian iner-
tial torque on the precession parameterǫA from
−1 Myr to 1 Myr.
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Fig. 13 The effect of the relativistic scaling and
time scales on the precession parameterǫA from
−1 Myr to 1 Myr.

For the rotation of the Earth, the geodetic precession is well-known and considered by all pre-
vious works. Traditionally, geodetic precession is artificially added to a purely Newtonian solu-
tion which was already shown to not be correct (Klioner et al.2010). Our result was integrated
in a more rigorous relativistic framework and several relativistic features were included: (1) the
post Newtonian inertial torque, (2) rigorous treatment of geodetic precession/nutation, (3) four time
scales, TDB, TCB, TT and TCG, which are all evaluated at the geocenter, and (4) correct relativistic
scaling of constants and parameters. To know the relative importance of the different contributions
of relativity, we first repeated the Newtonian dynamical solution. Then another code was written
to integrate the post-Newtonian equations of Earth’s rotation. All these relativistic effects can be
switched on or off independently of each other.

Figure 11 shows the effect of the geodetic precession on the obliquity of the Earth. The influence
is about300′′ in ±1 Myr. It is the most important relativistic effect in Earth’srotation. The effect
of the post-Newtonian inertial torque and the effect of the relativistic scaling and time scales are
respectively depicted in Figures 12 and 13. Although these relativistic effects (except for the geodetic
precession) accumulate with time, they are still too small to be considered in most cases over this
time span. The amplitude of these effects for the obliquity of the Earth is less than one tenth of an
arcsecond within±1 Myr.
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5 CONCLUSIONS

The aim of the work described in this paper is to compute the Earth’s precession in a way that it
consistent with General Relativity, for a long time interval. The motion of the solar system was inte-
grated in a numerically similar way as Quinn et al. (1991) andKlioner et al. (2010). Our framework
is basically relativistic since it employs the post-Newtonian theory of Earth’s rotation in the limit
of rigidly rotating multipoles as designed by Klioner et al.(2010). The motion of the solar sys-
tem and Earth’s rotation axis in the interval±1 Myr from J2000.0 was calculated by our integrator,
and approximations for the precession parametersPA, QA, pA andǫA are provided. Our solutions
have very small discrepancies with respect to P03 near J2000.0, about several arcseconds within
±2000 yr, and display good consistency with other long-term precession theories. This work, for
the first time, involves a fully relativistic framework of Earth’s rotation. The problem of a moving
ecliptic in the framework of relativity will be investigated further.

The relativistic features considered by our work are: (1) the first post-Newtonian effects re-
lated to the Sun, (2) the geodetic precession/nutation, (3)the post-Newtonian inertial torque, and (4)
several relativistic reference systems with corresponding time scales and relativistic scaling of pa-
rameters. We integrated the equations of translational androtational motion with rigorous treatment
of relativistic effects. This approach differs from the standard way to add the relativistic corrections
to the purely Newtonian solution. The relativistic effectsare treated as an additional force or torque
in the equations of motion. All the motions are integrated inthe corresponding proper reference sys-
tem: the motion of the solar system in the BCRS and the Earth’srotation in the GCRS. The treatment
of these systems follows the relevant IAU resolutions. Finally, the influences of these relativistic ef-
fects on the precession are obtained and discussed. It provides a reference to pursue and improve the
long-term precession theory and Earth’s rotation theory inthe framework of relativity.

Acknowledgements We thank Dr. Vondrák for his advice on long-term precessionand numeri-
cal analysis, and Dr. Gerlach for his help in the numerical calculation. This work is supported by
the National Natural Science Foundation of China (Grant Nos. 11273044 and 11273045), and by
Chinese Academy of Sciences visiting professorship of senior international scientists (Grant No.
2013T2J0044).

Appendix A: MAIN CONSTANTS

Table A.1 Main Constants Used in Our Solutions

Symbol Value Name Ref.

c 2.99792458 × 108 m s−1 Speed of light IAU2009
LG 6.969290134 × 10−10 1-d(TT)/d(TCG) IAU2009
LB 1.550519768 × 10−8 1-d(TDB)/d(TCB) IAU2009
LC 1.48082686741 × 10−8 Average value of 1-d(TCG)/d(TCB) IAU2009

TDB0 −6.55 × 10−5 s TDB-TCB atT0= 2443144.5003725 IAU2009
au 1.49597870700 × 1011 m Astronomical unit IAU2009

GMS 1.32712440041 × 1020 m3s−2 Heliocentric gravitational constant IAU2009
[TDB-compatible]

GME 3.986004415 × 1014 m3s−2 Geocentric gravitational constant IAU2009
[TT-compatible]

3.986004356 × 1014 m3s−2

[TDB-compatible]
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Table A.1 — Continued.

Symbol Value Name Ref.

aS 696000000 m Equatorial radius of the Sun
aE 6.3781366 × 106 m Equatorial radius of the Earth IAU2009
J2S 2.0 × 10−7 Dynamical form factor of the Sun IERS2010
J2E 1.0826359 × 10−3 Dynamical form factor of the Earth IAU2009
H 3273795 × 10−9 Dynamical flattening of the Earth IAU2006
MM/ME 1.23000371 × 10−2 Moon-Earth mass ratio IAU2009
MS/MMe 6.0236 × 106 Sun-Mercury mass ratio IAU2009
MS/MVe 4.08523719 × 105 Sun-Venus mass ratio IAU2009
MS/MMa 3.09870359 × 106 Sun-Mars mass ratio IAU2009
MS/MJ 1.047348644 × 103 Sun-Jupiter mass ratio IAU2009
MS/MSa 3.4979018 × 103 Sun-Saturn mass ratio IAU2009
MS/MU 2.290298 × 104 Sun-Uranus mass ratio IAU2009
MS/MN 1.941226 × 104 Sun-Neptune mass ratio IAU2009
MS/MP 1.36566 × 108 Sun-Pluto mass ratio IAU2009
k2 0.305 k2 of the Earth Lambeck 1988
∆t 638 s Time lag of the Earth

Appendix B: ALL PERIODIC TERMS IN THE EARTH PRECESSION

Table B.1 The Periodic Terms inPA andQA

PA QA

i Term Ci (′′) Si (′′) Ci (′′) Si (′′) P (yr) fi (arcsec yr−1)

1 −s3 –3720 1260 –1290 –3698 68975 18.789505
2 −s1 657 –2585 2508 736 235535 5.502369
3 −s4 –2068 –302 288 –2056 72488 17.878769
4 −s2 –855 –570 548 –838 192342 6.737991
5 −s5 438 338 –334 435 49178 26.35311
6 309 255 –225 289 67341 19.245403
7 217 322 –191 5 424863 3.050395
8 168 –313 288 183 65723 19.719017
9 –278 130 –112 –294 173673 7.462318
10 –278 –79 89 –285 75817 17.093767
11 –77 258 –157 –194 255871 5.065059
12 –24 124 –106 –33 64138 20.206412
13 29 3 –91 187 496536 2.610082
14 –135 –153 176 –151 70820 18.300011
15 –85 124 –257 187 1080090 1.1999
16 153 –276 395 –117 1309223 0.9899
17 14 –12 77 –94 663722 1.952624
18 55 –11 46 20 214239 6.049326
20 81 39 –41 92 77777 16.663106
21 –55 –16 19 –61 80440 16.111345
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Table B.2 The Periodic Terms inpA andǫA

pA ǫA
i Term Ci (′′) Si (′′) Ci (′′) Si (′′) P (yr) fi (arcsec yr−1)

1 p + s3 –6653 –2199 739 –2217 40938 31.657719
2 p + s4 –3349 541 –175 –1126 39803 32.560229
3 p + s6 1526 –1218 376 469 53789 24.094137
4 p + s1 227 874 –313 84 28832 44.949527
5 p + s2 –370 256 –91 –129 29639 43.726687
6 518 –353 110 174 41557 31.186031
7 324 542 –174 107 42171 30.73167
8 –482 200 –72 –158 38875 33.337421
9 –46 –201 63 –17 42847 30.24716
10 –140 –45 16 –50 30127 43.017971
11 –224 404 –143 –69 40316 32.145966
12 181 –98 38 55 38379 33.768806
13 –121 59 –24 –35 37783 34.301326
14 –9 –73 27 –6 28550 45.394546
15 35 –42 15 13 27300 47.472248
16 63 –35 15 16 37225 34.815702
17 56 –64 15 12 20459 63.347185
18 18 –77 18 3 20151 64.314835
19 –8 41 –9 –13 170984 7.57967
20 51 9 –2 16 29197 44.387641
21 3425 –2525 1309223 0.9899
22 –2951 1938 991814 1.306696
23 2117 –704 716770 1.808112
24 877 –993 416787 3.109503
25 –805 226 554293 2.338115
26 –710 –52 371201 3.491368
27 448 –33 324763 3.990599
28 –217 111 122237 10.602338
29 224 –55 94370 13.733109
30 –228 37 287695 4.504774
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