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Abstract Many schemes have been proposed to define a model-independent con-
straint on cosmological dynamics, such as the nonparametric dark energy equation of
state ω(z) or the deceleration parameter q(z). These methods usually contain deriva-
tives with respect to observational data with noise. However, there can be large un-
certainties when one estimates values with numerical differentiation, especially when
noise is significant. We introduce a global numerical differentiation method, first for-
mulated by Reinsch, which is smoothed by cubic spline functions, and apply it to the
estimation of the transition redshift zt with a simulated expansion rate E(z) based on
observational Hubble parameter data. We also discuss some deficiencies and limita-
tions of this method.
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1 INTRODUCTION

The central task of modern cosmology is to uncover the dynamic evolution and geometric structure
of the Universe. According to many cosmological observations, such as distant type Ia supernovae
(SN Ia), cosmic microwave background (CMB) and so forth, the recent Universe, dominated by
so-called dark energy, is undergoing accelerated expansion. The Lambda CDM model (ΛCDM)
based on general relativity can provide an explanation that is consistent with observational data.
However, the nature of dark energy still remains mysterious. In order to study the characteristics of
the accelerating Universe, many different methods have been proposed to overcome the limitations
of concrete cosmological models, e.g. the direct reconstruction of the equation of state of dark energy
ω(z) (Clarkson & Zunckel 2010; Holsclaw et al. 2010) or the expansion rate E(z) and deceleration
parameter q(z) (Daly & Djorgovski 2003).

Observations show that the Universe has undergone a “dynamic phase transition” from decel-
erating to accelerating expansion, which leads to a change in the sign of the deceleration parameter
q(z). The transition redshift zt, defined as q(zt) ≡ 0, has a profound impact on the evolution of the
Universe. It is subject to different kinds of components and cosmological models (Lima et al. 2012).
For example, in the ΛCDM model, the transition redshift can be derived by zt = (2ΩΛ/ΩM )1/3−1.
Therefore, an accurate constraint on zt will provide insights into how the Universe evolves. Different
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groups have measured zt with observations of SN Ia, baryon acoustic oscillations and CMB (Riess
et al. 2007; Komatsu et al. 2011). In order to constrain zt model-independently, various paramet-
ric expressions of q(z) have been presented. Such parametric expressions, e.g. q(z) and ω(z), are
extremely convenient and effective for cosmological research.

Recently, observational Hubble parameter data (OHD) H(z) have attracted much attention on
the constraints related to cosmological parameters (Yi & Zhang 2007; Chen & Ratra 2011). Ma
& Zhang (2011) and Zhang et al. (2010) have summarized the power and potential of OHD from
a statistical point of view. At present, there are a total of 30 independent measurements of H(z)
(Simon et al. 2005; Gaztañaga et al. 2009; Stern et al. 2010; Moresco et al. 2012; Blake et al. 2012;
Zhang et al. 2012; Chuang & Wang 2013; Busca et al. 2013). The relation between deceleration
parameter q(z) and H(z) is q(z) = dH−1(z)/dt− 1, so we can derive the transition redshift zt as

zt =

[
d lnH(z)

dz

]−1

z=zt

− 1 =

[
d lnE(z)

dz

]−1

z=zt

− 1 , (1)

where E(z) = H(z)/H0.
How to treat the numerical differentiation correctly is one common problem appearing in these

works. The accuracy of numerical differentiation applied to noisy observational data is difficult
to control. It encompasses many subtleties and pitfalls that may cause a large error in the actual
computation. From a mathematical point of view (Ahnert & Abel 2007), the derivative of a given
function is obtained by infinitesimal calculus; it is, however, impractical for real experimental data
due to its property of being discrete. Additionally, for most cases, we must take the measured error
or noise into consideration. An effective estimation of the derivative for a noisy sample has to tackle
these two limitations.

To compute the numerical differentiation of a given sample without knowing the underlying
function, typically one needs to obtain the approximation with some basic functions. Then one can
hope that the derivative of the approximation is good enough to represent the actual situation. Many
approaches have been developed, such as Principal Component Analysis (PCA) (Shapiro & Turner
2006; Benitez-Herrera et al. 2013; Nesseris & Garcı́a-Bellido 2013), Gaussian Processes (Seikel
et al. 2012a) and so forth. Reinsch (1967) developed another optimal algorithm to perform numer-
ical differentiation with spline functions, hereafter referred to as Reinsch splines. The method can
smooth the data globally by cubic spline functions. Therefore, the final differentiation can be de-
rived analytically. In this work, we apply Reinsch splines to estimate zt based on the current OHD,
of which 28 measurements are assembled by Farooq & Ratra (2013). The other two are 79.69±3.32
and 86.45±3.27 at z = 0.24 and 0.43, respectively (Gaztañaga et al. 2009).

This paper is organized as follows: the fundamental algorithm of Reinsch splines and the corre-
sponding errors are furnished in Section 2. Then we utilize this algorithm to estimate the transition
redshift zt using a simulated cosmological expansion rate E(z) in Section 3. Finally, a brief summa-
ry and discussion will be given in Section 4.

2 METHOD OF REINSCH SPLINES

Reinsch splines were first proposed by Reinsch (1967) to replace strict interpolation by some kind
of smoothing. The appropriate trial functions to estimate the experimental data are spline functions.

Given a sample (xi, yi) (i = 1, ..., n) which satisfies

x1 < x2 < ... < xn , (2)

the problem can then be stated as a special instance of the Tikhonov regularization method, which
looks for the minimum in the functional

Φ(f) = α

{
n∑

i=1

(
yi − f(xi)

σi

)2

− S

}
+ ||f ′′(x)||2 , (3)
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where σi is the noise and f(x) is the optimal square integrable function over the domain. ||f ′′(x)||
denotes the L2-norm

||f ′′(x)|| =
(∫ xn

x1

f ′′(x)2dx

)1/2

. (4)

S is a given positive constant, allowing for an implicit rescaling of the quantities σi, which controls
the extent of smoothing. If σi is the estimate of the standard deviation of yi, the value of S will lie
within

n−
√
2n ≤ S ≤ n+

√
2n . (5)

α is the Lagrangian parameter satisfying dΦ(f)/dα = 0 and α ̸= 0.
Hanke & Scherzer (2001) provided a rigorous proof that the minimizer of Equation (3) is a

natural cubic spline. Following the notation of Reinsch (1967), we express f(x) as

f(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3, (6)

where

xi ≤ x ≤ xi+1, i = 1, ..., n− 1 . (7)

The spline functions satisfy specified smoothing and boundary conditions, but there is no need to
exactly agree with the experimental data yi on the node xi. Once we obtain the coefficients ai, bi,
ci and di, the spline functions will be uniquely determined. A constructive algorithm for calculating
the splines has been given by Reinsch (1967). In the remaining part of this section, we will focus on
error analysis related to Reinsch splines.

Three sources of errors will impact the final evaluation of the numerical differentiation: experi-
mental errors resulting from individual data points, truncation errors between the optimal f ′(x) and
the true derivatives, and rounding errors due to the narrow length of a subinterval. The truncation
errors greatly depend on the choice of the algorithm and the fitting accuracy. Hanke & Scherzer
(2001) provided a formula for the truncation errors, and a rigorous proof can also be found. As for
the experimental errors, the propagation of them is dealt with using the conventional expression

σ2
m =

N∑
i=1

σ2
i

(
∂m

∂yi

)2

, (8)

where m denotes the coefficients of the spline functions, and N is the number of the points in a
subinterval.

3 ESTIMATION OF THE TRANSITION REDSHIFT

From Equation (1), the technique of numerical differentiation needs to be used to determine zt
if an H(z) sample is available. Unfortunately, unlike the SN Ia dataset, the recent OHD are too
penurious to provide a significant estimation of the transition redshift using Reinsch splines. There
are some other reasons that make it difficult. First, the apparent uncertainty in the existing H(z) will
greatly increase the possibility of failure. Moreover, the sparse sample will lead optimal functions
to seriously deviate from actuality, as well as the corresponding differentiation. Lima et al. (2012)
suggest three different means to obtain H(z), so it is expected that such shortcomings could be
overcome by ongoing and future observations that enlarge the volume of the sample.

To extend the applications of OHD further and test the Reinsch splines, a simulated sample
of H(z) will be helpful. Furthermore, from Equation (1), the dimensionless expansion rate E(z)
will be a better choice for the present analysis. Therefore, we will concentrate on the technique of
generating a sample of E(z) in this section.
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3.1 Simulated E(z)

Our simulation is based on the spatially flat ΛCDM model with Ωm = 0.28 and ΩΛ = 0.72. A
Gaussian prior of H0 = 74.2± 3.6 km s−1 Mpc−1 suggested by Riess et al. (2009) is adopted. The
expansion rate E(z) in the fiducial model can be written as

Efid(z) =
√
Ωm(1 + z)3 +ΩΛ . (9)

Next we describe the simulation procedure in detail. Some similar but slightly different techniques
have also been proposed by Ma & Zhang (2011), Wang & Zhang (2012) and Seikel et al. (2012b) to
simulate the Hubble parameter.

Generally, the simulated E(z) sample should take the fiducial model value Efid as its expectation
and follow the same systematic information and characteristic of the ‘observed’ E(z) (Eo) derived
directly from OHD. However, this goal is difficult to reach, because we have quite a few real data
points and very little knowledge about Eo, e.g. the distribution of data points along the redshift axis.
Therefore, our E(z) simulation includes the following two procedures.

3.1.1 The offset estimation: ε(z)

To generate the E(z) sample at any given redshift value, we introduce a variable ε(z) satisfying

Esim(z) = Efid(z) + ε(z) , (10)

which represents the offset between the fiducial value and simulation at a given z. In order to make
⟨Esim⟩ = Efid, ε(z) should be a random variable with respect to z.

Assuming there is no bias in the sign of the offset ε̂(z) = Eo(z) − Efid(z), we can make the
offset satisfy |ε̂(z)| ≤ E(z)η for most Eo(z) values, where η is a constant. The best estimate of η is
0.1320. As a result, we can denote

ε±(z) = ±Efid(z)η (11)

as the boundaries of the offset values of a simulated expansion rate. As a random variable, ε(z)
follows the Gaussian distribution N(0, ηEfid(z)/2) so that the probability of ε(z) falling within the
offset domain is 95.4%.

3.1.2 The uncertainty estimation: σ(z)

There is an apparent trend in the errors of Eo(z): The uncertainty σE(z) becomes larger as the
redshift z increases except for six outliers of which four are from Zhang et al. (2012) and two are
from Stern et al. (2010). In order to trace the global change in the errors, a conservative way is to
ignore these points. Finally, we find the rest are right within the region between the lines

σ+ = 0.2324z + 0.1365 , σ− = 0.1091z + 0.0393 . (12)

The midline between the two boundaries is

σm =
1

2
(σ+ + σ−) , (13)

which represents the expected value of uncertainty σsim in the simulated expansion rate. Meanwhile,
we make the σsim follow a Gaussian distribution N(σm(z), ρ(z)) at any given redshift, where

ρ(z) =
σ+ − σ−

4
(14)
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Fig. 1 Simulated E(z) sample based on the fiducial ΛCDM model. The ‘observed’ Eo(z) points
are also displayed as black squares with error bars (Eo at z = 2.3 is not shown). The solid line
represents the E(z) in ΛCDM with Ωm = 0.28 and ΩΛ = 0.72.

ensuring that the simulated uncertainty σsim falls within the region between lines σ+(z) and σ−(z)
with a probability of 95.4%.

Following the above two procedures, the method of generating a simulated E(z) sample can
be completed. First of all, we can calculate the fiducial values Efid(z) from Equation (9). A random
variable ε(z) can be drawn from a Gaussian distribution, so Esim(z) is generated via Equation (10) at
a given z. Finally, the corresponding uncertainty σsim(z) is also estimated through another Gaussian
distribution.

Figure 1 shows the final simulation in which we truncate the redshift to 2.0, which is enough
for an estimate of the transition redshift. The readers are referred to Ma & Zhang (2011) for more
detailed discussions about properties of the reconstruction.

3.2 Numerical Results

In this section, the method of Reinsch splines is applied to estimate the transition redshift using the
simulated expansion rate E(z).

In order to obtain the optimal function f(x) defined in Equation (6), we need to minimize
the functional Φ(f) (Eq. (3)). For such noisy data, constant S plays an important role. A proper
choice of the constant will substantially boost the fitting accuracy of numerical differentiation. If the
underlying function to be fitted is known, the classical least-squares fitting can be used. However,
how to determine it without any model information, as done for the model-independent tests in
cosmology, and how to judge whether the chosen S can approach the real situation remain to be
solved. The general practice is to set S ≃ n which satisfies Equation (5). It works fairly well when
we test the method on different analytic functions with small errors. As an example, we test the
method on an oscillating function f(x) = 1 − 1.02 exp(−0.2x) sin(0.98x + 4.9) + O(x), where
O(x) indicates a small Gaussian fluctuation. The result of the numerical differentiation is portrayed
in Figure 2. We divide the differentiation into 14 equal bins and calculate the mean of each bin as the
final result. Such reduction can mitigate the impact of singularities that arise from the initialization
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Fig. 2 Upper panel: numerical differentiation of function f(x) = 1−1.02 exp(−0.2x) sin(0.98x+
4.9) + O(x). The result is divided into 14 equal bins. The squares with error bars are the mean of
each bin. The solid line is the theoretical derivative of f(x). Bottom panel: second derivative of the
same function. For clarity, the errors shown in the figure are ten times smaller than the actual errors.

and smoothing procedures. This is particularly important for our method, so the same consideration
is also adopted for the following analysis of transition redshift.

However, if we increase the Gaussian fluctuation O(x) to the case in which the relative error
reaches ∼10%, we find that a simple assumption of S ≃ n cannot reproduce the expected results,
but makes the fitting fluctuant. It partly stems from the degeneracy between S and σ in Equation (3).
As a result, constant S is sensitive to the relative error estimate. In our study, the relative errors of
E(z), i.e. σE(z)/E(z), are up to 10% for most measurements. In order to constrain S quantitatively,
here we introduce one possible estimation to minimize

κ =
n−1∑
i=1

||vi+1 − vi|| , (15)

where vi = (xi, f
′(xi)) and || · || represents the distance between two adjacent points. With this

condition, we can suppress significant fluctuations arising from large relative errors and make the
numerical differentiation as smooth as possible. Though such a minimization may not be optimal,
it can weaken the contributions from large errors. We iteratively calculate S based on the above
equation. For our sample, the best value is S = 101.40 and the corresponding κ = 5.98.

Once S is fixed, the optimal f(x) can also be obtained with the algorithm presented in Section 2.
Figure 3 shows the final numerical results. The redshift bins are [0.00, 0.25, 0.50, 0.75, 1.00, 1.25,
1.50, 1.75, 2.00]. As a whole, we can fit the derivative fairly well, especially when z > 0.5. However,
at low redshift (z ≤ 0.5), there exists a slight deviation with respect to the expectation because of
the default initialization of Reinsch splines and the significant error in our simulated sample. The
best estimate of the transition redshift is zt = 0.69+0.06

−0.14 which is approximately consistent with
observational and theoretical results. Note that we just take the statistical errors and truncation errors
into consideration due to the fact that the rounding errors are negligible in our sample.
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Fig. 3 The determination of the transition redshift using simulated E(z). The redshift is divided into
eight bins to estimate the average differentiation. Open circles indicate the result by our method,
while open squares (slightly shifted) are derived by GaPP for comparison. The solid line is the
derivative of E(z) in the ΛCDM model (see Eq. (1)), while the dash-dotted line is 1 + z. The
intersection of the lines represents the transition redshift in the ΛCDM model. The inset at the lower
right is an illustration of the variation of κ with respect to S. The transition redshift zt ∼ 0.69 is
estimated by using Reinsch splines.

For comparison, we also apply GaPP1 (Seikel et al. 2012a), which is based on Gaussian pro-
cesses, to our sample to estimate the numerical differentiation. Open squares in Figure 3 show the
result in the same redshift bins without any prior information. Clearly, the method of Reinsch splines
performs better than GaPP, especially at low redshift, z < 0.8, where the GaPP method significantly
deviates from the expected result. Meanwhile, we conclude that both methods fail to fit the lower
redshift range (z < 0.5) due to the impact of large relative errors. This was also discussed by Seikel
et al. (2012a), who argued that large measured errors tend to reduce the fitting by the Gaussian pro-
cess. However, by constraining the behavior of S, we can partly handle the impact of large errors.
In addition, because our purpose in this work is to develop a completely model-independent method
without any additional or prior assumptions, it should still be noted that for a fair comparison we do
not add a prior in GaPP, though such a treatment will not cause GaPP to perform optimally.

4 DISCUSSION AND CONCLUSIONS

In the present work, we introduce a general method of numerical differentiation referred to as
Reinsch splines, and preliminarily apply it to the analysis of the transition redshift zt with a sim-
ulated expansion rate E(z). The determination of constant S is essential to approach the optimal
f(x), and we provide an effective recipe to evaluate it when the experimental error σ is significant.
This demonstrates that this method can estimate zt using observational Hubble parameter data under
current observation accuracy if we have enough measurements. Compared with other parametric or
statistical methods (such as the Bayesian estimate), one merit of Reinsch splines is that we can avoid
the potential impact of model assumptions.

1 http://www.acgc.uct.ac.za/ seikel/GAPP/index.html
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However, such an analytical method still has some deficiencies. Firstly, it is difficult to accurately
predict the second derivative, especially when the error is relatively large. The bottom panel of
Figure 2 shows one example. As a result, we cannot apply it to SN Ia data to successfully predict
a model-independent equation of state for dark energy due to the existence of a second derivative.
Such a shortcoming is expected to be overcome by combining it with other statistical techniques. In
addition, the estimate of initial values is very crude due to the assumption of boundary conditions.
One feasible solution is to relax the boundary conditions based on physical facts or some prior
knowledge when constructing the optimal spline functions f(x).
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