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Abstract We consider a tachyonic scalar field as a model of dark energy with interac-
tion between components in the case of variable G and Λ. We assume a flat Universe
with a specific form of scale factor and study cosmological parameters numerically
and graphically. Statefinder analysis is also performed. For a particular choice of in-
teraction parameters we succeed in obtaining an analytical expression of densities. We
find that our model will be stable at the late stage but there is an instability in the early
Universe, so we propose this model as a realistic model of our Universe.
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1 INTRODUCTION

In order to explain recent observational data, which reveal accelerating expansion of the Universe,
several models have been proposed. One of the possible scenarios is the existence of a dark energy
with negative pressure and positive energy density adding an acceleration to the expansion.

Various kinds of dark energy model have been proposed, such as cosmological constant (Peebles
& Ratra 2003), quintessence (Ratra & Peebles 1988; Caldwell et al. 1998; Sami & Padmanabhan
2003), k-essence (Armendariz-Picon et al. 2001; Chiba 2002; Scherrer 2004), tachyon (Sen 2002a,b;
Gibbons 2002; Sadeghi et al. 2014a), phantom (Caldwell 2002; Elizalde et al. 2004; Cline et al.
2004), ghost dark energy (Sadeghi et al. 2013b; Feng et al. 2012a,b, 2013), Chaplygin gas and its
extensions (Kamenshchik et al. 2001; Amani & Pourhassan 2013; Sadeghi et al. 2013a; Khurshudyan
2013; Saadat & Pourhassan 2013a,b,c, 2014; Sadeghi & Farahani 2013; Pourhassan 2013), quintom
(Feng et al. 2006), holographic dark energy (Hořava & Minic 2000; Sadeghi et al. 2014b; Setare &
Jamil 2010; Aghamohammadi et al. 2011; Durán et al. 2010), and extra dimensions (Rogatko 2004;
Amani & Pourhassan 2012).

Among the above models concerning the nature of the dark component of the Universe, in this
article, we assume that it could be described by a scalar field and we choose a scalar field called the
tachyonic field with the following relativistic Lagrangian

LTF = −V (φ)
√

1− ∂µφ∂νφ , (1)
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which has attracted a lot of attention (see, for instance, references in Verma & Pathak 2012). The
stress energy tensor is given by

T ij =
∂LTF

∂(∂iφ)
∂jφ− gijLTF , (2)

which defines the energy density and pressure as the following expressions

ρ =
V (φ)√

1− ∂iφ∂iφ
, (3)

and,
P = −V (φ)

√
1− ∂iφ∂iφ . (4)

Our next step is to decompose Equations (3) and (4) as

ρ = ρm + ρΛ ,

P = Pm + PΛ , (5)

with the following components:

ρm =
V (φ)∂iφ∂iφ√

1− ∂iφ∂iφ
,

Pm = 0 ,

ωm = 0 , (6)

and

ρΛ = V (φ)
√

1− ∂iφ∂iφ ,

PΛ = −V (φ)
√

1− ∂iφ∂iφ ,

ωΛ = −1 . (7)

This means that we can consider the tachyonic scalar field to be a combination of a cosmological
constant and pressureless matter with ωm = 0. From a mathematical point of view, this is not the
only possibility and a different splitting could be considered.

We should note that a flat FRW metric with the line element

ds2 = dt2 − a(t)2
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
(8)

will be used for our purposes.
Recently, Verma & Pathak (2012) considered a model where the components of a tachyonic

scalar field mutually interact. Motivated by the idea presented in that work, we would like to con-
sider the interaction Q = 3Hbρ+γρ̇ in the general form between components in the case of variable
G and Λ. As is well known, the Einstein equation has two important parameters which are the grav-
itational constant G and the cosmological constant Λ. It is known that G plays the role of a coupling
constant between geometry and matter in the Einstein equations. In an evolving Universe, it appears
natural to look at this constant as a function of time (Tiwari 2009; Jamil & Debnath 2011). Also, a
time-dependent cosmological constant has been considered by several works in various variable G
theories (Banerjee et al. 1985; Abdussattar & Vishwakarma 1997). It is possible to point out a bound-
ary on G; for instance, observation of the spinning-down rate of pulsar PSRJ 2019+2425 provides
the result ∣∣∣∣∣

Ġ

G

∣∣∣∣∣ ≤ (1.4− 3.2)× 10−11 yr−1 . (9)
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From observations of the pulsating white dwarf star G 117–B15A, the asteroseismological bound
may be (Biesiada & Malec 2004)

∣∣∣∣∣
Ġ

G

∣∣∣∣∣ ≤ 4.1× 10−10 yr−1 . (10)

Today, Λ has an incredibly small value, Λ < 10−46 GeV4, whereas generic inflation models require
that Λ has a large value during the inflationary epoch. This is the source of the cosmological constant
problem. We hope that consideration of variable Λ could solve this problem. Also, a pioneering work
on varying cosmological constant and its interaction with matter suggested how to resolve the fine-
tuning problem (Wang & Meng 2005). Therefore, we apply these ideas to the recent work (Verma &
Pathak 2012) and extend this model.

Also, interacting models may solve the cosmic coincidence problem (del Campo et al. 2009;
He et al. 2011). He et al. (2010) find that the interaction between dark sectors cannot ensure that
the dark energy fully clusters along with dark matter. There are several possibilities to choose an
interaction term, for example those introduced by Chen et al. (2011). It is also possible to construct
a holographic cosmological model where dark matter and dark energy interact non-gravitationally
with each other (Durán & Pavón 2011). In the interesting work by Xu et al. (2013), the effects
of interaction between dark matter and dark energy on the evolution of the gravitational and the
peculiar velocity fields were investigated. In a recent work (Costa et al. 2013), it was concluded that
an interaction is compatible with recent observations and can provide a strong argument towards
consistency of different values of cosmological parameters. All of these give us motivation to use
interaction to produce a comprehensive model.

This paper is organized as follows. In Section 2 we will introduce the equations which govern
our model. Then, in Section 3, we study statefinder diagnostics. In Section 4, we will consider the
mathematics and solution strategy of the problem for the non-interacting case and will present an
analysis of the model for a special type of scale factor. The model including interaction between
components will also be analyzed numerically and cosmological parameters discussed graphically.
Section 5 includes discussion and the conclusions.

2 THE FIELD EQUATIONS

The field equations that govern our model with variable G(t) and Λ(t) (see for instance Abdussattar
& Vishwakarma 1997) are

H2 =
ȧ2

a2
=

8πG(t)ρ
3

+
Λ(t)

3
, (11)

and
ä

a
= −4πG(t)

3
(ρ + 3P ) +

Λ(t)
3

. (12)

The energy density (3) and pressure (4) of a tachyonic field are reduced to the following expressions

ρ =
V (φ)√
1− φ̇2

, (13)

and

P = −V (φ)
√

1− φ̇2 . (14)

Also, the energy conservation T ;j
ij = 0 reads

ρ̇ + 3H(ρ + P ) = 0 . (15)
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In the case of conservation of particle number in the Universe, the combination of (11), (12) and (15)
gives the following relationship between Ġ(t) and Λ̇(t)

Ġ = − Λ̇
8πρ

. (16)

Hereafter, we will assume special forms of scale factor a(t) and cosmological constant Λ(t). This
assumption allows us to determine G(t), ρ, φ and V (φ). Before investigation of these quantities we
study statefinder diagnostics.

3 STATEFINDER DIAGNOSTICS

In the framework of general relativity it is accepted that dark energy can explain the present cosmic
acceleration. Besides the cosmological constant, there are many other candidates for dark energy.
The property of dark energy is model dependent, and to differentiate different models of dark energy
a sensitive diagnostic tool is needed.

The Hubble parameter H and deceleration parameter q are very important quantities, which can
describe the geometric properties of the Universe. Since ȧ > 0, H > 0 implies there is expansion
of the Universe. Also, ä > 0, i.e. q < 0, indicates there is accelerated expansion of the Universe.
Since the various dark energy models give H > 0 and q < 0, they cannot provide enough evidence
to identify which more general models of dark energy are supported by more accurate cosmological
observational data. For this aim we need a higher order of time derivative for the scale factor and
geometrical tool. Sahni et al. (2003) proposed a geometrical statefinder diagnostic tool, based on
dimensionless parameters (r, s), which are functions of the scale factor and its time derivative. These
parameters are defined as

r =
1

H3

...
a

a
, (17)

and
s =

r − 1
3(q − 1

2 )
, (18)

where the deceleration parameter is given by

q = − 1
H2

ä

a
. (19)

This can be rewritten as the following

q =
1
2

(
1 + 3

8πG(t)PΛ − Λ(t)
8πG(t)ρ + Λ(t)

)
. (20)

We provide a numerical description of statefinder parameters in the next section.

4 METHOD

In this paper we use the following forms of scale factor, cosmological constant and interaction term.
We assume that the Universe is in a quasi-exponential expansion phase with the following scale

factor (Verma & Pathak 2012)
a(t) = a0t

n exp (αt) . (21)

We also assume the following scale factor-dependent cosmological constant

Λ(t) = H2 + Aa−k . (22)
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Finally, we consider the following interaction term

Q = 3Hbρ + γρ̇ . (23)

In the γ = 0 limit, the interaction term is reduced to what is used in, for example, Izquierdo
& Pavón (2010); Ferreira et al. (2013). There are undetermined constants n, α,A, k, b, and γ in
Equations (21)–(23), which will be fixed in our numerical study. We have already discussed the forms
and types of interaction Q at length in our previous works (Sadeghi et al. 2013a,b; Khurshudyan
2013). We just mention to our readers concerning the form considered in this article that it carries
a phenomenological aspect γρ̇, introduced from a unit correctness point of view. This form will be
one of the forms intensively considered in the literature from different perspectives and found to be
suitable for cosmological problems. Generally in the literature, many authors are taking such terms,
which will simplify the problem and will have analytical solutions.

In this case, we obtain the following equation, which describes the dynamics of G

Ġ +
(Akt2 + 2n(a0eαttn)k)(n + αt)
At3 − 2t(a0eαttn)k(n + αt)2

G = 0 . (24)

The absence of an interaction between components means that components evolve separately, i.e.
Equation (15) separates into the following equations

ρ̇m + 3H(ρm + Pm) = 0 , (25)

and
ρ̇Λ + 3H(ρΛ + PΛ) = 0 . (26)

From Equation (22), for the energy density of tachyonic matter, we obtain

ρm = ρ0me[−3(αt+n ln t)] . (27)

For the pressure of a cosmological constant PΛ we have

PΛ = ρ0me[−3(αt+n ln t)] +
A(a0t

neαt)−k − 2t−2(n + αt)
8πG

. (28)

For the tachyonic field and potential we obtain

φ(t) =
∫ √

1− 8πGρΛ

2t−2(n + αt)2 −A(a0tneαt)−k
dt , (29)

and
V (φ) =

ρΛ√
1− φ̇2

, (30)

where ρΛ = −PΛ is used. This means that φ̇2 ≤ 1. In the special case of φ̇2 = 1, the tachyon
potential diverges and takes an infinite value.

On the other hand, accounting for interaction between cosmic components modifies (25) and
(26) in such a way that the conservation of energy holds. In this case we have

ρ̇m + 3H(ρm + Pm) = Q , (31)

and
ρ̇Λ + 3H(ρΛ + PΛ) = −Q . (32)

Therefore, corresponding to our case with ωm = 0 and ωΛ = −1, we can obtain

(1− γ)ρ̇m + 3H(1− b)ρm = 3HbρΛ + γρ̇Λ , (33)

and
(1 + γ)ρ̇Λ + 3HbρΛ = −3Hbρm − γρ̇m . (34)

We use the above relations to generate a numerical analysis for our system to understand the behavior
of some important cosmological parameters.
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4.1 Analytical Results

Before performing numerical analysis of some important cosmological parameters in the general
case, we try to obtain time-dependent densities and pressures in the special case where we restrict
interaction parameters such that b = γ. This assumption helps us to decouple equations given by
(33) and (34) to extract ρΛ(t) and ρm(t). Then, by using relations (31) and (32) we can obtain
the pressure PΛ(t). In this case, we can also investigate the stability of the theory (see discussion
section).

Under the above assumption we can obtain the following densities

ρΛ = ct−3nγ3
e−3αγ3t , (35)

and

ρm = ct−3ne−3αt

[
1− γ3 + γ2 − 1

γ3 − 1
t3n(1−γ3)e−3α(γ−1)(γ2+γ+1)t

]
, (36)

where c is a constant of integration. These lead to the following pressure

PΛ =
c(γ6 − γ5 − 2γ3 + γ2 + 1)

γ3 − 1
t−3nγ3

e−3αγ3t . (37)

Therefore, we can write the following expression for total density

ρ = c

[
t−3nγ3

e−3αγ3t +
(

1− γ3 + γ2 − 1
γ3 − 1

t−3nγ(γ3−1)e−3α(γ−1)(γ2+γ+1)t

)
t−3ne−3αt

]
. (38)

As we expected, Pm = 0. Therefore, from Equations (28) and (37) one can obtain

8πG =
tn(3 λ3+2)eα t(3 λ3+2) − 2 t3 nλ3+3 n−2e3 α t(λ3+1)n− 2 t3 nλ3+3 n−1e3 α t(λ3+1)α

cλ3e3 α tt3 n − cλ2e3 α tt3 n − t3 nλ3e3 α λ3t − ce3 α tt3 n
. (39)

4.2 Numerical Results

In this section, we numerically solve equations from the previous sections and obtain the potential
and field, behavior of G(t), deceleration parameter q, and total equation of state, which is given by

ωtot =
Pm + PΛ

ρm + ρΛ
, (40)

which, for the case of Pm = 0, reduces to the following form

ωtot =
PΛ

ρm + ρΛ
. (41)

The reader should remember that ωtot 6= ω1 + ω2. By using the scale factor given by Equation (21),
the Hubble parameter H is reduced to the following relation

H =
n

t
+ α , (42)

and the cosmological constant (22) takes the following form

Λ(t) = A(a0 exp [αt]tn)−k +
(n + αt)2

t2
. (43)

Below, we graphically present the behavior of G, q and ωtot. All parameters are fixed in order to
obtain V → 0 when t →∞.
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First of all, we consider the non-interacting case and plot G(t), ωtot(t) and q(t) for some fixed
parameters in Figures 1, 2 and 3 respectively. Then, in Figures 4, 5 and 6 we obtain the behavior of
these quantities in the presence of the interaction term given by Equation (23).

In the next step, we plot φ, V and PΛ in terms of time for the non-interacting case in Figures 7, 8
and 9 respectively. Then, extension to the interacting case is illustrated in Figures 10, 11, 12, 13 and
14, where ρm and ρΛ are also analyzed.

All figures contain four plots with different fixed parameters. First, in the case of the non-
interacting component, the first plot (top, left) is drawn for n = 3, α = 0.5, k = 1.5 and different
values of A. The second plot (top, right) is drawn for n = 3, k = 1.5, A = 2.5 and different values
of α. The third plot (bottom, left) is drawn for n = 3, α = 0.5, A = 2.5 and different values of k.
Finally, the fourth plot (bottom, right) is drawn for k = 1.5, α = 0.5, A = 0.5 and different values
of n.

On the other hand, in the case of interacting components, the first plot (top, left) is drawn for
A = 1, α = 1.1, γ = 0.05, k = 0.5, b = 0.04 and different values of n. The second plot (top, right)
is drawn for n = 2.5, k = 0.5, A = 1, γ = 0.05, b = 0.04 and different values of α. The third plot
(bottom, left) is drawn for n = 1.5, α = 2.5, A = 1.5, k = 1.5, γ = 0.05 and different values of b.
Finally, the fourth plot (bottom, right) is drawn for k = 1.5, α = 2.5, A = 1.5, n = 1.5, b = 0.04
and different values of γ.

In Figure 15 we graphically study statefinder parameters. Also in Figure 16, stability of the
theory is investigated. In the next section, we provide a discussion about these figures and effects of
parameters on the cosmological quantities.

5 DISCUSSION AND CONCLUSIONS

In this paper, we considered mutually interacting tachyon dark energy and extended it to the case
of variable G and Λ. We obtained behavior of some cosmological quantities by using analytical and
numerical analysis. Under some assumptions we obtained analytical expressions for energy densities
in terms of time, which allow us to obtain the tensor to scalar ratio. We fixed some parameters to
unity and reduced the number of free parameters in the models. We found that higher values of n are
in more agreement with observational data.

0 10 20 30 40 50
1

2

3

4

5

6

t

G
Ht
L

A=5.5, k=1.5

A=4.5, k=1.5

A=2.5, k=1.5

A=1.5, k=1.5

A=0.5, k=1.5

n=3, Α=0.5

0 10 20 30 40 50
1

2

3

4

5

6

t

G
Ht
L

A=2.5, Α=7.5

A=2.5, Α=5.5

A=4.5, Α=0.5

A=2.5, Α=2.5

A=2.5, Α=0.5

n=3, k=1.5

0 10 20 30 40 50
1

2

3

4

5

6

7

t

G
Ht
L

A=2.5, k=5.5

A=2.5, k=4.5

A=4.5, k=3.5

A=2.5, k=1.5

A=2.5, k=0.5

n=3, Α=0.5

0 10 20 30 40 50
0

2

4

6

8

10

t

G
Ht
L A=0.5, n=7

A=0.5, n=5

A=0.5, n=3

A=0.5, n=1

A=0.5, n=0.5

k=1.5, Α=0.5

Fig. 1 Behavior of G vs. t for non-interacting components where we choose a0 = 2 and ρ0 = 1.
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Fig. 3 Behavior of q vs. t for non-interacting components where we choose a0 = 2 and ρ0 = 1.
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Fig. 4 Behavior of G(t) vs. t for interacting components where we choose a0 = 1.
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Fig. 5 Behavior of ωtot vs. t for interacting components where we choose a0 = 1.
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Fig. 6 Behavior of q vs. t for interacting components where we choose a0 = 1.
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Fig. 7 Behavior of φ vs. t for non-interacting components where we choose a0 = 2 and ρ0 = 1.
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Fig. 8 Behavior of V vs. t for non-interacting components where we choose a0 = 2 and ρ0 = 1.
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Fig. 9 Behavior of PΛ vs. t for non-interacting components where we choose a0 = 2 and ρ0 = 1.
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Fig. 10 Behavior of φ vs. t for interacting components where we choose a0 = 1.
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Fig. 11 Behavior of V vs. t for interacting components where we choose a0 = 1.
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Fig. 12 Behavior of PΛ vs. t for interacting components where we choose a0 = 1.
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Fig. 13 Behavior of ρΛ vs. t for interacting components where we choose a0 = 1.
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Fig. 14 Behavior of ρm vs. t for interacting components where we choose a0 = 1.

Fig. 15 Behavior of s vs. r by choosing a0 = 1. Left: n = 1 (solid line), n = 2 (dashed line) and
n = 5 (dotted line). Right: n = 0.6 (solid line) and n = 0.5 (dashed line).

Fig. 16 Behavior of C2
s vs. r, for n = 1 and α = 1. b = γ = 2 (black), b = γ = 3

(red), b = γ = 4 (blue) and b = γ = 5 (green).
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Below, we give two steps to explain cosmological quantities which were numerically obtained.
In the first step we deal with G(t), ωtot(t) and q, and in the second step we deal with φ(t), V , PΛ,
ρΛ and ρm. In the first step we are able to compare our results with observational data, but in the
second step there is no measurement of the parameters.

Plots of Figure 1 show behavior of G versus t with variation of A, α, n and k. We found that
G is an increasing function of t at the early step, which yields a constant in the later step. It is clear
from Figure 1 that increasing A and n increases the value of G, but increasing α and k decreases the
value of G.

Plots in Figure 2 show the behavior of ωtot versus t with variation of A, α, n and k. We found
that ωtot is totaly negative after the initial time which yields −1 at large t. It is clear from Figure 2
that increasing the parameter n increases the value of ωtot, but increasing α decreases the value of
ωtot. We also found that variation of A and k has no important effect on ωtot. The black line in the
last plot, which corresponds to n = 7, illustrates the opposite behavior at the early stage which is
more expected, therefore, we can restrict this parameter as n > 6.

Plots in Figure 3 show behavior of the declaration parameter q versus t with variation of A, α,
n and k. We found that q is totaly negative after the initial time which corresponds to accelerating
expansion of the Universe. Also, it yields −1 after large time which suggests there is a constant
value for the Hubble expansion parameter and agrees with current data. It is clear from Figure 3 that
increasing n increases the value of q, but increasing α decreases the value of q, and variation of A
and k has no important effect on q. The current observation of q ≈ −0.8 indicates t ≈ 2 at the
current time.

Plots in Figure 4 should be compared with those in Figure 1 to find the effect of interaction on
G(t). In Figure 4, we vary n, α, b and γ. We find that G is an increasing function of t at the early
step, which is similar to the non-interacting case. Then, at the large stage, relating to the value of
parameters, it may yield a constant or may diverge. For example, by choosing A = 1, 0.1 ≤ α ≤ 0.8,
b = 0.04, n = 2.5, k = 0.5 and γ = 0.05 as well as A = 1.5, α = 2.5, b = 0.01, n = 1.5, k = 1.5
and γ = 0.05, we obtain a constant G. It is clear from Figure 4 that increasing α, b and n increases
the value of G, but increasing γ decreases the value of G. We can see that variation of G with α is
completely different from the case of non-interacting components where, as illustrated in Figure 1,
α decreases the value of G. At the current stage (t ≈ 2), the value of G is infinitesimal, which is in
agreement with current observations.

Plots in Figure 5 show behavior of ωtot versus t with variation of n, α, b and γ for the case of
interacting components. We found that ωtot is totaly negative and increasing after initial time, and
yields a negative constant at large t. It is clear from Figure 5 that increasing b increases the value of
ωtot, but increasing α, n and γ decreases the value of ωtot. We can conclude that choosing b = 0.04,
γ = 0.05, A = k = n = 1.5 and α = 0.5 gives ωtot → −1.

Plots in Figure 6 show behavior of the declaration parameter q versus t for the case of interacting
components. We find that q is totaly negative which confirms accelerating expansion of the Universe
as well as the non-interacting case. We found that this parameter decreases with time in the initial
stage to reach a minimum, then increases with time to reach a constant value at the late stage which
is near −1. It is clear from Figure 6 that increasing b and α increases the value of q, but increasing
n and γ decreases the value of q, which are different from the non-interacting case. It is illustrated
that q ≈ −0.8 agrees with the current stage at about t = 2.

Now, we consider the second set of quantities. Figures 7, 8 and 9 correspond to the non-
interacting case. Plots in Figure 7 show that the scalar field φ increases at the initial stage and then
suddenly yields a constant. So, it seems that the scalar field is constant at present. In other words, the
scalar field φ grows suddenly and reaches the stable phase at present. This means that the tachyon
field is unstable at the early stage. We find that φ increases with A but decreases with n, k and α.
These plots suggest 0 < α ≤ 2 is necessary to obtain a non-trivial scalar field.
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Plots in Figure 8 show behavior of the tachyon potential versus the cosmic time which initially
increases but is a decreasing function at the late stage. This is clear from the last plot which is ob-
tained for k = 1.5, α = 0.5, A = 0.5 and 0.5 ≤ n ≤ 7. The maximum value of potential, which
is obtained at the initial stage, shows that the tachyon field is unstable in the early stages of evolu-
tion. This may be because of some irreversible processes such as particle creation and annihilation.
However, more analysis and studies are needed in order to verify the correct physics. We also find
that increasing A and α decreases the value of potential.

Pressure from the cosmological constant for the case of the non-interacting component is illus-
trated in the plots in Figure 9. As expected, pressure from the cosmological constant is negative and
a decreasing function of time. The second and third plots in Figure 9 show that α and k decrease
the value of cosmological constant pressure, respectively. It is illustrated that the pressure from the
cosmological constant diverges at the initial stage. This infinite negative pressure corresponds to a
sudden expansion of the early Universe.

Plots in Figure 10 show that scalar field φ is a totally increasing function of time in the case
of interacting components. The first and second plots suggest that increasing n and α decreases the
value of the scalar field, which is similar to the non-interacting case, however there is no difference
between them at the initial stage. The last two plots represent the effect of interaction terms. It is
clear that b increases while γ decreases the value of the scalar field.

Tachyon potential of the interaction case is illustrated in the plots in Figure 11, which is similar
to the non-interacting case. We see a transition from an unstable to a stable state at the initial stage.
We find that n, α and b decrease the value of tachyon potential but γ increases the value of tachyon
potential. As we expect, the tachyon potential vanishes at late time.

Plots in Figure 12 correspond to time evolution of cosmological constant pressure which is
negative during time. In contrast to the non-interacting case, we see that the cosmological constant
pressure increases at the initial stage to a negative minimum and then increases to zero at the late
stage. We can see that n and b decrease pressure but γ increases it.

The cosmological constant density, represented by plots in Figure 13, show that it increases at
the initial stage and is decreasing until now, which is in agreement with the present accelerating
expansion of the Universe. It is found that n, α and b decrease the value of time-dependent density
but γ increases it.

Density of pressureless matter in the presence of the interaction term is plotted in Figure 14
which is a decreasing function of time and yields an infinitesimal value at late time as expected.
We found that n and α decrease the value of density but γ increases it. Variation of density with b
depends on its value, so small values of b increase density but a value larger than b = 0.02 decreases
it.

Results for statefinder parameters (s− r) for our model are illustrated in Figure 15. We draw a
diagram for various values of n and see that the fixed point of standard ΛCDM is (s = 0, r = 0) for
all n. For r ≥ 1 we find that increasing n decreases s, but in the range r ≤ 1 there is no difference
between curves with different n. Also, we see different behaviors for n > 1 and 0 < n < 1 in the
range r > 1.

Finally, we can obtain suitable conditions to have a stable model. Our numerical analysis shows
that the square of sound speed C2

s = Ṗ /ρ̇ is always a positive constant for γ = 1 and b > γ.
Therefore, our model will be stable during evolution of the Universe. In the special case of interaction
parameters discussed in Section 4 (γ = b), there are also stable regions which are illustrated in
Figure 16. We can see that there are small regions in the early Universe where C2

s < 0 and our
model is unstable. These regions correspond to the maximum of potential in Figure 11 which is
discussed above and interpreted as a transition from an unstable to a stable state. Therefore, we
obtained effects of variable G and Λ on the model, which was suggested as a model of our Universe.
In summary, we proposed interacting tachyon dark energy with variable G and Λ as a toy model of
our Universe which is closest to the real case.
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