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Abstract We consider the BSBM (Bekenstein, Sandvik, Barrow and Magueijo) cos-
mological model in the presence of tachyon potential with the aim of studying the sta-
bility of the model and test it against observations. The phase space analysis shows that
from fourteen critical points that represent the state of the universe, only one is stable.
With a small perturbation, the universe transits from a state of unstable deceleration
to stable acceleration. The stability analysis combined with the best fitting process
imposes constraints on the cosmological parameters that are in agreement with ob-
servation. In the BSBM theory, the variation of fundamental constants is driven from
variation of a scalar field. The tachyonic scalar field, responsible for both variation of
fundamental constants and universal acceleration, is reconstructed.
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1 INTRODUCTION

The assumption of the constancy of fundamental constants is crucial in cosmology where the redshift
measures the expansion of the universe. The possibility of varying constants dramatically changes
our understanding of the universe and appropriate modifications should be made to the cosmologic
models to address this issue. The assumption of varying fundamental constants was pioneered by
the work of Dirac (1937). Intense investigation in this field suggests a new connection between
astrophysics, cosmology and high-energy physics that is complementary to cosmology of the early
universe. In particular, the observation of the variability of fundamental constants constitutes one of
the few ways to examine higher dimensional theories.

From all fundamental constants of nature, the fine structure constant, α, dubbed the “coupling
constant” of electromagnetic interactions, can be derived from other constants as (Hagiwara et
al. 2002)

α =
e2

4πε0h̄c
, (1)

where c is the speed of light in a vacuum, h̄ ≡ h/2π is the reduced Planck constant, e is the
electron charge magnitude and ε0 is the permittivity of free space. The current value of α on Earth
is α0 ≈ 1/137.035 (Hagiwara et al. 2002).
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Many authors have studied the theoretical possibilities of time and spatial variations of the
fine structure constant during the history of the universe (Ichikawa & Kawasaki 2004; Das &
Kunstatter 2003; Webb et al. 2003; Murphy et al. 2003a, 2008; Barrow & Shaw 2008; Parkinson
et al. 2004). In this paper, we focus on time variations of α which can be measured by using the
“time shift density parameter” as

∆α

α
≡ α(z)− α0

α0
, (2)

where α(z) is the value of the fine structure constant at redshift z.
The observational evidence from quasar absorption spectra indicates that the fine structure con-

stant might change with cosmological time; smaller than its present value by ∆α
α ∼ 10−5 at redshifts

in the range z ∼ 1 − 3 (Webb et al. 1999, 2001; Murphy et al. 2001, 2003b). From e.g. Granda &
Oliveros (2009), variation of the fine structure constant may be due to variation in the speed of light,
c, (Moffat 1993; Albrecht & Magueijo 1999; Barrow 1999) or electric charge, e, (Bekenstein 1982).
While in the first case the Lorentz invariance is violated, in the second one local gauge and Lorentz
invariance are both preserved and the theory is generally covariant. Bekenstein’s original theory re-
gards c and h̄ as constants and attributes variations in α to changes in e, or the permittivity of free
space. He makes a set of assumptions to obtain a reasonable modification of Maxwell’s equations
to take into account the effect of the variation of the elementary charge, e (Bekenstein 1982). This
is done by letting e assume the value of a real scalar field which varies in space and time such that
e0 → e = e0ε(xµ), where ε is a dimensionless dynamic scalar field and e0 is a constant denoting the
present value of e. Since e is the electromagnetic coupling, the ε field couples to the gauge field as
εAµ in the Lagrangian. The unique gauge-invariant and shift symmetric Lagrangian for the modified
electromagnetic field can be written as Lem = − 1

4FµνFµν , so that Fµν = ε−1[∂µ(εAν)−∂ν(εAµ)]
is the generalized electromagnetic tensor (Maity & Chen 2011a,b). Bekenstein did not take into ac-
count the effect of the field ε in the Einstein equations and only studied the time variation of ε in a
matter dominated universe.

Sandvik, Barrow and Magueijo have generalized the scalar theory by Bekenstein in order to
include gravitational effects of the field, ε, responsible for variations of α. They replaced the dilaton
with a cosmological scalar field (Sandvik et al. 2002). To simplify calculations, they invoked a
transformation by defining an auxiliary gauge potential aµ = εAµ and field tensor fµν = εFµν =
ε−1(∂µ(aν) − ∂ν(aµ)), and to simplify further: ε → φ ≡ ln ε. The total action describing the
dynamics of the universe with a varying-α becomes (Sandvik et al. 2002; Maity & Chen 2011a,b)

S =
∫

dx4√−g
[
Lgrav + Lφ + Leme−2φ + Lm

]
, (3)

where Lφ = −ω
2 ∂µφ∂µφ and Lem = − 1

4fµνfµν . The gravitational Lagrangian is the usual Lgrav =
1

16πGR, withR the curvature scalar and G the Newtonian constant gravity. The matter Lagrangian is
denoted by Lm. Since the scalar field is generally coupled to gauge fields, its cosmological evolution
naturally leads to a change in the effective fine structure constant. This can provide an interesting
possibility to explain the observational data on the variation of α (Sandvik et al. 2002; Maity & Chen
2011a,b; Garousi et al. 2005).

The variation in fine structure constant α can be studied in different types of dark energy (DE)
models; driven from a scalar field coupled to the electromagnetic field (Barrow & Li 2008), or from
a Dirac-Born-Infeld scalar field (Garousi et al. 2005; Wei 2009; Wei & Cai 2005). Independently,
in scalar-tensor gravity (Mainini et al. 2005; Li et al. 2005, 2007; Granda & Oliveros 2009), a
scalar field coupled to the curvature (Arias et al. 2003; Kim 2005; Setare & Jamil 2010) or mat-
ter field (Brax et al. 2004; Steffen 2010) represents DE and thus accounts for universal acceleration.
Integration of the two above couplings encourages us to consider a model in which such a cosmo-
logical scalar field drives both the variation of cosmological constants (such as α) and universal
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acceleration. Farajollahi & Salehi (2012a,b) have already studied such a cosmological model by
considering the Bekenstein, Sandvik, Barrow and Magueijo (BSBM) theory and assume the scalar
field in the model is responsible for varying α and cosmic acceleration. So far, the varying α models
driven by either a quintessence scalar field (Avelino 2008; Olive & Pospelov 2002) or a phantom
field with negative model parameter ω (Farajollahi et al. 2012) in the BSBM model (Mota & Barrow
2004a,b; Barrow et al. 2004) have been extensively investigated in the literature. Independently,
Bisabr assumes that if there exists a matter system in a Jordan frame, then it interacts with the scalar
field in an Einstein frame due to the conformal transformations which may lead to changes in fun-
damental constants (Wei et al. 2011). As an example, he investigates the scenario of variation of the
fine structure constant in a general f(R) theory. In an extension of BSBM, the coupling between the
scalar field and the electromagnetic field could also be generalized in the form of a general function
BF(φ) and used to investigate α variation (Farajollahi & Salehi 2012a; Marra & Rosati 2005).

According to observations, all cosmological models must be constrained by observational
data of Type Ia Supernovae (SNe Ia) if they are used to explain current universal acceleration.
Independently, for a cosmological model to interpret α variation, it has to also be constrained by
the relevant observational data. In the work of Farajollahi & Salehi (2012a), the BSBM model is
constrained with observational data about distance modulus and tested against quasar absorption
spectra.

From string theory, the spectrum of strings does contain a tachyon field (a negative mass squared
vibration m2 < 0) which guarantees faster-than-light speed (Escamilla et al. 2013). Naively, the
mass of a scalar field is given by the second derivative of the potential V (ϕ) with respect to the field,
e.g. m2 = dV 2/dϕ2 (de la Macorra et al. 2006). Although in field theory the scalar field is responsi-
ble for instabilities (Frolov et al. 2002; Sen 1998, 2006; Farajollahi et al. 2011a), in cosmology it is
considered to be a candidate for DE (Copeland et al. 2005; Debnath 2008; Avelino et al. (2011)). In
this work, we will see if the tachyon field is also responsible for α variation, so we assume a BSBM
theory while the potential is a tachyonic potential.

We organize this paper as follows: in Section 2 we solve the field equations by best fitting the
model parameters with the quasar absorption spectra using the chi-squared method. A phase space
analysis is given in Section 3. With stability analysis, we obtain attractor solutions of the dynamical
system asymptotically. As a result, we avoid fine tuning problems since the trajectories in the phase
space lie along a common track despite beginning from different initial conditions (Farajollahi &
Salehi 2012a,b). In Section 4, the model is tested with observational data about the Hubble parameter
and also observational data of SNe Ia used to compute the distance modulus. We also calculate the
reconstructed deceleration and jerk parameters to verify cosmic acceleration occurs. A reconstructed
scalar field variation responsible for α variation with the best fitted model parameters is also given.
Conclusions are provided in Section 5.

2 GENERAL SET UP

The scalar field Lagrangian with a tachyon potential is Lφ = −V (φ)
√

1− ∂µφ∂µφ (Farajollahi
et al. 2011b; Farajollahi & Salehi 2011). By substituting the above into the action (3) we have
(Barrow & Lip 2012; Farajollahi & Salehi 2012a,b)

S =
∫

dx4√−g

[ R
16πG

− V (φ)
√

1− ∂µφ∂µφ− 1
4
e−2φfµνfµν + Lm

]
. (4)

To obtain the cosmological equations, we vary the action (4) with respect to the metric to give the
generalized Einstein equation

Gµν = 8πG
(
Tµνm + Tφ

µν + T em
µν

)
. (5)
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From the 00-component and ii-component of the field Equation (5) in Friedmann-Robertson-Walker
cosmology, we can obtain the Friedmann equations as

H2 =
8πG

3


ρm (1 + |ζ|e−2φ) + ρr e−2φ +

V (φ)√
1− φ̇2


 , (6)

Ḣ = −8πG

2


ρm (1 + |ζ|e−2φ) +

4
3
ρr e−2φ +

V (φ)φ̇√
1− φ̇2


 , (7)

where |ζ| ≡ Lem
ρm

. We assume the matter field filling the universe is dark matter, then the conservation
equation for the matter density is

˙ρm + 3Hρm = 0 . (8)

The equation of motion for φ that carries the α variations comes from variation of the action (4) with
respect to the scalar field φ

φ̈ + (1− φ̇2)
(
3Hφ̇ +

V ′

V

)
= 2|ζ|e−2φρm , (9)

where prime means derivative with respect to the scalar field. The right-hand side of Equation (9)
shows a source term for φ and includes all the matter fields, including relativistic and non-relativistic
matter, that interact electromagnetically. Obviously,Lem vanishes due to a sea of pure radiation since
Lem = (E2 −B2)/2 = 0. Therefore, a nearly pure electrostatic or magnetostatic energy associated
with non-relativistic particles causes a dynamical φ (Sandvik et al. 2002).

For stability analysis, we reduce the second order coupled nonlinear differential equations
into compact and neat first order ones by introducing new variables as (Farajollahi et al. 2011b;
Farajollahi & Salehi 2011),

x =
ρm

3H2
, y = φ̇, z =

V

3H2
, α̃ = e2φ, u =

1
H

, (10)

where α̃ = α̃0
α
α0

. Using Equations (7)–(9), the evolution equations of these variables become

x′ = 3x
[
− 1 + x +

x

α̃
|ζ|+ zy√

1− y2

]
, (11)

α̃′ = 2α̃yu , (12)

z′ = z
[
β + 3x + 3

x

α̃
|ζ|+ 3zy√

1− y2

]
, (13)

y′ = −y
[
(1− y2)

(
3 +

β

y2

)
− 6|ζ|x

uyα̃

]
, (14)

u′ =
3
2
u
[
x +

x

α̃
|ζ|+ zy√

1− y2

]
, (15)

where an exponential behavior for the potential function is assumed, β = V ′
V . Also, the Friedmann

constraint (6) in terms of the new dynamical variables becomes

1 = x + |ζ|x
α̃

+
z√

1− y2
. (16)
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We solve the above equations by best fitting the model parameters and initial conditions with the
observational data of the quasar absorption spectra for ∆α/α using the χ2 function

χ2(β;x0, α̃0, y0, u0) =
49∑

i=1

[∆α/α|the
i (zi|β;x0, α̃0, y0, u0)−∆α/α|obs

i ]2

σ2
i

. (17)

From numerical computation, Table 1 shows the best-fitted model parameters with ζ = 1 × 10−4.
The stability of the solutions will be discussed in the next section.

Table 1 Best-Fitted Model Parameters and Initial Conditions

Parameter β x0 α̃0 y0 H0 χ2
min/dof

0.05 0.29 0.0002 1× 10−5 71.9 0.7308329

3 PHASE SPACE ANALYSIS

A linear perturbation of the system exhibits fourteen critical points, all of which are unstable except
for one. Table 2 shows the coordinates of the points and their stability status. It is important to
note that an analysis of the stability is performed after we constrain the model parameters with
observational data.

Table 2 Best Fitted Critical Points

Point cp1 cp2 cp3 cp4 cp5 cp6 cp7

(x, y, z, u) (0,0,1.016,0) (x, 1, 0, u) (x, −1, 0, u) (x, 1, 0, 0) (x, −1, 0, 0) (1, 1, 0, 0) (1, −1, 0, 0)
Stability stable unstable unstable unstable unstable unstable unstable

Point cp8 cp9 cp10 cp11 cp12 cp13 cp14

(x, y, z, u) (1, 1, 0, u) (1, −1, 0, u) (0, −1, 0, 0) (0, 1, 0, 0) (0, −0.016, 0.99, 0) (0, −1, 0, u) (0, 1, 0, u)
Stability unstable unstable unstable unstable unstable unstable unstable

Fig. 1 The attractor property of the dynamical system in the three dimensional phase plane.
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Fig. 2 The best-fitted deceleration and jerk pa-
rameters as a function of redshift.

Fig. 3 The reconstructed scalar field φ as a
function of redshift.

A three dimensional phase space of the solution is illustrated in Figure 1. The left panel in
Figure 1 shows that the trajectories leaving the unstable critical points in the past and moving towards
the stable critical point cp1 in the future. The best-fitted model parameter trajectory is also shown by
a blue dashed line. Similarly, the projection into three dimensional space (u(t), y(t), z(t)) is shown
in Figure 1 (right panel).

To test the model against observations and confirm the best-fitted model parameters, in the next
section we perform cosmological tests.

4 COSMOLOGICAL TEST

One of the most popular tests is to monitor the dynamics of the reconstructed deceleration and jerk
parameters. These parameters, in terms of stability variables, are given by

q = 3x/2 +
3x

2α̃
|ζ|+ 3zy

2
√

1− y2
− 1, (18)

j = q + 2q2 − q̇

H
. (19)

Figure 2 shows these two kinematical parameters for the best-fitted model parameters and stable
trajectories. The current values of the deceleration and jerk parameters are q = −0.34 and j =
−0.11, which are within the range of observationally based estimates, q0 ∈ (−1.3,−0.2) and j0 ∈
(−0.3,+5.9) (Visser & Wiltshire 2004).

The scalar field responsible for both α variation and universal acceleration using the best-fitted
model parameters is also reconstructed. From the above equations and for tachyon fields with faster-
than-light speed, we expect ∆φ = φ − φ0. Figure 3 shows the scalar field variation which is in
agreement with the theory.

5 CONCLUSIONS

In this paper, we study the BSBM theory in the presence of a tachyon potential. The mathematical
stability of the model is analyzed and the parameters in the model are constrained with observational
data. The combination of stability analysis and the best fitting procedure guarantees the validity of
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the model. We find that among fourteen critical points that represent the state of the universe, only
one critical point is stable and all others represent an unstable universe, which are not acceptable.
With a small perturbation, the universe moves from an unstable decelerating state in the past towards
a stable accelerating state.

Our motivation to study the stability of the BSBM model with tachyon potential is twofold.
First, we show that the field in the model that acts as a candidate for DE can explain the current
universal acceleration. We examine the performance of the model by numerically computing the
cosmological parameters such as deceleration and jerk parameters. We find that the current values of
both of these parameters are within the observational range. Second, we reconstruct the scalar field
in BSBM theory that is responsible for fine structure constant variation.
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