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Abstract With tremendous advances in modern techniques, Einstein’s general rela-
tivity has become an inevitable part of deep space missions. We investigate the rela-
tivistic algorithm for time transfer between the proper time τ of the onboard clock and
the Geocentric Coordinate Time, which extends some previous works by including
the effects of propagation of electromagnetic signals. In order to evaluate the implicit
algebraic equations and integrals in the model, we take an analytic approach to work
out their approximate values. This analytic model might be used in an onboard com-
puter because of its limited capability to perform calculations. Taking an orbiter like
Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station
and the spacecraft dominate the outcomes of the relativistic corrections to the model.
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1 INTRODUCTION

With tremendous advances in modern techniques, Einstein’s general relativity (GR) has become an
inevitable part of deep space missions. It has gone far beyond theoretical astronomy and physics into
practice and engineering (Nelson 2011). Effects due to GR clearly showed up in the radio signals of
some space missions (e.g. Bertotti et al. 2003; Jensen & Weaver 2007), which provide the tightest
constraint on GR (Bertotti et al. 2003). However, Kopeikin et al. (2007) pointed out that the test
of GR by the Cassini spacecraft (Bertotti et al. 2003) is under a restrictive condition that the Sun’s
gravitational field is static, and if this restriction is removed the test becomes less stringent.

In GR, one important idea is to abandon the concept of Newton’s absolute time. There exist
different kinds of times: proper time and coordinate times (Misner et al. 1973; Landau & Lifshitz
1975). Theoretically, the readings of an ideal clock form the proper time τ , which is an observable
and is associated with the clock itself. In fact, there is not an ideal clock. An atomic clock approaches
an ideal clock with some finite error. However, even if an atomic clock were ideal, we still have to
hypothesize that it reads the proper time. This is because GR is a geometric theory but an atomic
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clock is a quantum mechanical device, not governed by geometry but by the laws of quantum me-
chanics, which are still not geometrized. The coordinate times cannot be measured directly, but they
might be used as variables in the equations of motion of celestial and artificial bodies and light
rays. Coordinate times are connected with the proper time through the four-dimensional space-time
interval, whose mathematical expression depends on kinematics and dynamics of the clock. This
dramatically changes the way clocks are synchronized and the associated time transfer (see Petit &
Wolf 2005; Nelson 2011, for reviews and refereces therein). Experiments involving time/frequency
transfer might be used for testing theories of gravity (e.g. Samain 2002; Cacciapuoti & Salomon
2009; Wolf et al. 2009; Christophe et al. 2009, 2012; Deng & Xie 2013a,b, 2014).

In exploration missions to Mars and other planets, synchronization between the clock onboard
a spacecraft and a clock on the ground is critical for control, navigation and scientific operation.
According to International Astronomical Union (IAU) Resolutions (Soffel et al. 2003), two interme-
diate steps are required. Step 1 is to relativistically transform onboard τ to the Barycentric Coordinate
Time (TCB), which is the global time of the solar system. Then, in Step 2, TCB is converted to the
Geocentric Coordinate Time (TCG), which is the coordinate time belonging to the local reference
system of the Earth. Then, TCG can be easily changed to other time scales associated with Earth,
such as Terrestrial Time (TT), International Atomic Time (TAI) and Coordinated Universal Time
(UTC).

Taking the Yinghuo-1 mission (Ping et al. 2010a,b) as a technical example of future Chinese
Mars explorations, some works have been devoted to investigating Step 1 and Step 2. Deng (2012)
studied the transformation of Step 1 by analytic and numerical methods and found two main ef-
fects: the gravitational field of the Sun and the velocity of the spacecraft in the Barycentric Celestial
Reference System (BCRS). The combined contribution of these two effects can reach a few sub-
seconds in one year (Deng 2012). Pan & Xie (2013) took clock offset into account in Step 1 and
found that if an onboard clock can be calibrated to achieve an accuracy better than ∼10−6 − 10−5 s
in one year (depending on the type of clock offset), the relativistic transformation between τ and
TCB will need to be carefully handled. Pan & Xie (2014) investigated the relativistic transformation
between τ and TCG, which combines Step 1 and Step 2. It was found that the difference between τ
and TCG can reach the level of about 0.2 seconds in a year and if the threshold of 1 microsecond
(µs) is adopted, this transformation must include the effects due to the Sun, Venus, the Moon, Mars,
Jupiter, Saturn and the velocities of the spacecraft and the Earth.

In this paper, we will include the effects of light propagation in the relativistic algorithm of time
transfer for Mars missions under IAU Resolutions. More specifically, the relativistic time transfer
connecting two time scales is carried out by the transmission of electromagnetic signals, which
might be encoded with necessary information and commands. This also means the time scale in
the present work is about 103 seconds, which is the light propagation time from a ground station
to a Mars orbiter. The effects of the propagation of signals are absent in the previous works (Deng
2012; Pan & Xie 2013, 2014) and the time scale of one year in these works is much longer than
the one we focus on here. For an orbiter around Mars, which has an orbit like Yinghuo-1’s, we will
develop an analytic model for such a procedure of time transfer. This analytic approach means all
of the algebraic equations and integrals in the model will be solved and evaluated in some ways
with sufficient approximations. Such an algorithm might be adopted for an onboard processor with
limited capability to perform computation. The validity of this analytic approach needs to be checked
independently and such a check will be our next goal.

In Section 2, we will establish a general model of relativistic time transfer between τ and TCG
for a Mars orbiter according to IAU Resolutions (Soffel et al. 2003). This model includes the effects
of signal transmission from a station to a spacecraft. Implicit algebraic equations and integrals in
the model will be approximately solved and evaluated in Section 3. In Section 4, by assuming an
Yinghuo-1-like mission, we will calculate and show the contributions from various sources in this
analytic model. Conclusions and discussion will be presented in Section 5.
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2 GENERAL MODEL OF TIME TRANSFER BETWEEN τ AND TCG

In the framework of IAU Resolutions (Soffel et al. 2003), a clock onboard an orbiter (hereafter “P”)
around Mars measures its own proper time τ and a station (hereafter “S”) on the surface of the
Earth can have its coordinate time T in TCG, which can be calculated from other well-maintained
time scales, such as TT. In order to synchronize the onboard τ with T on the Earth, S emits an
electromagnetic signal encoded with some necessary information at time tE in TCB and P receives
the signal at time tR in TCB. In this context, we can find the relation between these times as (e.g.
Kopeikin et al. 2011)

dτ

dT
=

dτ

dtR

dtR
dtE

dtE
dT

, (1)

where the first term describes the transformation between τ and TCB, the second term accounts for
the propagation of the electromagnetic signal from S to P and the third term is the transformation
between TCB and TCG.

The relativistic 4-dimensional transformation between τ and the TCB in Equation (1) reads as
(Soffel et al. 2003)

dτ

dtR
= 1− ε2

[
Ū(xP) +

1
2
v2

P

]
+O(ε4) . (2)

Here, ε = c−1 and c is the speed of light. Ū(xP) is the Newtonian gravitational potential evaluated at
the position of the spacecraft xP and vP is the velocity of the spacecraft in the BCRS. The potential
can be decomposed further as Ū =

∑
A ŪA, where the index “A” enumerates each body whose

gravitational effect needs to be considered. Focusing on a spacecraft like Yinghuo-1, Deng (2012)
and Pan & Xie (2013) studied its effects on the time transfer. The relativistic transformation between
TCB and TCG in Equation (1) is (Soffel et al. 2003)

dtE
dT

= 1 + ε2
{

Ū(x⊕) +
1
2
v2
⊕ +

d
dT

[
v⊕ · (xS − x⊕)

]}
+O(ε4) , (3)

where xS and x⊕ are respectively the positions of the station and the geocenter in the BCRS and
both of them are functions of tE.

The second term in Equation (1), which describes the propagation of the signal, can be obtained
from the relativistic light ray equations (see chap. 7 in Kopeikin et al. 2011, for details) and, thus,
we can have (Moyer & Yuen 2000; Kopeikin et al. 2011)

∆t ≡ tR − tE = ∆t1 + ∆t2 +O(ε4) , (4)

where

∆t1 ≡ εf1 = ε|xP(tR)− xS(tE)| , (5)

∆t2 ≡ ε3f2 = 2ε3G
∑

A

mA ln
[
rRA + n̂ · rRA

rEA + n̂ · rEA

]
. (6)

Here, ∆t1 is the Euclidean geometric effect and ∆t2 is the Shapiro time delay (Shapiro 1964). In
terms of ∆t1, xP and xS depend respectively on tR and tE. In terms of ∆t2, we ignore the motions
of all the gravitational bodies. Such a treatment is only valid when the time scale of light propagation
is much less than the time scales of orbital motions of celestial bodies. This condition is satisfied in
our investigation of a Mars mission because the light propagation time from S to P is at the level
of ∼103 s, which is much shorter than the time scales of planetary motions. In the case that time-
dependent gravitational fields can no longer be neglected, a profound and systematic approach to
integrating the light ray equations has been worked out (Kopeikin 1997; Kopeikin & Schäfer 1999;
Kopeikin & Mashhoon 2002; Kopeikin et al. 2006; Kopeikin & Makarov 2007; Kopeikin 2009). In
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the Shapiro term (6), the index “A” enumerates each body whose gravitational effect needs to be
considered. rA, rA and n̂ are quantities associated with the propagation of the signal and they are

n̂ =
xP(tR)− xS(tE)
|xP(tR)− xS(tE)| , (7)

rA(t) = xS(tE)− xA(tE) + cn̂(t− tE) +O(ε2) , (8)

and
rEA = rA(tE), rEA = |rA(tE)|, rRA = rA(tR), rRA = |rA(tR)| . (9)

Therefore, differentiating (4) and combining it with Equations (2) and (3), we can express
Equation (1) as

dτ

dT
= 1 + ε

df1

dtE
+ ε2

(
1 + ε

df1

dtE

){
Ū(x⊕) +

1
2
v2
⊕ +

d
dT

[
v⊕ · (xS − x⊕)

]}

−ε2
(

1 + ε
df1

dtE

)[
Ū(xP) +

1
2
v2

P

]
+ ε3

df2

dtE
+O(ε4) . (10)

After integrating it, we can eventually obtain that

τ − T = ∆t + ∆T + ∆τ +O(ε4) . (11)

Here, ∆t is the light time solution accounting for propagation of the signal (Moyer & Yuen 2000;
Kopeikin et al. 2011). ∆T is the transformation between TCG and TCB at S and it has two compo-
nents, ∆T = ∆T1 + ∆T2, where ∆T1 and ∆T2 are respectively associated with the positions and
velocities of the geocenter and S. Their expressions are

∆T1 = ε2
∫ tR

tE

[
Ū(x⊕) +

1
2
v2
⊕

]
dt , (12)

∆T2 = ε2v⊕(tE) ·
[
xS(tE)− x⊕(tE)

]
. (13)

The term ∆τ is the transformation between TCB and τ at P and has the form

∆τ = −ε2
∫ tR

tE

[
Ū(xP) +

1
2
v2

P

]
dt . (14)

By making use of Equation (11), one might carry out time transfer between the times onboard
and on the Earth by the transmission of signals. However, in practice, some mathematical works
need to be done: one is to solve for ∆t from the implicit algebraic Equation (4) and the other is
to evaluate the integrals in Equations (12) and (14). They can be worked out in either a numerical
or analytic way (e.g. Fukushima 2010). In the present paper, we will adopt an analytic way based
on some approximations to handle them. Although the validity of these approximations has to be
checked independently, this approach might be used by an onboard computer because of its limited
capability to perform calculations.

3 ANALYTIC APPROACH FOR THE MODEL

Equation (4) is an implicit algebraic equation of tR and tE. Taking a quick estimation, we find that,
for an orbiter around Mars, ∆t1 on the right-hand side of Equation (4) is at the level of ∼103 s and
∆t2 is about 10−5 s due to the largest contribution from the Sun, i.e. ∆t2/∆t1 ∼ 10−8, which means
the leading term of Equation (4) is

∆t ≡ tR − tE ≈ ∆t1 = ε|xP(tR)− xS(tE)| . (15)
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Depending on the procedure for the time transfer, we can generally write the above equation as

∆t1 = ε|xP(tE + ∆t1)− xS(tE)|+O(ε∆t2) , (16)

or
∆t1 = ε|xP(tR)− xS(tR −∆t1)|+O(ε∆t2) . (17)

If ∆t1 is much less than the time scale of the motion of P, Equation (16) can be Taylor expanded as

xP(tE + ∆t1) = xP(tE) + vP(tE)∆t1 +
1
2
aP(tE)∆t21 +O(∆t31) . (18)

Similarly, if ∆t1 is much less than the time scale of the motion of S, Equation (17) can be ex-
panded as

xS(tR −∆t1) = xS(tR)− vS(tR)∆t1 +
1
2
aS(tR)∆t21 +O(∆t31) . (19)

Substituting Equations (18) and (19) into (16) and (17) respectively, we can solve them respectively
by iteration as

∆t1 = ε rPS(tE) + ε2rPS(tE) · vP(tE) +
1
2
ε3

{
v2

P(tE) rPS(tE)

+
[
rPS(tE) · aP(tE)

]
rPS(tE) +

[
rPS(tE) · vP(tE)

]2

r−1
PS (tE)

}
+O(ε4) , (20)

where rPS(tE) = xP(tE)− xS(tE) and rPS(tE) = |rPS(tE)|, and

∆t1 = ε rPS(tR) + ε2rPS(tR) · vS(tR) +
1
2
ε3

{
v2

S(tR) rPS(tR)

−
[
rPS(tR) · aS(tR)

]
rPS(tR) +

[
rPS(tR) · vS(tR)

]2

r−1
PS (tR)

}
+O(ε4) , (21)

where rPS(tR) = xP(tR) − xS(tR) and rPS(tR) = |rPS(tR)|. In the present investigation, we
consider tE to be a known quantity so that Equation (20) will be used in the rest of this paper.
For the term representing the Shapiro delay (6), which is at the post-Newtonian order, we neglect
the difference between its dependence on tE and tR. With the definitions of rSA(tE) = |xS(tE) −
xA(tE)| and rPA(tE) = |xP(tE) − xA(tE)|, we can obtain (Moyer & Yuen 2000; Kopeikin et al.
2011)

∆t2 = 2ε3G
∑

A

mA ln
[
rPA(tE) + rSA(tE) + rPS(tE)
rPA(tE) + rSA(tE)− rPS(tE)

]
+O(ε4) , (22)

in which the time delay caused by the Sun can reach the level of about 10 µs. Finally, Equation (4)
can be reduced to

∆t = ∆t1 + ∆t2 = ∆tL + ∆tV + ∆tA + ∆tS +O(ε4) ,

where

∆tL = ε rPS(tE) , (23)
∆tV = ε2rPS(tE) · vP(tE), (24)

∆tA =
1
2
ε3

{
v2

P(tE) rPS(tE) +
[
rPS(tE) · aP(tE)

]
rPS(tE)

+
[
rPS(tE) · vP(tE)

]2

r−1
PS (tE)

}
, (25)

∆tS = 2ε3G
∑

A

mA ln
[
rPA(tE) + rSA(tE) + rPS(tE)
rPA(tE) + rSA(tE)− rPS(tE)

]
. (26)
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In order to analytically obtain approximate values of the integrals in Equations (12) and (14),
we will use the trapezoidal rule (Stoer & Bulirsch 2002) since ∆t is much less than the time scales
of planetary motions in the solar system. With the help of

Ū [x⊕(tR)] = Ū [x⊕(tE)] + εrPS(tE)v⊕(tE) · ∇Ū [x⊕(tE)] +O(ε2) (27)

and
1
2
v2
⊕(tR) =

1
2
v2
⊕(tE) + εrPS(tE)v⊕(tE) · a⊕(tE) +O(ε2) , (28)

we can have

∆T1 ≈ 1
2
ε2∆t

{
Ū

[
x⊕(tE)

]
+

1
2
v2
⊕(tE) + Ū

[
x⊕(tR)

]
+

1
2
v2
⊕(tR)

}
= I1 + I2 +O(ε5) , (29)

where

I1 = ε3rPS(tE)
{

Ū
[
x⊕(tE)

]
+

1
2
v2
⊕(tE)

}
, (30)

I2 =
1
2
ε4r2

PS(tE)
{

v⊕(tE) · ∇Ū
[
x⊕(tE)

]
+ v⊕(tE) · a⊕(tE)

}
. (31)

Applying the same scheme, we can obtain the approximate value of the integral in Equation (14) as

∆τ ≈ σ1 + σ2 +O(ε5) , (32)

where

σ1 = −ε3rPS(tE)
{

Ū
[
xP(tE)

]
+

1
2
v2

P(tE)
}

, (33)

σ2 = −1
2
ε4r2

PS(tE)
{

vP(tE) · ∇Ū
[
xP(tE)

]
+ vP(tE) · aP(tE)

}
. (34)

It is easy to check that I1 and σ1 are the respective rectangular approximations of ∆T1 and ∆τ .
After a rough estimation, we find that

I1 ∼ ε2∆t

(
GM¯

|x¯ − x⊕| +
1
2
v2
⊕

)
∼ 13

(
∆t

900 s

)
µs , (35)

and

σ1 ∼ −ε2∆t

[
GM¯

|x¯ − xMars| +
1
2
v2

Mars(tE)
]
∼ −9

(
∆t

900 s

)
µs . (36)

Combining Equations (35) and (36), we can estimate the leading contribution of ∆T1 + ∆τ as

∆T1 + ∆τ ∼ I1 + σ1 ∼ 4
(

∆t

900 s

)
µs . (37)

The reason that we keep the next-to-leading order terms I2 and σ2 in Equations (12) and (14) here
is to check the self-consistency of our approach (see Sect. 4 for details).

In summary, after the above analytic manipulation, Equation (11) can be written as

τ − T = ∆tL + ∆tV + ∆tA + ∆tS + I1 + σ1 + ∆T2 +O(ε4) , (38)

which explicitly depends on tE. By assuming there is an Yinghuo-1-like orbiter, we will calculate
and show the contributions from various sources in Equation (38).
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4 EVALUATION OF THE ANALYTIC MODEL

Taking the Yinghuo-1 Mission (Ping et al. 2010a,b) as a technical example of future Chinese Mars
explorations, we will evaluate the significance and contributions of various components in the trans-
formation of Equation (38).

We assume there is a spacecraft orbiting around Mars from 2017 January 1 starting at the
time 00h00m00.00s and continuing to 2018 January 1 at 00h00m00.00s under the time scale of the
Barycentric Dynamical Time (TDB). Since Pan & Xie (2014) showed that the difference between
TCB and TDB contributes only about 0.2 µs to τ−T in the time scale of a year, we neglect this differ-
ence in our calculation. The origin of all time coordinates is chosen to coincide with 00h00m00.00s

on 2017 January 1 in the rest of this paper. The orbital inclination of the spacecraft with respect to the
Martian equator is 5◦. The apoapsis altitude is 80 000 km and the periapsis altitude is 800 km, with
a period of about 3.2 d. In particular, the positions and velocities of celestial bodies are taken from
the ephemeris DE405 provided by NASA’s JPL and the orbit of the spacecraft is solved by numeri-
cally integrating the Einstein-Infeld-Hoffmann equation (Einstein et al. 1938) with the Runge-Kutta
7 method (Stoer & Bulirsch 2002) with the stepsize being one-hundredth of its Keplerian period.
In the calculation, we include the gravitational contributions from the Sun, eight planets, the Moon
and three large asteroids: Ceres, Pallas and Vesta. We also assume the ground station is in Shanghai,
China.

Figure 1 shows the curves of ∆tL (top panel), ∆tV (middle panel) and ∆tA (bottom panel).
They can respectively reach the levels of∼103 s,∼10−2 s and∼10−3 s. This interrelation of ∆tL À
∆tV > ∆tA is consistent with the limitations imposed on the validity of our analytic approach. Some
features appear like spikes in the middle and bottom panels of Figure 1. These spike-like appearances
are caused by the low resolution of the figure. We enlarge one of these “spikes” in the middle panel
and replot it in the sub-figure(a) of Figure 1. It clearly shows the curve of ∆tV changes fast and
smoothly due to the orbital motion of the spacecraft around Mars with a period of 3.2 d. This is
also shown in the sub-figure(b) of Figure 1, which displays a single “spike” in the bottom panel of
∆tA. The effects of the Shapiro time delay ∆tS caused by various gravitational bodies are shown
in Figure 2. Among them, the Sun provides the largest contribution, which is at the level of ∼10 µs.
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Fig. 1 Curves of ∆tL (top panel), ∆tV (middle panel) and ∆tA (bottom panel). One of the “spikes”
in the middle panel is enlarged and re-plotted in sub-figure (a), which shares the same scales and units
as the middle panel. Sub-figure(a) clearly shows that the curve of ∆tV changes fast and smoothly
due to the orbital motion of the spacecraft around Mars with a period of 3.2 d. Sub-figure(b) shows
a single “spike” in the bottom panel of ∆tA and it has the same scales and units as in the bottom
panel.
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Fig. 2 The effects of the Shapiro time delay ∆tS caused by different gravitational bodies. The black
strip in the panel representing Earth is because of the change in position of the station due to the
Earth’s rotation, which makes the curve have a fast oscillation with a period of a day. All of the
“spikes” and “tips” in some panels are caused by the low resolution. They will look smooth when
they are enlarged and shown in a figure with a higher resolution (see Fig. 1(a) and (b) for examples).
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Fig. 3 The effects of I1 caused by different gravitational bodies and its overall contribution. All of
the “spikes” in the panel of Mars are caused by the low resolution. They would look smooth when
they are enlarged and shown in a figure with a higher resolution (see Fig. 1(a) and (b) for examples).

The black strip in the panel representing Earth in Figure 2 is because of the change in position of the
station due to Earth’s rotation, which makes the curve have a fast oscillation with period of a day.

Figures 3 and 5 respectively represent the contribution of I1 and σ1. Their magnitudes of∼15 µs
and∼–10 µs agree with our estimated values given by Equations (35) and (36). The contributions of
the Sun and P dominate the outcomes of I1 and σ1. Again, the black strip in the panel representing
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Fig. 4 The effects of I2 caused by different gravitational bodies and its overall contribution.

Earth in Figure 5 is caused by the change in position of the station due to Earth’s rotation with a
period of a day. As a check of the self-consistency of our analytic approach, their next-to-leading
order corrections I2 and σ2 are shown in Figures 4 and 6 and they are at least ten times less than
I1 and σ1. Like the “spikes” appearing in Figure 1, some “spikes” and “tips,” where derivatives
of the function seem to be discontinuous, can also be seen in Figures 2, 3, 5 and 6. However, all
these “spikes” and “tips” are likewise caused by the low resolutions of the figures. They would look
smooth when they are enlarged and shown in figures with higher resolutions (see Fig. 1(a) and (b)
for examples).

The term ∆T2 in Equation (13) depends on the location of S. If we consider a tracking station
on the ground, ∆T2 will show a strong effect caused by the rotation of the Earth, which can reach the
level of about 2 µs with a period of a day (see a similar figure like the sub-figure in the bottom right
corner of fig. 3 in Pan & Xie (2014)). In the calculation, we take the direction of the pole of rotation
and the prime meridian of the Earth from the report of the IAU Working Group on Cartographic
Coordinates and Rotational Elements (Archinal et al. 2011), which is a good enough approximation
for our purposes.

The leading magnitudes of these components are summarized in Table 1.

Table 1 Maximum Contributions of Components in Eq. (38)

Components Level (µs)
∆tL 109

∆tV 104

∆tA 103

∆tS 10

I1 15

σ1 −10

∆T2 2
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Fig. 5 The effects of σ1 caused by different gravitational bodies and the orbiter and its overall
contribution. The black strip in the panel representing Earth is because of the change in position of
the station due to the Earth’s rotation, which makes the curve have a fast oscillation with a period of
a day. All of the “spikes” in some panels are caused by the low resolution. They would look smooth
when they are enlarged and shown in a figure with a higher resolution (see Fig. 1(a) and (b) for
examples).
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Fig. 6 The effects of σ2 caused by different gravitational bodies and the orbiter and its overall
contribution. All of the “spikes” in some panels are caused by the low resolution. They would look
smooth when they are enlarged and shown in a figure with a higher resolution (see Fig. 1(a) and (b)
for examples).
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5 CONCLUSIONS AND DISCUSSION

In this work, we take an Yinghuo-1-like mission as an example and investigate the relativistic al-
gorithm for time transfer between the proper time τ of the onboard clock and TCG, which extends
previous works (Deng 2012; Pan & Xie 2013, 2014) by including the effects of the propagation of
light signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take
an analytic approach to work out their approximate values. The analytic model (see Equation (38))
might be used for an onboard computer because of its limited capability to perform calculations. We
find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes
of the relativistic corrections to the model.
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