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Abstract A singularity free cosmological model is obtained in a hoereous and
isotropic background with a specific form of the Hubble pagganin the presence

of an interacting dark energy represented by a time-vargasgnological constant in
general relativity. Different cases that arose have be&msively studied for differ-
ent values of the curvature parameter. Some interestindtsdsave been found with
this form of the Hubble parameter to meet the possible negjaéilue of the decelera-
tion paramete(—% <g< O) as the current observations reveal. For some particular
values of these parameters, the model reduces to Bermadslmo
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1 INTRODUCTION

Even after the tremendous success of standard cosmolagytdts from the problem of initial sin-
gularity (or the Big Bang), where the physical theory bredgdwn. If we consider the homogeneous
and isotropic Robertson-Walker space-time

dr?
1—Ekr?

ds® = —dt> + R*(1) +r2(d6? + sin® 0 dg?)| 1)

together with the perfect fluid distribution of matter reggated by the energy-momentum tensor
T’zl;/[ = (p+p)UiU; + p gij, ()

where ‘R’ represents the scale factop, the energy density of cosmic matter present in the Universe
and '’ its isotropic pressure, then the Einstein field equations

1 .
R;j — QRZ%J‘ = —Tf}l (with 87G = 1), (3)
yield two independent equations as follows
Rk
P= 35 g )
R R k
P = 25— 75— (5)

R R2 R?
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Here an overdot-) represents an ordinary derivative with respect to onlyndostime ‘t'.
Equations (4) and (5) are two equations with three unknowctions R, p andp. If we assume
the perfect fluid equation of state

p=wp, 0 <w<1, wisaconstant, (6)

then the system becomes closed and completely determiaeeadyttamics of the Universe. If the
matter content in the Universe is considered to be normalemg@t > 0 andp > 0), then we find
that, from Equations (4) and (5) together with Equationt{®,scale factoR becomesero at some
finite time in the past, where the space-time becomes singsfa— oo andp — oco.

While considering the issue of the very early Universe (learsingular point), quantum grav-
itational effects are expected to come into play which mesatidressed by the theory of quantum
gravity. However, as is well known, the full theory of quamtgravity is not available at the present
stage, so we try to solve our problem within the frameworkas$sical general relativity. Our aim in
this paper is to find a non-singular bouncing solution (whschot new to cosmology) by constrain-
ing the Hubble parameteff’ (which regulates the dynamics of the Universe). The bowuoeirs at
some finite (classical) value of the scale factor which magps any quantum contributions. We can
see that the system becomes overdetermined if any extratioon@vhich here we impose on the
Hubble parameter) is assumed. This overdeterminacy caomgensated by introducing another
entity into the field equations, the illustriodark energy(DE). Nowadays, the theory of dark energy
has become very popular and is a well established theory demaosmology, which is responsible
for the current observed accelerating expansion of the dJsé/(Riess et al. 1998; Kowalski et al.
2008; Perlmutter et al. 1999; Amanullah et al. 2010; RubialeR013). In recent years, there has
been a spurt of activity in ascertaining these acceleratiodels which are also supported by a num-
ber of observations such as Tegmark et al. (2004); Seljak €&G05); Wang & Mukherjee (2006);
Bond et al. (1997); Eisenstein et al. (2005); Spergel eRal03, 2007); Komatsu et al. (2009, 2011);
Hinshaw et al. (2009); Ade et al. (2014); Jain & Taylor (2003)

Though not much is known about this mysterious dark energgan be epitomized by a large-
scale scalar fielg. For a scalar field with Lagrangian density= 0,,¢0" $—V (¢), the stress energy
tensor takes the form

TE® = (ps + pe)UsU; + Dy i (7)

with its equation of state in the formy, = wgps, Wherew, is generally a function of time.
Depending upon the dynamics of the fiebdand its potential energy, this produces a number of
candidates for dark energy. As is well known, the simplest mmost preferred candidate of dark
energy is Einstein’s cosmological constanfsupported by a number of cosmological observations)
for whichwg is condensed to the valuel (potential energy represented by a scalar field).

In Einstein’s theory, dark energy can be introduced by samjﬂng[ byT{jf-"tal in Equation (3),
where

T%‘otal = Tgl + Z?E = (pt +pt)UzU7 +pt 9ij (8)

with p, = p + py andp; = p + p,. Now, the modified Einstein field equations are

R2 k

pt:3ﬁ+3ﬁa 9
R R? kK

pe= 2R (10)

The Bianchi identities entail thﬂtgom1 has a vanishing divergence. We believe that the matter en-
ergy and dark energy are interacting naturally, which israd&mental principle (Vishwakarma &
Narlikar 2007). Although there are several candidates &k @nergy (in the literature), we limit
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ourselves in the following to the case of only a cosmologicaistant. It is well known that cosmo-
logical constant\ can also be represented as the inherent energy densitywiivag, = A (as we
have taker8wG = 1) ascending from the zero point energy of quantum fluctuatishich leads to
the widely discussed cosmological constant problem. Hewehis problem is alleviated by consid-
ering a dynamically decaying vacuum energy (AbdussattaistaWakarma 1996 & the references
therein).

Section 2 provides the dynamics of the Universe from the tpbrameter where we have
explained our main ansatz. In Sections 3, 4 and 5, we studg goaperties of our obtained model
for different values of the curvature parameter of FLRW gptime. In Section 6, we discuss the
parameters involved and put constraints on these parasnétehe end, we conclude our results in
Section 7.

2 DYNAMICSOF THE UNIVERSE FROM THE HUBBLE PARAMETER
The observable parameterg™ (Hubble parameter) and;* (deceleration parameter) are defined as
H = R/R, (12)

and

q:—l—l—%(%). (12)

In order to obtain the exact solution of the Einstein field a@ns, an extra condition is needed
for which several authors have considered various formb s8& o« R~2 (Chen & Wu 1990)

A o H, A oc H? (Ali 2013; Arbab 1997)A o ¢~2 (Vishwakarma 2001)R o t™, R oc t" exp(t)
(Banerjee & Das 2006); = constant (Berman 1991; Vishwakarma et al. 1999)= p. (Ozer &
Taha 1987), etc. A phenomenological approach to descréedbmological evolution of decaying
vacuum cosmology/X(¢)CDM) has been studied by Wang and Meng (2005) based on a simple
assumption about the form of the modified matter expansitminaan attempt to unify almost all
the current vacuum decaying models under one umbrella.ikgé@pmind the current picture of an
accelerating and flat Universe, Ray et al. (2007) have censitisome specific dynamical models of
the cosmological term for investigating the nature of darérgy and estimated the present values of
some of the physical parameters which are in good agreenitnthe values suggested by Type la
supernovae data and other experimental data. Recentigptogical models based on the interaction
between dark matter and dark energy appearing in sevefateatit cosmological scenarios have
been pointed out by Barrow and Clifton (2006) which werelfartstudied by Maia et al. (2015).
By constraining the form of the deceleration paramefeasq = — = + (3 — 1), Abdussattar and
Prajapati (2011) obtained a class of non-singular and bogramsmological models wherein the
matter source is considered to be a perfect fluid and an oitegadark energy is represented by a
dynamically decaying cosmological constant in a homoges@mnd isotropic space-time. Berman
(1983) has considered a special form of the Hubble paramtieh leads to a constant deceleration
parametey = m — 1 and obtained a cosmological model with the variatioh gBerman 1991). In
the quest for a negative value of the deceleration parametesistent with observations, along the
same line as that floated by Berman, here in this paper, weopeop specific form of the Hubble

parameter given by
m

H=— 13
i (13)
which is the key ansatz of our paper. Hete> 0, « # 0 andg are parameters. Fat = 1 the model
reduces to the model obtained by Berman. With the foriHf g@fiven by Equation (13), Equation (11)
on integration leads to the time variation of the scale faato

R(t) = Alat 4+ 8) %, (14)
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where A is a constant of integration. Obviously, the diverse valoles: and « will give rise to
different cosmological models. Here, for simplicity we @ origin of the time coordinate at the
bounce of these bouncing models.

It is easy to see from Equation (14) thatat 0, R = Ry # 0 (say, here and subsequently the
suffix ‘zero’ signifies the value of the parameter at time 0). This implies

R=Ryf™ % (at+ )%, (15)

The first and second order derivatives of the scale fatare given by

R= Ry “m(at+B)« ", (16)

and
R = RoB~ “m(m — a)(at + 8) 2, (17)

indicating that initially at timet = 0, we haveR = Ro’; and R = ROW. This shows
that the obtained model is free from initial singularitysa| it starts with a finite acceleration and
finite velocity This is a significant deviation (the Universe starts withnitdi acceleration and zero
velocity) from the result obtained by Abdussattar and Rraja(2011). The deceleration parameter
is obtained using Equations (12) and (13) as

g=-1+2, (18)
m
showing that the deceleration parameter is independeninef and the choice ofv andm will
suggest whether the expansion of the Universe is accelevattecelerated.

With the help of Equations (15), (16) and (17), Equationsf®] (10) give

3m? 3k om 1

= — + ey m oy 19
P+ p? | R (at + B8)*= (19)
mQ2a—3m) k _om 1
_ _Lgpm L 20
b (at + B)* Rﬁﬁ (ot + B)*= (20)
yielding
T LS

From Equation (21) we can see, fgr = % the model would indicate = p. at adequately large
times (for which the pressure of mater= 0). The total active gravitational mass is obtained as

(pt + 3p) R* = 6R36>5m (a —m) (at + B)°= 2, (22)

which is negative, zero or positive in accordance vﬂﬂtrg 1. Equation (19) suggests thattat 0,
pro = BBL; + 3% suggesting that, > Rﬁo fork = —1.
0
The age of the Universe is found to he = (2) H; ' — g and the radius of the Universe is

given byR, = (%) - (Hp‘l) o Ry, where the suffix ‘p’ represents the value at the presenttime
In the following sections, we study some properties of thelehn the early radiation dominated

(RD) era and matter dominated (MD) era for different valukthe curvature parameter.
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3 k=0 (SPATIALLY FLAT UNIVERSE)
3.1 RDPhase(p =p, = %pr)

In the earlypure radiation era the equation of state of matter is assumed tgpbe p, = %pr.
Equations (19) and (20) yield

am

3
Pr = 5m7 (23)
_ 3m(2m —q)
T 3t B o

From Equations (23) and (24), we observe that-at0, we havep,q = 32%’; andp,o = %

suggesting that,o > 0 in the beginning ang,, > 0 unless > 2m. The first order derivatives of
pr andp, (Egs. (23) and (24)) with respect t8 yield

. 3a’m

_ 2
pr (at + 6)3 ) ( 5)
o 3am(2m — «) 26
Py Tt g (26)

From Equations (25) and (26), it follows that and p, are negative showing that and p, are

decreasing functions of time. Furthermore, the> 0 andp, > 0 att = 0 imply thatp, andp, are
initially maximum but rapidly decrease by creating massivenassless particles.
We know the radiation energy density and temperatiijeafe related by the relation

= 7T—QN(T)T‘* (27)
Pr = 30 )
in units withkg = ¢ = h = 1. At temperaturd’, the effective number of spin degrees of freedom
N(T)is given byN (T') = IN¢(T) + Ny(T), whereN;(T') and N, (T') correspond to fermions and
bosons respectively. We assuivéT’) to be constant throughout this era. From Equations (23) and

(27) we obtain
45 \ 7
(=)

1 1
showing that at = 0 we havel, = (;g}v) 4 [%—T} ! implying that the radiation temperature is also

constant and is initially maximum.

am
(at + 5)2

(28)

3.2 MDPhasep = p,, = 0, p = pm

In the preseninatter dominated erghe matter pressure is negligible, ige= p,, ~ 0 andp = py,.
Equations (19) and (20) give
2am

Pm = ma (29)

_ m(3m — 2a)

(at + ) (30)
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Ast — oo, pn — 0 andp, — 0. Equations (29) and (30) can be written in terms of the Hubble
parameter as

2
o = (22) 12, (31
2c 9
Pvp = 3— R Hp . (32)

4 k=1 (NON-FLAT CLOSED UNIVERSE)
4.1 RD Phase(p =p, = %pr)

In this phase of evolution of the Universe, the radiation eacuum energy densities are obtained
from Equations (19) and (20) as

3 oam 1 om 1
_3 Lgom T 33
772 | (at+ 8) " Rﬁﬁ (ot + 6)231 59)
_ 3 m@2m—-a) 1 pm 1 34
Py 2 (at-i—ﬁ)2 R3 (at—l—ﬁ)z%] . 59

m(2m—a)

_ _ 3 |am 1 _ 3 1 H H
At ¢ = 0, we havep,g =2 [W + R_g] an-d pvo = 5{ s T R_g}- Differentiating
Equations (33) and (34) with respectttave obtain

. 302m 1 om 3m

pr=———3 b = (35)
(at+6)° Ry (at+p)°s!

. 3am(2m — « 1 m 3m

Py = BomZm ) — B (36)

(at+8)° B (at+p)*eT

Equations (35) and (36) show that andp, are negative, implying that, andp, are decreasing
functions of time. Alsg, > 0 andp, > 0 att = 0, implying thatp, andp, are initially maximum.
The radiation temperatur&’ in this case is obtained from Equations (27) and (33) as

1
45 \1
T =
(=)

1 1
At ¢t = 0, Equation (37) yielddp = (3% )" [%—T} * which is the maximum value df. We have
herek = 1, i.e. the Universe is geometrically closed. So, it is pdsdibdetermine the time= ..,
when the whole Universe becomes causally connected.ands given by

am

(at + B)

1 om 1 !
Y - R 37
2 Rgﬁ (ozt—i—ﬁ)zgl (37)

tcau 1
/ gt _ / _& T (38)
o R o VI—r2 2
Using Equation (15), we obtain
tcau
/ Lﬂ = ZRop %, (39)
0 (at+ 5)= 2
which on integration yields
1 e _m a—m ﬁ ﬁ
tean = ~ |3 RB™% (@ —m) + #5577 — £ (40)

We find that the global causality is established at ¢.,, and supplying some particular values of
m, o and, we can determing.,,, from Equation (40).
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4.2 MD Phase (p = pm =~ 0, p = pm)

In this phase of evolution of the Universe, we have

2am 2 om 1
B P e — 41
’ (at + B)* " Réﬁ (ot + 5)231 (1)
_ m@Bm—2a) 1 om 1 42
Py [ (at + 3)° - Rﬁﬁ (at+5)2%1 ' “2

Ast — oo, pn, — 0 andp, — 0. Equations (41) and (42) can be written in terms of the Hubble
parameter as

20\ o, 2 (B e 2m
Pmp = (R) Hy + 72 (E) Hy =, (43)
2a\ .o 1 [(B\°% am
pvp = 3 — E Hp + R_% E Hp . (44)

5 k= —1(NON-FLAT OPEN UNIVERSE)
5.1 RD Phase(p = p, = %pr)

Here, the radiation and vacuum energy densities are olbtame

3 am 1 om 1
S L L — 45
T2 (e p)? RS (at-l—ﬁ)z"‘] o

3m2m—a) 1 om 1
B B e . — 46
T2 s R (at+5)%] o
At ¢t = 0, Equations (45) and (46) yield
3 | am 1

Pro = B {F - R_%} ) (47)

3 [m2m—-—a) 1
po = {752 - Rg] | (48)

Equation (47) suggests thgjt; < RZ.If % = R2, we getp,q = 0. From Equations (45) and (46),
we observe that

1 /8% 1 7n‘io¢ 6
> >

=0 for t= — —

Pr< oty L/amRo]

o
and .
1 B I
> >
v=0 for tZ — | —m—m—m—m—=— - —.
P < <« L/m(?m—a) Ry a

The differentiation of (45) and (46) with respect to cosnmod ‘¢’ yields

3a?m 1 om 3m (49)

T Tt g Il (at + 8251
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_ 3am(2m—a) 1 om 3m (50)
v (at+8)° BT (at+ )T
. 1 B% 1 ﬁ B . 1 ﬁ% 1 m—a
p, becomes zero at= {T R—O] — =, Alsop, becomes zero at= - [mm} -

g. At these pointg, andp, are maximum.
In this case, the radiation temperaturg (s obtained from Equations (27) and (45) as

1
4

1
45 \* am 1 om 1
T = Sy 2 . — 51
<7r2N) (at + B)° 73" (at+5)%] &Y
1
From Equation (51), at= 0, we havel, = (W%f;\[)i [%—T - Rig] !
5.2 MD Phase (p = pm = 0, p = pm)
In this phase of evolution of the Universe, we have
2am 2 om 1
Pm = - 59 « m ) (52)
(at+8)°> R (at+p)*" ]
m(3m — 2« 1 om 1
Pv = (72)_ﬁ62a72ﬂ . (53)
(at + ) 0 (at+p)7e

Ast — oo, pr, — 0 andp, — 0. Equations (52) and (53) can be written in terms of the Hubble
parameter as

_ (22 22 (D e 2%
Pmp = (E) Hp - R_(QJ (E) Hp ’ (54)
2a\ .o 1 [(B\°% am

The evolution of the Universe in our obtained model compnsively depends on the choice of
the parameters, m and /. In the following section we discuss the consequences ofltoece of
these parameters m andg.

6 THE PARAMETERSAND THE MODEL
From Equation (12), we observe that for

o =m, we havey = 0 (Expanding Universe without acceleration).
a < m, we havey < 0 (Accelerated expansion of the Universe).
a > m, we havey > 0 (Decelerated expansion of the Universe).

A statistical observation is given in the following Tabledt #ifferent values ofv andm, giving
rise to different models.

For the best fit value of the deceleration parameter as stegbey the observations,% <g<
0, we must hav% < & < 0.From Table 1, we see that for a model consistent with thergagens,
we should havé.5 < o < 3and2.5 < m < 4. The value of3 should be constrained according to
the curvature parameter. These values ahdm produce some interesting models with< g < 2,
if the curvature parameter is= 0 or k = 1, but are incompatible wittk = —1 for higher values
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Table 1 Comparison of Different Models for Different Values af‘and ‘m’

Parameter Exemplification q H R
a=1m=1 ﬁ RoB~ 1 (t+8)
a=m a=2,m="2 0 54D RoB~t (2t + )
a=3m=23 St}kﬁ R()671 (3t+6)
a=1,m=2 —% % Roﬁii(t‘f‘ﬁ)zg
a<m a=2,m=3 -3 s RoB™2 (2t +B)2
_4 4
a=3m=4 _% :stiﬁ Rof~3 (3t + B)3
1 1
a=2,m=1 1 Qtiﬁ R()B*i (2t+6)§
a>m a=3m=2 % Btiﬁ RoB™3 (3t+ )3
_3 3
a=4,m=3 3 4t3+5 RoB™ 7 (4t + B)1

of 8 within this range as is clear from Equations (45) and (46)héf present value of the Hubble
parameter is considered to b5, = 72 km s~! Mpc~!, then Equations (54) and (55) suggest that
the value ofg should be in the range < 3 < 0.624.

With a suitable choice o in this range = 0.2, and takingy = 2 andm = 3, we may obtain
the following (with H,, = 72 km s~! Mpc™1):

Age of the Universét,,) ~ 6 x 1017 s; Radius of the UniversgR,,) ~ 1.7 x 10%® Ry; the energy
densities obtained are given in Table 2.

Table 2 Present Values of Matter and Vacuum Energy Densities

BrG =1)
Curvature Parameter  Matter energy density  Vacuum enenggitgie
(10730 572)
k=0 ~~ 7.2594317 =~ 9.0742895
k=1 ~~ 7.2600242 ~ 9.074882
k=-1 ~ 7.2588392 ~ 9.0736970

7 CONCLUSIONS

In this paper we have obtained a class of non-singular anddiog FLRW cosmological models
wherein the matter source is supplied by a perfect fluid anidtaracting dark energy is represented
by a dynamically decaying cosmological constant by coirstrg the form of the Hubble parameter.
Here, we have freedom associated with the parameters gdvaév obtain a suitable model of the
Universe consistent with observations. For some specificegeof these parameters we have ob-
tained the age and radius of the Universe which are slighégtgr than the age and radius obtained
in the standard model. In all the three cases of the curvgmmr@meters, the present values of the
matter and vacuum energy densities are almost the same. dthel I8 a simple generalization of
the model obtained by Berman (1983).
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