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Abstract A singularity free cosmological model is obtained in a homogeneous and
isotropic background with a specific form of the Hubble parameter in the presence
of an interacting dark energy represented by a time-varyingcosmological constant in
general relativity. Different cases that arose have been extensively studied for differ-
ent values of the curvature parameter. Some interesting results have been found with
this form of the Hubble parameter to meet the possible negative value of the decelera-
tion parameter

(

− 1
3 6 q < 0

)

as the current observations reveal. For some particular
values of these parameters, the model reduces to Berman’s model.
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1 INTRODUCTION

Even after the tremendous success of standard cosmology, itsuffers from the problem of initial sin-
gularity (or the Big Bang), where the physical theory breaksdown. If we consider the homogeneous
and isotropic Robertson-Walker space-time

ds2 = −dt2 + R2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

, (1)

together with the perfect fluid distribution of matter represented by the energy-momentum tensor

T M
ij = (ρ + p)UiUj + p gij , (2)

where ‘R’ represents the scale factor, ‘ρ’ the energy density of cosmic matter present in the Universe
and ‘p’ its isotropic pressure, then the Einstein field equations

Rij −
1

2
Rk

kgij = −T M
ij (with 8πG = 1), (3)

yield two independent equations as follows

ρ = 3
Ṙ2

R2
+ 3

k

R2
, (4)

p = −2
R̈

R
− Ṙ2

R2
− k

R2
. (5)
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Here an overdot (·) represents an ordinary derivative with respect to only cosmic time ‘t’.
Equations (4) and (5) are two equations with three unknown functionsR, ρ andp. If we assume
the perfect fluid equation of state

p = wρ, 0 ≤ w ≤ 1, w is a constant, (6)

then the system becomes closed and completely determines the dynamics of the Universe. If the
matter content in the Universe is considered to be normal matter (ρ > 0 andp > 0), then we find
that, from Equations (4) and (5) together with Equation (6),the scale factorR becomeszero at some
finite time in the past, where the space-time becomes singular asρ → ∞ andp → ∞.

While considering the issue of the very early Universe (nearthe singular point), quantum grav-
itational effects are expected to come into play which must be addressed by the theory of quantum
gravity. However, as is well known, the full theory of quantum gravity is not available at the present
stage, so we try to solve our problem within the framework of classical general relativity. Our aim in
this paper is to find a non-singular bouncing solution (whichis not new to cosmology) by constrain-
ing the Hubble parameter ‘H ’ (which regulates the dynamics of the Universe). The bounceoccurs at
some finite (classical) value of the scale factor which may escape any quantum contributions. We can
see that the system becomes overdetermined if any extra condition (which here we impose on the
Hubble parameter) is assumed. This overdeterminacy can be compensated by introducing another
entity into the field equations, the illustriousdark energy(DE). Nowadays, the theory of dark energy
has become very popular and is a well established theory in modern cosmology, which is responsible
for the current observed accelerating expansion of the Universe (Riess et al. 1998; Kowalski et al.
2008; Perlmutter et al. 1999; Amanullah et al. 2010; Rubin etal. 2013). In recent years, there has
been a spurt of activity in ascertaining these acceleratingmodels which are also supported by a num-
ber of observations such as Tegmark et al. (2004); Seljak et al. (2005); Wang & Mukherjee (2006);
Bond et al. (1997); Eisenstein et al. (2005); Spergel et al. (2003, 2007); Komatsu et al. (2009, 2011);
Hinshaw et al. (2009); Ade et al. (2014); Jain & Taylor (2003).

Though not much is known about this mysterious dark energy, it can be epitomized by a large-
scale scalar fieldφ. For a scalar field with Lagrangian densityL = ∂µφ∂µφ−V (φ), the stress energy
tensor takes the form

T DE
ij = (ρφ + pφ)UiUj + pφ gij (7)

with its equation of state in the formpφ = wφρφ, wherewφ is generally a function of time.
Depending upon the dynamics of the fieldφ and its potential energy, this produces a number of
candidates for dark energy. As is well known, the simplest and most preferred candidate of dark
energy is Einstein’s cosmological constantΛ (supported by a number of cosmological observations)
for whichwφ is condensed to the value−1 (potential energy represented by a scalar field).

In Einstein’s theory, dark energy can be introduced by supplantingT M
ij byT Total

ij in Equation (3),
where

T Total
ij = T M

ij + T DE
ij = (ρt + pt)UiUj + pt gij (8)

with ρt = ρ + ρφ andpt = p + pφ. Now, the modified Einstein field equations are

ρt = 3
Ṙ2

R2
+ 3

k

R2
, (9)

pt = −2
R̈

R
− Ṙ2

R2
− k

R2
. (10)

The Bianchi identities entail thatT Total
ij has a vanishing divergence. We believe that the matter en-

ergy and dark energy are interacting naturally, which is a fundamental principle (Vishwakarma &
Narlikar 2007). Although there are several candidates for dark energy (in the literature), we limit
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ourselves in the following to the case of only a cosmologicalconstant. It is well known that cosmo-
logical constantΛ can also be represented as the inherent energy density of vacuumρv = Λ (as we
have taken8πG = 1) ascending from the zero point energy of quantum fluctuations which leads to
the widely discussed cosmological constant problem. However, this problem is alleviated by consid-
ering a dynamically decaying vacuum energy (Abdussattar & Vishwakarma 1996 & the references
therein).

Section 2 provides the dynamics of the Universe from the Hubble parameter where we have
explained our main ansatz. In Sections 3, 4 and 5, we study some properties of our obtained model
for different values of the curvature parameter of FLRW space-time. In Section 6, we discuss the
parameters involved and put constraints on these parameters. At the end, we conclude our results in
Section 7.

2 DYNAMICS OF THE UNIVERSE FROM THE HUBBLE PARAMETER

The observable parameters ‘H ’ (Hubble parameter) and ‘q’ (deceleration parameter) are defined as

H = Ṙ/R, (11)

and

q = −1 +
d

dt

(

1

H

)

. (12)

In order to obtain the exact solution of the Einstein field equations, an extra condition is needed
for which several authors have considered various forms such asΛ ∝ R−2 (Chen & Wu 1990),
Λ ∝ H, Λ ∝ H2 (Ali 2013; Arbab 1997), Λ ∝ t−2 (Vishwakarma 2001), R ∝ tn, R ∝ tn exp(t)
(Banerjee & Das 2006),q = constant (Berman 1991; Vishwakarma et al. 1999),ρ = ρc (Özer &
Taha 1987), etc. A phenomenological approach to describe the cosmological evolution of decaying
vacuum cosmology (Λ(t)CDM) has been studied by Wang and Meng (2005) based on a simple
assumption about the form of the modified matter expansion rate in an attempt to unify almost all
the current vacuum decaying models under one umbrella. Keeping in mind the current picture of an
accelerating and flat Universe, Ray et al. (2007) have considered some specific dynamical models of
the cosmological term for investigating the nature of dark energy and estimated the present values of
some of the physical parameters which are in good agreement with the values suggested by Type Ia
supernovae data and other experimental data. Recently, cosmological models based on the interaction
between dark matter and dark energy appearing in several different cosmological scenarios have
been pointed out by Barrow and Clifton (2006) which were further studied by Maia et al. (2015).
By constraining the form of the deceleration parameter ‘q’ as q = − α

t2
+ (β − 1), Abdussattar and

Prajapati (2011) obtained a class of non-singular and bouncing cosmological models wherein the
matter source is considered to be a perfect fluid and an interacting dark energy is represented by a
dynamically decaying cosmological constant in a homogeneous and isotropic space-time. Berman
(1983) has considered a special form of the Hubble parameterwhich leads to a constant deceleration
parameterq = m− 1 and obtained a cosmological model with the variation ofΛ (Berman 1991). In
the quest for a negative value of the deceleration parameterconsistent with observations, along the
same line as that floated by Berman, here in this paper, we propose a specific form of the Hubble
parameter given by

H =
m

αt + β
, (13)

which is the key ansatz of our paper. Herem > 0, α 6= 0 andβ are parameters. Form = 1 the model
reduces to the model obtained by Berman. With the form ofH given by Equation (13), Equation (11)
on integration leads to the time variation of the scale factor as

R(t) = A(αt + β)
m

α , (14)
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whereA is a constant of integration. Obviously, the diverse valuesof m andα will give rise to
different cosmological models. Here, for simplicity we setthe origin of the time coordinate at the
bounce of these bouncing models.

It is easy to see from Equation (14) that att = 0, R = R0 6= 0 (say, here and subsequently the
suffix ‘zero’ signifies the value of the parameter at timet = 0). This implies

R = R0β
−

m

α (αt + β)
m

α . (15)

The first and second order derivatives of the scale factorR are given by

·

R = R0β
−

m

α m(αt + β)
m

α
−1, (16)

and
··

R = R0β
−

m

α m(m − α)(αt + β)
m

α
−2, (17)

indicating that initially at timet = 0, we have
·

R = R0
m
β

and
··

R = R0
m(m−α)

β2 . This shows
that the obtained model is free from initial singularity. Also, it starts with a finite acceleration and
finite velocity. This is a significant deviation (the Universe starts with a finite acceleration and zero
velocity) from the result obtained by Abdussattar and Prajapati (2011). The deceleration parameter
is obtained using Equations (12) and (13) as

q = −1 +
α

m
, (18)

showing that the deceleration parameter is independent of time and the choice ofα and m will
suggest whether the expansion of the Universe is accelerated or decelerated.

With the help of Equations (15), (16) and (17), Equations (9)and (10) give

ρt =
3m2

(αt + β)
2 +

3k

R2
0

β2 m

α

1

(αt + β)
2 m

α

, (19)

pt =
m (2α − 3m)

(αt + β)
2 − k

R2
0

β2 m

α

1

(αt + β)
2 m

α

, (20)

yielding

ρt + pt =
2α

3m

(

3H2
)

+
2k

R2
0

β2 m

α

1

(αt + β)
2 m

α

. (21)

From Equation (21) we can see, forα
m

= 3
2 , the model would indicateρ = ρc at adequately large

times (for which the pressure of matterp = 0). The total active gravitational mass is obtained as

(ρt + 3pt)R3 = 6R3
0β

−3 m

α m (α − m) (αt + β)
3 m

α
−2

, (22)

which is negative, zero or positive in accordance withα
m

⋚ 1. Equation (19) suggests that att = 0,

ρt0 = 3m2

β2 + 3k
R2

0

suggesting thatm > β
R0

for k = −1.

The age of the Universe is found to betp =
(

m
α

)

H−1
p − β

α
and the radius of the Universe is

given byRp =
(

m
β

)
m

α
(

H−1
p

)
m

α R0, where the suffix ‘p’ represents the value at the present time.

In the following sections, we study some properties of the model in the early radiation dominated
(RD) era and matter dominated (MD) era for different values of the curvature parameter.



A Singularity Free Cosmological Model in General Relativity 2145

3 k = 0 (SPATIALLY FLAT UNIVERSE)

3.1 RD Phase (p = pr = 1
3ρr)

In the earlypure radiation era, the equation of state of matter is assumed to bep = pr = 1
3ρr.

Equations (19) and (20) yield

ρr =
3

2

αm

(αt + β)2
, (23)

ρv =
3

2

m(2m − α)

(αt + β)
2 . (24)

From Equations (23) and (24), we observe that att = 0, we haveρr0 = 3αm
2β2 andρv0 = 3m(2m−α)

2β2

suggesting thatρr0 > 0 in the beginning andρv0 > 0 unlessα > 2m. The first order derivatives of
ρr andρv (Eqs. (23) and (24)) with respect to ‘t’ yield

·

ρr = − 3α2m

(αt + β)
3 , (25)

·

ρv = −3αm(2m − α)

(αt + β)
3 . (26)

From Equations (25) and (26), it follows that
·

ρr and
·

ρv are negative showing thatρr andρv are

decreasing functions of time. Furthermore, the
··

ρr > 0 and
··

ρv > 0 at t = 0 imply thatρr andρv are
initially maximum but rapidly decrease by creating massiveor massless particles.

We know the radiation energy density and temperature (T ) are related by the relation

ρr =
π2

30
N(T )T 4 , (27)

in units withkB = c = ℏ = 1. At temperatureT , the effective number of spin degrees of freedom
N(T ) is given byN(T ) = 7

8Nf(T )+ Nb(T ), whereNf(T ) andNb(T ) correspond to fermions and
bosons respectively. We assumeN(T ) to be constant throughout this era. From Equations (23) and
(27) we obtain

T =

(

45

π2N

)
1

4

[

αm

(αt + β)
2

]
1

4

, (28)

showing that att = 0 we haveT0 =
(

45
π2N

)
1

4

[

αm
β2

]
1

4

implying that the radiation temperature is also

constant and is initially maximum.

3.2 MD Phase p = pm ≈ 0, ρ = ρm

In the presentmatter dominated era, the matter pressure is negligible, i.e.p = pm ≈ 0 andρ = ρm.
Equations (19) and (20) give

ρm =
2αm

(αt + β)
2 , (29)

ρv =
m(3m − 2α)

(αt + β)
2 . (30)
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As t → ∞, ρm → 0 andρv → 0. Equations (29) and (30) can be written in terms of the Hubble
parameter as

ρmp =

(

2α

m

)

H2
p , (31)

ρvp =

(

3 − 2α

m

)

H2
p . (32)

4 k = 1 (NON-FLAT CLOSED UNIVERSE)

4.1 RD Phase (p = pr = 1
3ρr)

In this phase of evolution of the Universe, the radiation andvacuum energy densities are obtained
from Equations (19) and (20) as

ρr =
3

2

[

αm

(αt + β)
2 +

1

R2
0

β2 m

α

1

(αt + β)
2 m

α

]

, (33)

ρv =
3

2

[

m(2m − α)

(αt + β)
2 +

1

R2
0

β2 m

α

1

(αt + β)
2 m

α

]

. (34)

At t = 0, we haveρr0 = 3
2

[

αm
β2 + 1

R2

0

]

and ρv0 = 3
2

[

m(2m−α)
β2 + 1

R2

0

]

. Differentiating

Equations (33) and (34) with respect tot, we obtain

·

ρr = − 3α2m

(αt + β)
3 − 1

R2
0

β2 m

α

3m

(αt + β)
2 m

α
+1

, (35)

·

ρv = −3αm(2m− α)

(αt + β)
3 − 1

R2
0

β2 m

α

3m

(αt + β)
2 m

α
+1

. (36)

Equations (35) and (36) show that
·

ρr and
·

ρv are negative, implying thatρr andρv are decreasing

functions of time. Also
··

ρr > 0 and
··

ρv > 0 at t = 0, implying thatρr andρv are initially maximum.
The radiation temperature (T ) in this case is obtained from Equations (27) and (33) as

T =

(

45

π2N

)
1

4

[

αm

(αt + β)2
+

1

R2
0

β2 m

α

1

(αt + β)
2 m

α

]
1

4

. (37)

At t = 0, Equation (37) yieldsT0 =
(

45
π2N

)
1

4

[

αm
β2

]
1

4

which is the maximum value ofT . We have

herek = 1, i.e. the Universe is geometrically closed. So, it is possible to determine the timet = tcau
when the whole Universe becomes causally connected andtcau is given by

∫ tcau

0

dt

R(t)
=

∫ 1

0

dr√
1 − r2

=
π

2
. (38)

Using Equation (15), we obtain
∫ tcau

0

dt

(αt + β)
m

α

=
π

2
R0β

−
m

α , (39)

which on integration yields

tcau =
1

α

[π

2
R0β

−
m

α (α − m) + β
α−m

α

]
α

α−m − β

α
. (40)

We find that the global causality is established att = tcau and supplying some particular values of
m, α andβ, we can determinetcau from Equation (40).
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4.2 MD Phase (p = pm ≈ 0, ρ = ρm)

In this phase of evolution of the Universe, we have

ρm =

[

2αm

(αt + β)2
+

2

R2
0

β2 m

α

1

(αt + β)
2 m

α

]

, (41)

ρv =

[

m(3m − 2α)

(αt + β)
2 +

1

R2
0

β2 m

α

1

(αt + β)
2 m

α

]

. (42)

As t → ∞, ρm → 0 andρv → 0. Equations (41) and (42) can be written in terms of the Hubble
parameter as

ρmp =

(

2α

m

)

H2
p +

2

R2
0

(

β

m

)2 m

α

H
2 m

α

p , (43)

ρvp =

(

3 − 2α

m

)

H2
p +

1

R2
0

(

β

m

)2 m

α

H
2 m

α

p . (44)

5 k = −1 (NON-FLAT OPEN UNIVERSE)

5.1 RD Phase (p = pr = 1
3ρr)

Here, the radiation and vacuum energy densities are obtained as

ρr =
3

2

[

αm

(αt + β)
2 − 1

R2
0

β2 m

α

1

(αt + β)
2 m

α

]

, (45)

ρv =
3

2

[

m(2m − α)

(αt + β)
2 − 1

R2
0

β2 m

α

1

(αt + β)2
m

α

]

. (46)

At t = 0, Equations (45) and (46) yield

ρr0 =
3

2

[

αm

β2
− 1

R2
0

]

, (47)

ρv0 =
3

2

[

m(2m − α)

β2
− 1

R2
0

]

. (48)

Equation (47) suggests thatβ2

αm
< R2

0. If β2

αm
= R2

0, we getρr0 = 0. From Equations (45) and (46),
we observe that

ρr R 0 for t R
1

α

[

β
m

α

√
αm

1

R0

]

α

m−α

− β

α

and

ρv R 0 for t R
1

α

[

β
m

α

√

m(2m − α)

1

R0

]
α

m−α

− β

α
.

The differentiation of (45) and (46) with respect to cosmic time ‘t’ yields

·

ρr = − 3α2m

(αt + β)
3 +

1

R2
0

β2 m

α

3m

(αt + β)
2 m

α
+1

, (49)
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·

ρv = −3αm(2m − α)

(αt + β)
3 +

1

R2
0

β2 m

α

3m

(αt + β)
2 m

α
+1

. (50)

·

ρr becomes zero att = 1
α

[

β
m

α

α
1

R0

]

α

m−α − β
α

. Also
·

ρv becomes zero att = 1
α

[

β
m

α√
α(2m−α)

1
R0

]
α

m−α

−
β
α

. At these pointsρr andρv are maximum.
In this case, the radiation temperature (T ) is obtained from Equations (27) and (45) as

T =

(

45

π2N

)
1

4

[

αm

(αt + β)
2 − 1

R2
0

β2 m

α

1

(αt + β)2
m

α

]
1

4

. (51)

From Equation (51), att = 0, we haveT0 =
(

45
π2N

)
1

4

[

αm
β2 − 1

R2

0

]
1

4

.

5.2 MD Phase (p = pm ≈ 0, ρ = ρm)

In this phase of evolution of the Universe, we have

ρm =

[

2αm

(αt + β)2
− 2

R2
0

β2 m

α

1

(αt + β)
2 m

α

]

, (52)

ρv =

[

m(3m − 2α)

(αt + β)
2 − 1

R2
0

β2 m

α

1

(αt + β)2
m

α

]

. (53)

As t → ∞, ρm → 0 andρv → 0. Equations (52) and (53) can be written in terms of the Hubble
parameter as

ρmp =

(

2α

m

)

H2
p − 2

R2
0

(

β

m

)2 m

α

H
2 m

α

p , (54)

ρvp =

(

3 − 2α

m

)

H2
p − 1

R2
0

(

β

m

)2 m

α

H
2 m

α

p . (55)

The evolution of the Universe in our obtained model comprehensively depends on the choice of
the parametersα, m andβ. In the following section we discuss the consequences of thechoice of
these parametersα, m andβ.

6 THE PARAMETERS AND THE MODEL

From Equation (12), we observe that for

α = m, we haveq = 0 (Expanding Universe without acceleration).
α < m, we haveq < 0 (Accelerated expansion of the Universe).
α > m, we haveq > 0 (Decelerated expansion of the Universe).

A statistical observation is given in the following Table 1 for different values ofα andm, giving
rise to different models.

For the best fit value of the deceleration parameter as suggested by the observations,− 1
3 6 q <

0, we must have23 6 α
m

< 0. From Table 1, we see that for a model consistent with the observations,
we should have1.5 ≤ α ≤ 3 and2.5 ≤ m ≤ 4. The value ofβ should be constrained according to
the curvature parameter. These values ofα andm produce some interesting models with0 < β < 2,
if the curvature parameter isk = 0 or k = 1, but are incompatible withk = −1 for higher values
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Table 1 Comparison of Different Models for Different Values of ‘α’ and ‘m’

Parameter Exemplification q H R

α = m

α = 1, m = 1

α = 2, m = 2

α = 3, m = 3

0

1

t+β

2

2t+β

1

3t+β

R0β−1 (t + β)

R0β−1 (2t + β)

R0β−1 (3t + β)

α < m

α = 1, m = 2

α = 2, m = 3

α = 3, m = 4

−
1

2

−
1

3

−
1

4

2

t+β

3

2t+β

4

3t+β

R0β−2 (t + β)2

R0β−

3

2 (2t + β)
3

2

R0β−

4

3 (3t + β)
4

3

α > m

α = 2, m = 1

α = 3, m = 2

α = 4, m = 3

1
1

2

1

3

1

2t+β

2

3t+β

3

4t+β

R0β−

1

2 (2t + β)
1

2

R0β−

2

3 (3t + β)
2

3

R0β−

3

4 (4t + β)
3

4

of β within this range as is clear from Equations (45) and (46). Ifthe present value of the Hubble
parameter is considered to beHp = 72 km s−1 Mpc−1, then Equations (54) and (55) suggest that
the value ofβ should be in the range0 < β < 0.624.

With a suitable choice ofβ in this range,β = 0.2, and takingα = 2 andm = 3, we may obtain
the following (withHp = 72 km s−1 Mpc−1):

Age of the Universe(tp) ≈ 6×1017 s; Radius of the Universe(Rp) ≈ 1.7×1028 R0; the energy
densities obtained are given in Table 2.

Table 2 Present Values of Matter and Vacuum Energy Densities
(8πG = 1)

Curvature Parameter Matter energy density Vacuum energy density

(10−30 s−2)

k = 0 ≈ 7.2594317 ≈ 9.0742895

k = 1 ≈ 7.2600242 ≈ 9.074882

k = −1 ≈ 7.2588392 ≈ 9.0736970

7 CONCLUSIONS

In this paper we have obtained a class of non-singular and bouncing FLRW cosmological models
wherein the matter source is supplied by a perfect fluid and aninteracting dark energy is represented
by a dynamically decaying cosmological constant by constraining the form of the Hubble parameter.
Here, we have freedom associated with the parameters involved to obtain a suitable model of the
Universe consistent with observations. For some specific values of these parameters we have ob-
tained the age and radius of the Universe which are slightly greater than the age and radius obtained
in the standard model. In all the three cases of the curvatureparameters, the present values of the
matter and vacuum energy densities are almost the same. The model is a simple generalization of
the model obtained by Berman (1983).
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Spergel, D. N., Bean, R., Doré, O., et al. 2007, ApJS, 170, 377
Tegmark, M., Strauss, M. A., Blanton, M. R., et al. 2004, Phys. Rev. D, 69, 103501
Vishwakarma, R. G., Abdussattar, & Beesham, A. 1999, Phys. Rev. D, 60, 063507
Vishwakarma, R. G. 2001, Classical and Quantum Gravity, 18,1159
Vishwakarma, R. G., & Narlikar, J. V. 2007, Journal of Astrophysics and Astronomy, 28, 17
Wang, P., & Meng, X.-H. 2005, Classical and Quantum Gravity,22, 283
Wang, Y., & Mukherjee, P. 2006, ApJ, 650, 1


