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Abstract We investigate the effects of a global magnetic field on the dynamics of
an ensemble of clumps within a magnetized advection-dominated accretion flow by
ignoring interactions between the clumps and then solving the collisionless Boltzman
equation. In the strong-coupling limit, in which the averaged radial and rotational
velocities of the clumps follow dynamics described by an Advection-Dominated
Accretion Flow (ADAF), the root mean square radial velocityof the clumps is cal-
culated analytically for different magnetic field configurations. The value of the root
mean square radial velocity of the clumps increases by increasing the strength of the
radial or vertical components of the magnetic field, but a purely toroidal magnetic field
geometry leads to a reduction in the value of the root mean square radial velocity of
the clumps in the inner parts by increasing the strength of this component. Moreover,
dynamics of the clumps strongly depend on the amount of advected energy so that the
value of the root mean square radial velocity of the clumps increases in the presence
of a global magnetic field as the flow becomes more advective.
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1 INTRODUCTION

Accretion processes have been extensively studied during recent decades and several types of ac-
cretion models have been proposed to explain certain observational features of some astrophysical
objects that display this behavior. Most of the models assume that the accretion process can be de-
scribed as a one-component gaseous fluid. However, there arestrong observational and theoretical
arguments which imply that at least some of the accreting systems are clumpy so that they consist
of cool clumps embedded in a much hotter and more tenuous gaseous fluid. For example, obser-
vational evidence shows that the broad-line region (BLR) ofactive galactic nuclei (AGNs) has a
clumpy structure (Rees 1987; Krolik & Begelman 1988; Nenkova et al. 2002; Risaliti et al. 2011;
Torricelli-Ciamponi et al. 2014). The broad emission linesin the spectrum of AGNs are attributed
to an assembly of clouds which are moving through a hot intercloud medium. The basic properties
of clouds are estimated according to photoionization models. These models predict that the typical
size of these clouds is1012±1cm and their number density is1010±1cm−3 (e.g., Rees 1987; Krause
et al. 2012). Orbital motion of clouds in the BLR is a rich source of information for estimating the
mass of the central black hole (e.g., Netzer & Marziani 2010). One can ignore collisions between
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the clumps and investigate the orbit of an individual clump in the presence of a central gravitational
force and possible radiation field like a two-body classicalproblem (e.g., Netzer & Marziani 2010;
Krause et al. 2011, 2012; Plewa et al. 2013; Khajenabi 2015).Although there are theoretical concerns
about the stability of the clumps, it is generally believed that magnetic fields provide a confinement
mechanism (e.g., Rees 1987).

Another approach for studying dynamics of the clumps embedded in a hot medium is based on
analyzing the collisionless Boltzmann equation as was doneby Wang et al. (2012, hereafter WCL).
They described the gaseous ambient medium using the classical similarity solutions of Advection-
Dominated Accretion Flows (ADAFs) presented by Narayan & Yi(1994) for non-magnetized sys-
tems. Although collisions between the clumps have been ignored for simplicity, their interactions
with the surrounding gaseous medium were included through adrag force as a function of the rela-
tive velocity of the clumps and the gas. In the strong-coupling limit, it was shown that the root mean
square radial velocity of the clumps is much larger than radial velocity of the gas flow. Their analysis
has been extended to the magnetized case by Khajenabi et al. (2014) where the authors considered a
purely toroidal magnetic field geometry for the gaseous component. They found that when magnetic
pressure is less than the gas pressure, the averaged radial velocity of clumps decreases at the inner
regions of the system whereas it increases at the outer parts, though this enhancement is not very
significant unless the system becomes magnetically dominated.

In this work, we extend the analysis by Khajenabi et al. (2014) to include allthree components of
the magnetic field in the gaseous component. Since properties of the gas flow are significantly mod-
ified in the presence of a global magnetic field (Zhang & Dai 2008), the drag force varies depending
on the strength of the magnetic field and the assumed magneticgeometry which will eventually lead
to a considerable modification in the velocity dispersion ofclumps. In the next section, we present
our basic assumptions and the equations. In Section 3, a parameter study on the dynamics of the
clumps is presented. We conclude with a summary of the results in Section 4.

2 GENERAL FORMULATION

Our analysis for describing an ensemble of clumps is based onthe WCL approach which implements
the collisionless Boltzman equation in cylindrical coordinates(r, φ, z) including the components
of the drag force. If we assume the distribution function of clumps is represented byF , then the
Boltzman equation is written as
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whereṙ = vr, φ̇ = vφ/r and ż = vz . The central object with massM is at the origin and the
gravitational potential becomesΦ = GM/(r2 + z2)1/2. The components of the drag force are
Fr = fr(vr − Vr)

2 andFφ = fφ(vφ − Vφ)2 wherefr andfφ are constants of order unity. Here,
the radial and rotational velocities of the ADAF that has clumps moving within it are denoted byVr

andVφ respectively. Thus, dynamical properties of the background medium affect dynamics of the
clumps through these components of velocity. Thus, the Boltzman equation becomes (WCL)
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It is very difficult to solve this equation analytically in a general case unless we apply further sim-
plifying assumptions. We assume that the clumps are strongly coupled with the background gaseous
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medium which implies the mean radial and rotational velocities of the clumps are equal to the ra-
dial and the rotational velocity of the ADAF. Under these simplifying assumptions, it is possible to
analytically obtain the root mean square radial velocity ofthe clumps〈v2

r〉
1/2 (WCL)
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whereΓr = frRSch andΓφ = fφRSch are the coefficients of the drag force. FunctionΛq is intro-
duced by WCL asΛq =

∫ rout

r x−q exp(−ΓRx)dx. The outer boundary condition is atr = rout,
so that〈v2

r 〉 = V 2
out. Moreover, properties of the ADAF are described using a set of radially self-

similar solutions wherec1 andc2 are coefficients of the radial and rotational velocities of the ADAF.
In WCL, the standard nonmagnetized ADAF solutions (Narayan& Yi 1994) have been used for
their analysis. Then, Khajenabi et al. (2014) extended the analysis by including the purely toroidal
component of the magnetic field using similarity solutions of Akizuki & Fukue (2006). However,
we extend previous studies by considering all three components of the magnetic field using similar-
ity solutions of Zhang & Dai (2008). Magnetized self-similar solutions of Zhang & Dai (2008) are
written as
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where the coefficientsβr, βφ andβz measure the ratio of the magnetic pressure in three directions
with respect to the gas pressure, i.e.βr,φ,z = Pmag,r,φ,z/Pgas. The coefficientsc1, c2 andc3 are
obtained using a set of algebraic equations (Zhang & Dai 2008):
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Here,γ and s are the adiabatic index of the gas and mass loss parameter, respectively. Also,f
measures the degree to which the flow is advection dominated.Now, we can substitute the above
magnetized self-similar solutions into Equation (3) to study dynamics of the clumps in the presence
of a global magnetic field.

3 ANALYSIS

We now study the root mean square radial velocity of the clumps 〈v2
r 〉

1/2 as a function of the radial
distance for different values of the input parameters usingthe main expression, Equation (3). In
all figures, we assume the coefficient of viscosity isα = 0.1 and the adiabatic index isγ = 1.4.
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Fig. 1 The root mean square radial velocity〈v2

r〉 of clumps versus the radial distance for a central
object with one solar mass. Different values for the parameter βr are considered and each curve
is labeled by the corresponding value of this parameter. Theother input parameters areγ = 1.4,
s = −0.5, f = 0.9, βz = 1 andβφ = 1.

Moreover, the mass of the central object is fixed at one solar mass. The coefficients of the drag force
areΓr = 5 × 10−2 andΓφ = 2.8 × 10−3.

Figure 1 shows the root mean square radial velocity of the clumps as a function of the radial
distance normalized byRSch for different values ofβr whereas the other magnetic parameters are
fixed atβz = βφ = 1. This figure indicates that the value of〈v2

r〉
1/2 increases withβr, although its

variation is not very significant.
In Figure 2, we assume that the radial component of the magnetic field does not exist and the

toroidal component is fixed, i.e.βr = 0 andβφ = 1. We can then vary the parameterβz to study
its effect on the radial dynamics of the clumps. Again, we seethat the value of〈v2

r 〉
1/2 increases

as the vertical component of the magnetic field becomes stronger, though its variation withβz is
less significant at large values ofβz . Moreover, in the inner parts of this system, clumps are moving
radially faster as the parameterβz increases.

Dependence of the root mean square radial velocity of the clumps on variations in the toroidal
component of the magnetic field is more complicated as has already been explored by Khajenabi
et al. (2014) for a purely toroidal configuration.

In Figure 3, we assume thatβr = 0 andβz = 1, but different values ofβφ are considered.
In comparison to the previous study (Khajenabi et al. 2014),here, the vertical component of the
magnetic field is also considered. The value of the root mean square radial velocity of the clumps
decreases in the inner parts of the system withβφ whereas the value of〈v2

r 〉
1/2 increases in the outer

parts of the system.
Since the radial and rotational velocities of the gas component strongly depend on the amount

of advected energy, obviously the clumps experience different values of drag force depending on
the advection parameterf . We explore the dependence of〈v2

r 〉
1/2 on the parameterf for different

magnetic field configurations in Figure 4. For purely radial or toroidal magnetic field geometries,
the value of〈v2

r 〉
1/2 strongly increases with the amount of advected energy. But for a purely vertical

magnetic field, this trend changes to a reduction in the root mean square radial velocity of the clumps
with increases in the parameterβz. However, this reduction is not very significant. Thus, one may
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Fig. 2 Same as Fig. 1, but for different values of
βz . Here, we haveβr = 0 andβφ = 1.

Fig. 3 Same as Fig. 1, but for different values of
βφ. Here, we haveβr = 0 andβz = 1.

Fig. 4 The root mean square radial velocity〈v2

r〉
1/2

of clumps versus the radial distance for a central ob-
ject with one solar mass. Here, we explore depen-
dence of the root mean square radial velocity on the
amount of advected energy for different magnetic
field configurations.

Fig. 5 Same as Fig. 4, but all three compo-
nents of the magnetic field are considered.

conclude that the value of〈v2
r〉

1/2 generally increases as the flow becomes more advective even in
the presence of all three components of the magnetic field (Fig. 5).

In all of the figures, most of the curves cannot extend to the very inner parts. This is actually
because of the limitation of similarity solutions. We describe the gaseous component using self-
similar solutions and, as is well known, similarity solutions are only valid at regions far from the
boundaries. In other words, these similarity solutions forthe gas component are not valid at the
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very inner parts. But at the intermediate regions, similarity solutions represent dynamics of the gas
flow with very good accuracy. Since dynamics of clumps in our model are mainly determined due
to interaction of clumps with the gas and similarity solutions for the gas are not valid at the inner
boundary, we do not investigate the behavior of clumps in theinner parts based on our solutions.

4 CONCLUSIONS

We studied dynamics of an ensemble of cold clumps embedded ina hot magnetized accretion flow.
Although the magnetic field has a vital role in stability and confinement of cold clouds, its role in the
orbital motion of these clumps has not been studied. In our work, properties of the gas component
are modified in the presence of a global magnetic field and so the drag force on each clump changes
accordingly. Compared to the previous study by Khajenabi etal. (2014) who assumed the toroidal
component of the magnetic field is dominant, we showed that both the radial and vertical components
of the magnetic field also lead to some changes in the root meansquare radial velocity of clumps.
The value of〈v2

r〉
1/2 increases with increasing strength of the radial and vertical components of

the magnetic field. Moreover, velocity dispersion of clumpsincreases as the flow becomes more
advective when all components of the magnetic field are considered. Although results of our analysis
are not directly applicable to real systems because of limitations of this simplified model, the present
study clearly demonstrates the importance of the magnetic field in the dynamics of clumps which
cannot be ignored. The results of the paper are obtained within the conditions of strong coupling and
simplification of the magnetic field. It is also possible to relax these simplifying assumptions, but
then it would be very difficult to obtain analytical solutions, which is the goal of the present study.

As the clumps move toward the central black hole, they will gradually accumulate at the inner
parts because of the tidal disruption of the black hole’s gravitational field. In fact, tidal disruption
determines the inner edge of the clumpy disk. In the presenceof a global magnetic field, we find
that on average the clumps are moving radially faster in comparison to a similar configuration that
does not have a magnetic field. WCL calculated the capture rate of clumps and found that it is
directly proportional to the ratio〈v2

r 〉
1/2/Vr. Thus, presence of a global magnetic field increases the

capture rate of clumps, but the level of enhancement dependson the detailed input parameters that
we explored in this study. In other words, the rate that clumps are captured is faster when magnetic
fields are considered.
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