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Abstract Grids of stellar evolution are required in many fields of astron-
omy/astrophysics, such as planet hosting stars, binaries,clusters, chemically peculiar
stars, etc. In this study, a grid of stellar evolution modelswith updated ingredients
and recently determined solar abundances is presented. Thesolar values for the initial
abundances of hydrogen, heavy elements and mixing-length parameter are 0.0172,
0.7024 and 1.98, respectively. The mass step is small enough(0.01M⊙) that inter-
polation for a given star mass is not required. The range of stellar mass is 0.74 to
10.00M⊙. We present results in different forms of tables for easy andgeneral appli-
cation. The second stellar harmonic, required for analysisof apsidal motion of eclips-
ing binaries, is also listed. We also construct rotating models to determine the effect
of rotation on stellar structure and derive fitting formulaefor luminosity, radius and
the second harmonic as a function of rotational parameter. We also compute and list
colors and bolometric corrections of models required for transformation between theo-
retical and observational results. The results are tested for the Sun, the Hyades cluster,
the slowly rotating chemically peculiar Am stars and eclipsing binaries with apsidal
motion. The theoretical and observational results along isochrones are in good agree-
ment. The grids are also applicable to rotating stars provided that equatorial velocity
is given.

Key words: stars: interior — stars: evolution — binaries: eclipsing — stars: chemi-
cally peculiar

1 INTRODUCTION

Mankind has often wondered what phenomena may lie behind thevisible part of the universe. In
this connection, we observe the surface of stars and try to understand what happens inside them and
what influences their structure. This is essential for our comprehensive description of the universe.
Updated grids for stellar models are required for this task (e.g., Yi et al. 2003; Pietrinferni et al. 2006;
VandenBerg et al. 2006; Dotter et al. 2008). The present study focuses on constructing upgraded
stellar models (rotating and non-rotating) with very densemass steps.

The most important target for applying stellar evolution code is the Sun, due to the wealth of high
quality seismic and non-seismic constraints. The agreement between the Sun and a calibrated solar
model is a measure of code quality. Such a solar model is obtained by using recently determined
solar composition (Asplund et al. 2009). The relative difference in the speed of sound between
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the Sun and the standard solar model constructed by using theANKİ (ANKARA- İZMİR; Ezer &
Cameron 1965) code is less than 1.4% (Yıldız 2008). For a non-standard solar model constructed
with enhanced opacity, however, the maximum relative difference in the speed of sound is about
0.15% (Yıldız 2011a). The input parameters for construction of the stellar interior are mixing length
parameter (α), initial hydrogen (X) and heavy element (Z) abundances. They are taken as the solar
values:X = 0.7024, Z = 0.0172 andα = 1.98.

The presently available grids have some distinctive features: (1) The code used to construct
models of the stellar interior is very successful in modeling the Sun,α Cen A and B (Yıldız 2007,
2011a), eclipsing binaries (Yıldız 2003, 2005, 2011b) and stars in the Hyades (Yıldız et al. 2006).
The models for these main-sequence (MS) stars are in good agreement with the seismic and non-
seismic constraints of these stars. (2) The second stellar harmonic (k2), required for the apsidal
motion analysis of eclipsing binaries, is presented. (3) Fitting formulae for effects of rotation on
luminosity (L), radius (R) andk2 for different stellar masses are derived (see below). (4) These
grids cover a wide range of stellar mass (0.74M⊙ to 10.0M⊙). (5) The mass step (0.01M⊙) is
so small that properties of a model for a given mass can be found without interpolation between
models with different masses. (6) Updated tables are used for low-temperature opacity (Ferguson
et al. 2005). (7) The nuclear reaction rate for14N(p,γ)15O was recently updated. We adopt the
measurement made by the Laboratory for Underground NuclearAstrophysics (LUNA) collaboration
for the cross section of this reaction (Bemmerer et al. 2006). (8) Formation of a star depends on how
much energy is stored during the contraction process in the pre-MS phase. In this regard, internal
structure of zero-age MS (ZAMS) models depends on the details of the pre-MS evolution. Therefore,
our model computations include a pre-MS phase. (9) TheANKİ code itself solves the Saha equation
and computes the partition function by using the Mihalas et al. (1990) approach for the surviving
probability of atomic/ionic energy levels. The disadvantage of the present grids is that the post-MS
phase is not included. The reason for this is that theANKİ code is not well suited to constructing
shell-burning interior models.

Eclipsing binaries with a non-circular orbit show apsidal motion. The period of apsidal motion
can be found observationally from the O-C analysis of eclipse timings. The theoretical value of the
period is found from the second harmonic, which is a measure of mass distribution in the outermost
regions of component stars (see Appendix A). In the present study, values ofk2 are given.k2 is also
listed in Claret (2004). However, putting aside a comparison of the details of the code, we also give
the effect of rotation onk2 as well as luminosity and radius. This point is important in many fields,
such as apsidal motion analysis of eclipsing binaries in which rotation influences the structure of
their component stars. We derive fitting formulae over certain stellar mass intervals fork2, L and
R as a function of rotational parameterΛ, which is basically the ratio of centrifugal acceleration to
gravitational acceleration.

The successful application of grids to late-type stars and slowly rotating early-type stars may
provide the mass and age of these types of stars. A grid of stellar evolution with a very small mass
step is required for such studies. Therefore, we choose the mass step as 0.01M⊙. The tables are
given for the MS evolution of a given mass and also for isochrones.

In comparison with non-rotating models with mass pertaining to early-type stars, the chemically
peculiar Am stars, which have a very low value ofv sin i in comparison with their counterparts, are
perhaps the most suitable ones for the determination of the time required for the diffusion process
to be effective. The advantage is that they are slowly rotating A-type stars, in contrast to their coun-
terparts in terms of spectral type. This feature enables thediffusion process to operate. The time
required for the diffusion process to be effective can be found by using the isochrone fitting method.

Rotation is one of the essential features of macroscopic objects and, in particular, has a strong
effect on the structure of early-type stars. Unfortunately, we have very limited information on the
internal rotation of such stars. While the conventional approach is to assume solid-body rotation,
the alternative is to adopt differential rotation with depth. The effect of the former approach on
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luminosity, radius, and second harmonic as a function of rotational parameter is derived by Yıldız
(2004; see also Stothers 1974). We also derive similar relations for low-mass stars. In the case of
differential rotation, detailed analysis of angular momentum transport within stars is required. This
is beyond the scope of the present study.

The remainder of this paper is organized as follows. In Section 2, we present basic properties
of the code and initial values required for the model computations. Section 3 presents tables pre-
pared for the MS evolution of a wide stellar mass interval andfor different isochrones. Section 4
shows some basic results and fitting formulae derived from these tables. Sections 5 and 6 discuss the
comparison of results with the observations and effect of rotation, respectively. In Section 7 we give
concluding remarks.

2 BASIC PROPERTIES OF THE CODE AND INITIAL VALUES

TheANKİ code used for the present study was first developed in the 1960s by D. Eryurt-Ezer and
gradually updated by her and her colleagues (Ezer & Cameron 1965; Kızıloğlu & Eryurt-Ezer 1985;
Yıldız & Kızıloğlu 1997) and more recently by Yıldız (2000,2003, 2008). The updated routines are
for equation of state (EOS), opacity, nuclear reaction rates and chemical advancement due to nuclear
reactions (see Table 1 for basic properties of the code). A brief summary is given below.

Table 1 Properties of the ANK̇I Code

Opacity OPAL96 & Ferguson et al. (2005)
EOS Saha Eq. solved

Coulomb interaction included
Convection MLT
Diffusion No
Rotation Yes & No
Magnetic Field No

OPACITY - The radiative opacity is derived from recent OPAL tables (Iglesias & Rogers 1996;
OPAL96), and implemented by the low temperature tables of Ferguson et al. (2005).

CHEMICAL COMPOSITION –X = 0.7024 andZ = 0.0172 values are obtained from cali-
bration of solar models. The present solar surface abundance of heavy elements is reduced to 0.0134
by diffusion which is in very good agreement with the recent value of 0.0134 found by Asplund et al.
(2009).

EOS - In the present study, the EOS is obtained by minimization of the free energy (Mihalas
et al. 1990). Whereas the Saha equation is solved for hydrogen and helium, ionization degrees of
the eight most abundant heavy elements (C, N, O, Ne, S, Si, Mg and Fe) are computed from the
expressions given by Gabriel & Yıldız (1995). The basic properties of the routines are described in
detail by Yıldız & Kızıloğlu (1997).

NUCLEAR REACTIONS - Rates of nuclear reactions are computedfrom Bemmerer et al.
(2006) and Caughlan & Fowler (1988).

CONVECTION - Classical mixing-length theory (MLT) of Böhm-Vitense (1958) is employed
for convection. While boundaries of convective regions aremarked by Schwarzschild criteria, over-
shooting is not accounted for. The mixing-length parameterα = 1.98 is obtained by calibrating the
solar models.

The masses of the models range from 0.74 to 10.0M⊙. The mass step is 0.01M⊙ through the
range. Such a dense grid can be used to estimate the mass and age of stars whose spectroscopic and
photometric observations yield data of high quality. Basicproperties of models are summarized in
Table 2.



Grids of Stellar Models 2247

Table 2 Properties of Models

Initial hydrogen abundance (X) 0.7024
Initial heavy element abundance (Z) 0.0172
Mixing-length parameter (α) 1.98
Minimum stellar mass (M⊙) 0.74
Maximum stellar mass (M⊙) 10.0
Mass step (M⊙) 0.01

Table 3 Basic Properties of Models with Masses from 0.74 to 10M⊙

log(t/yr) log(R/R⊙) log(L/L⊙) log(Teff/K) log(k2) Xc M/M⊙

(1) (2) (3) (4) (5) (6) (7)

8.09272 −0.17027 −0.76331 3.65605 −1.42985 0.70090 0.74
9.15473 −0.16198 −0.74999 3.65523 −1.42599 0.66790 0.74
9.45561 −0.15901 −0.73637 3.65715 −1.43185 0.63330 0.74
9.64982 −0.15598 −0.72108 3.65946 −1.43923 0.59480 0.74
9.77217 −0.15335 −0.70668 3.66175 −1.44649 0.56030 0.74
9.86747 −0.15064 −0.69184 3.66411 −1.45413 0.52580 0.74
9.94557 −0.14781 −0.67649 3.66652 −1.46203 0.49140 0.74
10.01157 −0.14481 −0.66059 3.66900 −1.47020 0.45710 0.74
10.05843 −0.14228 −0.64740 3.67103 −1.47709 0.42980 0.74
10.10037 −0.13961 −0.63377 3.67311 −1.48408 0.40260 0.74
... ... ... ... ... ... ...

3 ONLINE TABLES

Tables are prepared for grids of stellar evolution, with different masses from ZAMS to terminal-age
MS (TAMS), and for isochrones using these grids. These tables will appear in the online version of
the article. In the following subsections, we describe columns of these tables. Units of the quantities
are in cgs, unless specified otherwise.

Although the pre-MS phase is included in model computations, to avoid complications, only
the MS phase from ZAMS to TAMS is presented in the grids. For isochrones, however, the pre-MS
phase is considered.

ZAMS can be defined as the point at which luminosity or radius has a minimum value (Lmin,
Rmin). However, for some stellar masses, the time difference between the ages fromLmin andRmin

is significant. Alternatively, we determine the ZAMS point for a model evolution at which the prod-
uct of luminosity and radius reaches a minimum. This is a unique point in most of the evolutionary
tracks and therefore very suitable for automatic computation of such large stellar grids. The TAMS
point is adopted as the point at which the central hydrogen abundance (Xc) is 0.0012.

The following are given for models with a mass ranging from 0.74 to 10M⊙. The mass step is
0.01M⊙.

Bolometric correction required for computation ofMV is derived from Lejeune et al. (1998).
Colors of the models are also computed by interpolation of their tables.

Samples of online tables are given in Tables 3 and 4 (http://www.raa-journal.org/docs/Supp/
ms2111TableOnlineI; http://www.raa-journal.org/docs/Supp /ms2111TableOnlineII).

4 RESULTS

In Figure 1, the MS evolutionary tracks of models are plottedin the Hertzsprung-Russell diagram
(HRD). The mass of these models ranges from 0.75 to 10.0M⊙ with mass step 0.05M⊙. We derive
and present some basic results, which pertain to the ZAMS andTAMS lines and can be useful for
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Table 4 Isochrones for the Time Interval fromlog(t/yr) = 6.90−10.25

log(t/yr) log(R/R⊙) log(L/L⊙) log(Teff/K) MV B − V U − B M/M⊙ Xc

(1) (2) (3) (4) (5) (6) (7) (8) (9)

6.90000 0.64389 3.80952 4.39218 −2.28632 −0.24388 −0.92982 9.89000 0.54960
6.90000 0.64020 3.79264 4.38981 −2.25679 −0.24304 −0.92622 9.78000 0.55560
6.90000 0.62552 3.75801 4.38848 −2.17577 −0.24259 −0.92316 9.62000 0.57860
6.90000 0.57630 3.52852 4.35572 −1.78081 −0.23108 −0.87140 8.27000 0.60500
6.90000 0.56214 3.47085 4.34838 −1.67694 −0.22830 −0.85958 7.98000 0.61730
6.90000 0.55339 3.43113 4.34283 −1.60865 −0.22606 −0.85072 7.78000 0.62390
6.90000 0.53579 3.34553 4.33023 −1.46585 −0.22054 −0.83081 7.36000 0.63180
6.90000 0.52335 3.28526 4.32138 −1.36567 −0.21661 −0.81662 7.08000 0.63850
6.90000 0.50990 3.20676 4.30848 −1.24364 −0.21109 −0.79597 6.72000 0.63910
... ... ... ... ... ... ... ... ...

Fig. 1 The HRD for the MS evolutionary tracks of models with solar chemical composition and
stellar masses from 0.75 to10 M⊙.

astrophysical applications. Properties of the models withcertain masses in ZAMS and TAMS are
given in Tables 5 and 6, respectively.

ZAMS age as a function of stellar mass is found as

tZAMS =
8.05 × 107

(M/M⊙)2.22
yr . (1)

The maximum difference between age from Equation (1) and model age is about 20%. Very precise
TAMS age as a function of stellar mass for the same mass interval is derived as

tTAMS =
1010

(M/M⊙)4.05

[

5.60 × 10−3
( M

M⊙

+ 3.993
)3.16

+ 0.042
]

yr . (2)

The accuracy of Equation (2) is very high for the models withM > 2 M⊙. The maximum difference
between its prediction and model age is 5% for this mass range. It is about 15% for the range
M < 2 M⊙.
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Fig. 2 log(g) as a function of stellar mass for the ZAMS (thick solid line) and TAMS (dotted line)
models. For comparison, ZAMS values oflog(g) from Pols et al. (1998;thin solid line) are also
given.

Fig. 3 log(g) as a function of effective temperature for stars at ZAMS (solid line) and TAMS (dotted
line).

In Figure 2,log(g) of stars at ZAMS (thick solid line) and TAMS (dotted line) is plotted with
respect to stellar mass. For comparison,log(g) of ZAMS models (thin solid line) of Pols et al.
(1998) is also plotted. The dependence oflog(g) on stellar mass is very different for models with
M > 1.5M⊙ andM < 1.5M⊙. For models of early-type stars (M > 1.5M⊙), both ZAMS and
TAMS values oflog(g) are nearly constant, and are about 4.3 and 3.8, respectively, whereaslog(g)
of late-type stars (M < 1.5M⊙) is a much more sensitive function of stellar mass than that of early-
type stars. As stellar mass reduces,log(g) increases and reaches values 4.7 for ZAMS and 4.4 for
TAMS of the 0.74M⊙ model. The difference betweenlog(g) values of ZAMS and TAMS is 0.5 for
the early-type stars and 0.3 for the late-type stars. In Figure 3,log(g) is also plotted with respect to
Teff . In this plot, the characteristics oflog(g) change at aboutTeff = 6750 K.
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Table 5 The ZAMS values of some basic parameters of the models. Mass,luminosity and radius
are in solar units.ρph is the density at the surface, whileTc andρc are the temperature and density
at the stellar center respectively, in cgs.BC represents bolometric correction.

M log R log L log Teff log ρph log g log k2 log Tc log ρc BC U − B B − V MV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (13) (14)

0.75 −0.167 −0.736 3.661 −6.461 4.646 −2.440 7.048 1.889 −0.537 1.026 1.115 7.127
0.80 −0.147 −0.606 3.684 −6.539 4.634 −2.476 7.068 1.893 −0.368 0.816 0.987 6.632
0.85 −0.126 −0.485 3.704 −6.589 4.620 −2.515 7.086 1.894 −0.273 0.587 0.883 6.235
0.90 −0.104 −0.370 3.721 −6.633 4.601 −2.558 7.102 1.894 −0.228 0.406 0.797 5.903
0.95 −0.082 −0.262 3.737 −6.672 4.579 −2.607 7.118 1.892 −0.184 0.271 0.729 5.590
1.00 −0.058 −0.160 3.751 −6.710 4.553 −2.662 7.133 1.888 −0.148 0.156 0.669 5.299
1.10 −0.006 0.028 3.772 −6.828 4.490 −2.795 7.158 1.877 −0.110 0.042 0.588 4.790
1.20 0.048 0.202 3.788 −6.962 4.420 −2.950 7.181 1.863 −0.077 −0.001 0.532 4.323
1.30 0.100 0.397 3.811 −7.171 4.352 −3.219 7.219 1.925 −0.035 −0.037 0.456 3.792
1.40 0.139 0.550 3.830 −7.347 4.307 −3.384 7.245 1.926 −0.010 −0.034 0.400 3.386
1.50 0.159 0.687 3.854 −7.559 4.295 −3.459 7.268 1.922 0.011 −0.006 0.331 3.020
1.60 0.166 0.811 3.881 −7.807 4.309 −3.453 7.287 1.911 0.019 0.060 0.261 2.704
1.70 0.173 0.923 3.906 −8.037 4.322 −3.440 7.302 1.895 −0.007 0.060 0.180 2.449
1.80 0.181 1.027 3.928 −8.300 4.331 −3.428 7.315 1.877 −0.043 0.075 0.114 2.226
1.90 0.189 1.124 3.948 −8.550 4.338 −3.416 7.326 1.858 −0.093 0.058 0.066 2.034
2.00 0.198 1.214 3.966 −8.767 4.343 −3.404 7.336 1.837 −0.154 0.016 0.030 1.869
2.10 0.207 1.300 3.983 −8.939 4.346 −3.393 7.344 1.816 −0.206 −0.011 0.004 1.707
2.20 0.216 1.380 3.999 −9.057 4.348 −3.382 7.352 1.794 −0.277 −0.057 −0.018 1.576
2.30 0.225 1.457 4.014 −9.129 4.350 −3.371 7.359 1.773 −0.363 −0.115 −0.039 1.472
2.40 0.234 1.530 4.027 −9.170 4.350 −3.362 7.365 1.752 −0.447 −0.167 −0.057 1.373
2.60 0.251 1.665 4.053 −9.198 4.351 −3.343 7.376 1.712 −0.677 −0.285 −0.093 1.263
2.70 0.260 1.729 4.064 −9.197 4.350 −3.334 7.381 1.692 −0.740 −0.321 −0.102 1.167
3.00 0.284 1.906 4.096 −9.164 4.347 −3.309 7.394 1.636 −0.780 −0.364 −0.104 0.765
3.50 0.320 2.160 4.142 −9.091 4.342 −3.272 7.413 1.553 −1.036 −0.483 −0.130 0.385
4.00 0.352 2.377 4.180 −9.033 4.336 −3.240 7.428 1.481 −1.260 −0.568 −0.149 0.068
4.50 0.380 2.564 4.213 −8.993 4.330 −3.213 7.440 1.417 −1.454 −0.631 −0.166 −0.206
5.00 0.406 2.730 4.241 −8.965 4.325 −3.188 7.451 1.360 −1.626 −0.682 −0.179 −0.449
5.50 0.429 2.878 4.267 −8.943 4.320 −3.167 7.461 1.309 −1.778 −0.725 −0.190 −0.666
6.00 0.451 3.011 4.289 −8.927 4.315 −3.147 7.470 1.263 −1.911 −0.762 −0.201 −0.865
6.50 0.470 3.131 4.309 −8.913 4.310 −3.129 7.478 1.221 −2.030 −0.795 −0.210 −1.047
7.00 0.489 3.242 4.328 −8.901 4.306 −3.113 7.485 1.183 −2.137 −0.825 −0.218 −1.218
7.50 0.506 3.344 4.345 −8.892 4.301 −3.099 7.491 1.148 −2.234 −0.851 −0.225 −1.376
8.00 0.522 3.437 4.360 −8.886 4.298 −3.085 7.497 1.116 −2.320 −0.875 −0.231 −1.524
8.50 0.536 3.525 4.375 −8.882 4.294 −3.073 7.503 1.086 −2.400 −0.897 −0.237 −1.662
9.00 0.550 3.606 4.388 −8.880 4.292 −3.061 7.508 1.059 −2.474 −0.917 −0.241 −1.791
9.50 0.564 3.682 4.400 −8.880 4.288 −3.051 7.513 1.034 −2.540 −0.935 −0.246 −1.916
10.00 0.576 3.754 4.412 −8.880 4.286 −3.041 7.517 1.011 −2.604 −0.952 −0.250 −2.030

4.1 Results on Early-type Stars (M > 1.5 M⊙)

The central regions of these stars have relatively high temperatures. For these stars, the nuclear
reactions proceed via the CNO cycle, which is much more productive than the proton-proton chain.
Therefore, one should expect different MS lifetime values for early- and late-type stars. For the
former, we derive

tTAMS =
4.50 × 109

(M/M⊙)2.40
yr . (3)

This expression (see also Eq. (7)) is simpler but less accurate than Equation (2).
In Figure 1, luminosity is minimum at ZAMS and gradually increases during MS evolution

for all the models.LTAMS = 2LZAMS is a very good approximation for the full mass range. The
mass-luminosity relation for TAMS of early-type stars is asfollows

LTAMS

L⊙

= 2.22(M/M⊙)3.77 . (4)
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Table 6 The TAMS values of some basic parameters of the models. Mass,luminosity and radius are
in solar units.ρph is the density at the surface, whileTc andρc are the temperature and density at
the stellar center respectively, in cgs.BC represents bolometric correction.

M log R log L log Teff log ρph log g log k2 log Tc log ρc BC U − B B − V MV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (13) (14)

0.75 −0.024 −0.227 3.717 −6.756 4.361 −2.664 7.309 2.820 −0.238 0.438 0.821 5.556

0.80 0.002 −0.122 3.730 −6.793 4.336 −2.709 7.285 2.877 −0.202 0.318 0.759 5.258

0.85 0.026 −0.026 3.742 −6.827 4.315 −2.764 7.295 2.834 −0.170 0.223 0.706 4.986

0.90 0.048 0.053 3.751 −6.858 4.297 −2.812 7.282 2.810 −0.145 0.147 0.665 4.763

0.95 0.069 0.131 3.760 −6.902 4.278 −2.876 7.291 2.750 −0.126 0.089 0.628 4.548

1.00 0.086 0.193 3.767 −6.940 4.265 −2.928 7.324 2.610 −0.113 0.056 0.601 4.380

1.10 0.125 0.317 3.778 −7.023 4.228 −3.036 7.331 2.468 −0.097 0.022 0.562 4.054

1.20 0.170 0.472 3.795 −7.164 4.176 −3.254 7.321 2.533 −0.061 −0.004 0.508 3.631

1.30 0.238 0.655 3.807 −7.322 4.076 −3.471 7.337 2.696 −0.038 −0.017 0.466 3.149

1.40 0.290 0.808 3.818 −7.462 4.003 −3.625 7.400 2.680 −0.018 −0.016 0.428 2.749

1.50 0.323 0.931 3.833 −7.608 3.968 −3.693 7.436 2.590 0.002 −0.004 0.383 2.421

1.60 0.346 1.047 3.850 −7.777 3.950 −3.699 7.455 2.527 0.016 0.011 0.329 2.117

1.70 0.363 1.151 3.868 −7.952 3.943 −3.689 7.468 2.478 0.037 0.082 0.283 1.835

1.80 0.382 1.255 3.885 −8.133 3.930 −3.683 7.477 2.444 0.029 0.108 0.226 1.584

1.90 0.398 1.350 3.900 −8.318 3.920 −3.676 7.486 2.402 0.020 0.130 0.168 1.354

2.00 0.416 1.446 3.915 −8.497 3.906 −3.673 7.494 2.374 −0.004 0.129 0.112 1.138

2.10 0.432 1.532 3.929 −8.688 3.897 −3.666 7.500 2.335 −0.034 0.110 0.072 0.954

2.20 0.445 1.614 3.943 −8.876 3.890 −3.658 7.507 2.306 −0.071 0.082 0.043 0.785

2.30 0.456 1.690 3.956 −9.043 3.887 −3.649 7.512 2.278 −0.115 0.043 0.015 0.639

2.40 0.468 1.765 3.969 −9.186 3.883 −3.642 7.518 2.254 −0.163 0.007 −0.009 0.499

2.60 0.490 1.907 3.993 −9.372 3.873 −3.629 7.528 2.205 −0.247 −0.056 −0.040 0.230

2.70 0.501 1.973 4.005 −9.425 3.868 −3.624 7.532 2.183 −0.311 −0.104 −0.054 0.127

3.00 0.528 2.158 4.037 −9.483 3.858 −3.606 7.545 2.123 −0.505 −0.233 −0.088 −0.140

3.50 0.568 2.422 4.083 −9.458 3.845 −3.579 7.563 2.031 −0.694 −0.354 −0.109 −0.611

4.00 0.601 2.648 4.123 −9.400 3.838 −3.557 7.579 1.959 −0.928 −0.467 −0.132 −0.942

4.50 0.630 2.841 4.157 −9.351 3.831 −3.536 7.592 1.883 −1.122 −0.544 −0.148 −1.231

5.00 0.655 3.012 4.187 −9.316 3.826 −3.518 7.605 1.824 −1.299 −0.605 −0.163 −1.481

5.50 0.679 3.165 4.213 −9.292 3.820 −3.504 7.617 1.773 −1.455 −0.653 −0.175 −1.707

6.00 0.701 3.302 4.237 −9.276 3.814 −3.492 7.627 1.729 −1.593 −0.695 −0.186 −1.911

6.51 0.721 3.428 4.258 −9.263 3.809 −3.481 7.637 1.683 −1.719 −0.733 −0.195 −2.101

6.95 0.737 3.529 4.275 −9.255 3.805 −3.475 7.646 1.659 −1.819 −0.761 −0.203 −2.255

7.50 0.759 3.645 4.293 −9.251 3.795 −3.470 7.654 1.612 −1.922 −0.792 −0.211 −2.440

8.00 0.777 3.742 4.309 −9.249 3.787 −3.466 7.662 1.582 −2.009 −0.818 −0.217 −2.595

8.50 0.794 3.832 4.323 −9.249 3.779 −3.464 7.668 1.548 −2.086 −0.841 −0.223 −2.743

9.00 0.809 3.915 4.336 −9.246 3.775 −3.461 7.677 1.528 −2.162 −0.863 −0.228 −2.876

9.50 0.825 3.996 4.348 −9.251 3.764 −3.463 7.684 1.506 −2.226 −0.883 −0.232 −3.014

10.00 0.841 4.068 4.358 −9.257 3.756 −3.462 7.688 1.478 −2.282 −0.900 −0.235 −3.140

The maximum difference between the prediction of Equation (4) and model luminosity is about
10%, for this mass range. It is about 15% for the rangeM < 2 M⊙ (see the text below Eq. (7) in
Sect. 4.2).

We also derive a mass-effective temperature relation for TAMS and ZAMS

Teff,TAMS

Teff⊙

= −0.1237

(

M

M⊙

+ 0.4831

)1.5

+ 0.7795
M

M⊙

+ 0.3496 , (5)

Teff,ZAMS

Teff⊙

= 2.3751

(

M

M⊙

− 0.12

)0.4

− 1.4597 , (6)

where effective temperature of the Sun (Teff⊙) is taken as 5777 K. Equations (5) and (6) are useful
for analysis of observed data. Uncertainties in Equations (5) and (6) are 40 and 50 K, respectively.
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Fig. 4 Effective temperature at ZAMS (+) is plot-
ted with respect to stellar mass. The solid and dot-
ted lines show the fitting formula given in Eqs. (6)
and (9), respectively.

Fig. 5 Effective temperature at TAMS (+) is plot-
ted with respect to stellar mass. The solid and dot-
ted lines show the fitting formula given in Eqs. (5)
and (10), respectively.

4.2 Results on Late-type Stars (M < 1.5 M⊙)

We derive an expression for the TAMS ages of late-type stars as

tTAMS =
9.65 × 109

(M/M⊙)3.94
yr . (7)

For TAMS luminosity of late-type stars, we find

LTAMS

L⊙

= 1.64(M/M⊙)3.81 . (8)

In comparison with model luminosities, Equation (8) is uncertain by about 15%.
The fitting formula for ZAMS and TAMSTeff of late-type stars as a function of stellar mass is

found as

Teff,ZAMS

Teff⊙

= 0.333

(

M

M⊙

− 0.7041

)0.4

+ 0.2817
M

M⊙

+ 0.4835 , (9)

Teff,TAMS

Teff⊙

= −0.4689

(

M

M⊙

+ 2.2635

)1.5

+ 1.6442
M

M⊙

+ 2.1294 . (10)

For early-type stars and the hot side of late-type stars in HRD, Teff,ZAMS is higher thanTeff,TAMS.
However, for models withM < 1.29 M⊙, Teff,TAMS > Teff,ZAMS. Uncertainties in Equations (9)
and (10) are 60 and 40 K, respectively.

Some of the fitting formulae derived in this section are plotted in Figs. 4–6.

4.3 Depth of Convective Zones in Late-type Stars

In the outer regions of late-type stars, opacity is so high that the radiative temperature gradient is
greater than the adiabatic gradient. It is usually reasonedthat stars with mass less than 0.5M⊙ have
such an opaque interior that they are completely convective(see, for example, Mullan & MacDonald
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Fig. 6 ZAMS age (+) is plotted with respect to stellar mass. The solid line shows the fitting formula
given in Eq. (1).

Fig. 7 The base radius of convective zones in late-type stars as a function of stellar mass.

2001; Browning 2008; Morin et al. 2008). This reasoning is very interesting in two respects: (1)
Could convection mix the rare envelope and dense core in these stars? (2) If yes, do these stars ignite
all their hydrogen as nuclear fuel?

In late-type star models, density is so high that the non-ideal effects should be taken into ac-
count. In these models, the assumption of ideal gas pressure(including degeneracy) may not be
justified. Hence, Coulomb interaction should be considered. For low-mass stars, in some regions,
Coulomb energy becomes comparable to the thermal kinetic energy. In such a case, the expression
for Coulomb energy such as given in Landau & Lifshitz (1969) is no longer valid.

The convective zone deepens as stellar mass decreases. Thisphenomenon is depicted in Figure 7
which displays the base radius of the convective zone, in theunit of total model radius (rbcz =
Rbcz/R⋆) as a function of stellar mass. The dotted line is for TAMS andsolid line is for ZAMS. The
fitting curve forrbcz of TAMS is given as0.20(M/M⊙)2.4 + 0.51 for the mass range from 0.74 to
1.45M⊙.
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Fig. 8 The degree of ionization for the most abundant chemical elements at the surface of stellar
models (ZAMS) as a function of effective temperature. The thin and thick solid lines are for H and
N respectively. The dotted line is for O. The open circles represent C, while the filled circles and
asterisks are for Fe and He, respectively.

4.4 The Degree of Ionization for the Most Abundant Chemical Elements at Stellar Surfaces

The spectral class of a star is determined from its spectral lines. Absorption lines observed in spectra
of stars are mainly due to the transition of atomic and ionic electrons from one bounded quantum
state to another. These lines are extremely important for deciphering the properties of stars. The
observability of a line pertaining to a certain type of ion primarily depends on how abundant this ion
is in the observed medium. As a matter of fact, excitation paves the way for ionization. In Figure 8,
the effective charges (mean degree of ionization,zeff ) of the most abundant elements with respect
to effective temperature are plotted. The thin solid line represents hydrogen. Ionization of hydrogen
starts at aboutTeff = 7500 K and ends at aboutTeff=12 500 K. The curves of H, N (thin and thick
solid lines respectively) and O (dotted line) are very closeto each other for the stars havingTeff

less than 15 000 K, because first ionization potentials of these elements are nearly the same. For
stars withTeff around 25 000 K, C (open circles), N and O have lost two electrons. However, He
(asterisks) is singly ionized at such a high effective temperature. The most ionized element among
those plotted in Figure 8 is Fe (filled circles). Single ionization of Fe starts atTeff slightly less than
5000 K and ends atTeff slightly higher than 5000 K. Thus, absorption lines of neutral (FeI) and first
ionized (FeII ) iron appear about 5000 K. The transition from FeII to FeIII occurs at about 10 000 K.
Fe IV starts to appear at about 20 000 K. ForTeff about 25 000 K, Fe is triply ionized. In stars with
Teff higher than 25 000 K, no line of FeIV (Fe+++) is observable.

5 COMPARISON OF RESULTS WITH OBSERVATIONAL CONSTRAINTS AND OTHER
STUDIES

5.1 Comparison of Solar Models

The Sun is the nearest star to us and is always the first object to model for a stellar evolution code.
The precise seismic and non-seismic constraints on the solar interior are very important for our
understanding of stellar structure and evolution. In most cases, solar values for chemical composition
and convective parameter are used for stars if there is no constraint for them.
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Fig. 9 Comparison of 1M⊙ models in HRD.

In Figure 9, the results from the model of 1M⊙ are plotted in the HRD. For comparison, the
results from other studies and the Sun are also shown. The best agreement is achieved by the present
study, despite the fact that the diffusion process is not included. The differences are small, but it
seems that Schaller et al. (1992) and CESAM’s (Code d’Evolution Stellaire Adaptatif et Modulaire;
Lebreton & Michel 2008) codes are not well calibrated to the solar parameters. The evolutionary
track of Claret (2004; Claret04), on the other hand, substantially deviates from the data for the Sun.
He findsX = 0.684 andY = 0.296 from the calibration of solar model but the tracks are tabulated
for X = 0.7, Y = 0.28. The disagreement is due to the fact that the chemical composition of Claret’s
grids is not the same as the solar composition.

5.2 Comparison for Hyades Cluster

Star clusters are the test objects of astrophysics in many respects and are the main laboratory for
stellar structure and evolution in the early phase of stellar astrophysics. The advantage of studying
clusters is that their members are assumed to be formed from the same material and at the same time.
The Hyades is the nearest cluster to us and therefore its members have been measured with among
the most precise distances and hence absolute magnitudes.

In Figure 10, stars in the Hyades with very precise observational data (de Bruijne et al. 2001)
are plotted in the color-magnitude diagram (CMD). Also shown are three isochrones. The solid
line is for log(t/yr) = 8.90. The thin solid and dotted lines, however, are forlog(t/yr) = 8.85
and log(t/yr) = 8.95, respectively. ForB − V > 0.3, the three isochrones are almost equiva-
lent. They trace a border on the hotter side of the MS. This is reasonable because the isochrones
are produced from non-rotating models and rotation moves the position of the data toward the red
side of the CMD. Binarity also causes upward and rightward shifts in CMD. Therefore, for agree-
ment between isochrones and the observed data, the isochrone line must be on the blue side of the
data. The isochrone forlog(t/yr) = 8.85 is not in agreement with the brightest stars. A similar
situation is also valid forlog(t/yr) = 8.95. The best fitting isochrone is forlog(t/yr) = 8.90
(t = 794 Myr). This age is in agreement with 720 Myr found by Yıldız et al. (2006) from the bina-
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Fig. 10 Color-magnitude diagram for stars in the Hyades. The lines show the isochrones. The thick
solid line is for the agelog(t/yr) = 8.90. The thin solid and dotted lines are for the agelog(t/yr) =
8.85 andlog(t/yr) = 8.95, respectively.

ries in the Hyades and the value (log(t/yr) = 8.896) given by the WEBDA database (Mermilliod
1996;www.univie.ac.at/webda).

5.3 Comparison for Am Binaries

Diffusion is one of the microscopic processes operating inside of stars which in turn changes their
observable quantities. For the Sun for example, the difference in the speed of sound between the
Sun and solar models is reduced if diffusion of helium and heavy elements is included in the model
computations. Some early-type stars have such a high abundance of certain elements that only the
diffusion process can fulfill the requirements. The diffusion process in early-type stars is a slow pro-
cess but fast enough to change spectral properties of stars,provided that rotational velocity is slow.
The non-magnetic chemically peculiar Am stars are slow rotators and therefore very appropriate
early-type stars for confrontation with non-rotating stellar models.

In Figure 11, the theoretical HRD is plotted for Am stars in double-lined eclipsing binaries
(Andersen 1991). Also shown are the isochrones at ages 355 (thin dotted line), 447 (thick solid line)
and 562 Myr (thick dotted line). The isochrone of 447 Myr is invery good agreement with the
observational properties of Am stars. For comparison, the isochrone given by Salasnich et al. (2000)
for the same age is also plotted in Figure 11 (thin solid line). Two isochrones with the same age
are in agreement. This age is the time required for the microscopic diffusion process to be effective.
That is to say, during this time interval, metals such as Zn and Sr are gradually levitated. As a result
of the levitation, after about 450±100 Myr, the photosphere of Am stars with low rotational velocity
abounds in such elements.

5.4 Comparison of Apsidal Advance

The existence of many indicators resulting from physical processes occurring inside stars leads us to
investigate the internal structure and evolution of stars.Three of these indicators are classical diag-
nostics of stellar structure and permit us to see inside the stars. These are the detection of neutrinos
yielded via nuclear reactions in the central regions, frequencies of asteroseismic oscillations trapped
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Fig. 11 The theoretical HRD is plotted for the Am stars in double-lined eclipsing binaries. Also
shown are the isochrones at agest = 355 (thin dotted line), 447 (thick solid line) and 562 Myr (thick
dotted line). The thin solid line is for the isochrone at age 450 Myr givenby Salasnich et al. (2000).

in the cavities inside the stars and apsidal motion. The lastof these is observed in the eccentric
eclipsing binaries. The observed apsidal motion rate is computed using the timing of the changing
position of the eclipses. The theoretical rate, however, can be expressed in terms of the second har-
monic (k2) of the component stars. For some binary systems, general relativistic effects must be
taken into account.k2 is a measure of mass distribution in the outermost regions ofcomponent stars.

In literature, there are many studies by various investigators on apsidal motion of eclipsing bi-
naries (see Zasche 2012; Wolf et al. 2010; Claret & Giménez 2010; Bulut 2009; Bakış et al. 2008;
Khaliullin & Khaliullina 2007; Wolf et al. 2006). Some well known binaries have components which
are so close, but not contacting, that the time coverage of their eclipse data is comparable to their ap-
sidal motion period. Binaries with a precise apsidal motionperiod are the most suitable ones for apsi-
dal motion analysis.k2 is plotted with respect tot in Figure 12 for the models with 1M⊙ and 2M⊙.
As a star evolves in the MS, its outer regions expand while thecentral regions contract. Therefore,
k2, a measure of the mass distribution in the stellar envelope (see Eq. (A.1)), decreases with time
during the MS phase. For comparison,k2 given by Claret (2004) is also shown in Figure 12. There
is a systematic difference betweenk2 of models with 1M⊙. It is about∆log k2 ≈ 0.08. The initial
values ofX , Z andα in our and Claret’s models are quite different. The difference∆log k2 ≈ 0.08
may arise from usage of different initial values. For the 2M⊙ models, there is an agreement as the
models evolve toward the TAMS.

The apsidal motion of the eclipsing binaries with well knownaccurate dimensions has been re-
cently studied by Claret & Giménez (2010). In order to compare observational and theoretical apsidal
advances for well known binaries given in Claret & Giménez (2010) and Claret & Willems (2002),
we compute the apsidal advance rate (ω̇the) from k2 with the present stellar grids (see Appendix A).

We first compute the age of a binary system using the mass and radius of its primary component.
We find the time (t) at which the model radius is equal to the observed radius. The theoretical apsidal
advance ratėωthe is computed fromk2 of component stars att. In Figure 13,ω̇the is plotted with
respect toω̇obs. The method for computing uncertainty iṅωthe is given in Appendix A. In such
a logarithmic graph, the theoretical and observational advance rates are in very good agreement.
However, for some binaries with short period apsidal motion, the uncertainties are significantly less
than the difference betweeṅωthe andω̇obs. Therefore, such binaries need further detailed analysis.
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Fig. 12 k2 of 1 M⊙ (filled circle) and 2M⊙ (open circle) models are plotted with respect to age.
For comparison,k2 given by Claret (2004) is also plotted.

Fig. 13 Comparison of theoretical and observational apsidal advance rates.

As an example of inference based on apsidal motion, internalrotation of components of PV Cas has
been studied by the author of the present paper (Yıldız 2005).

6 EFFECT OF ROTATION

Apart from the chemically peculiar (Ap, Bp and Am) stars, early-type stars are rapid rotators reach-
ing v sin(i) = 300 km s−1. Therefore, the effect of rotation must be included for at least the early-
type stars. The rotational velocity directly derived from spectra of stars is the velocity of their pho-
tosphere. However, for an exhaustive rotating model, a complete knowledge of internal rotation is
required. Recently, differentially rotating models were constructed by Ekström et al. (2012). They
assumed solid-body rotation at ZAMS and later they allow differential rotation. In previous litera-
tures, solid-body rotation is widely assumed for the representation of internal rotation. However, this
assumption does not hold for some early-type stars (Yıldız 2003, 2005).
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In the simple case of solid-body rotation, the stellar parameters could be derived in terms of
rotational parameterΛr, which is defined as

Λr =
2Ω2r3

3GM(r)
, (11)

whereM(r), G andΩ are the mass inside a sphere with radiusr, the universal gravitational constant
and rotational angular velocity atr, respectively.Λr is very small near the central regions and is max-
imum in the outermost regions. Rotation influences the hydrostatic structure of stars in an amount
depending upon value ofΛr. In the case of solid-body rotation, the part that is most influenced is
the outer most regions and therefore the largest differencebetween rotating and non-rotating models
occurs at their radii. The more rapid rotation is, the higherthe radius is. For luminosity, however, the
situation is different. Rotation causes formation of a nuclear core cooler than that of the non-rotating
counterpart of a model. Therefore, the higher the rotation rate is, the lower the luminosity is.

Luminosity of a rotating model can be expressed in terms of the luminosity of its non-rotating
counterpart (Lo) and the value of the rotational parameter (Λs) at the surface (Yıldız 2005)

L =
Lo

(1 + Λs)0.25
. (12)

The effect of solid-body rotation on the radius, on the otherhand, can be formulated from the model
properties as

R = Ro(1 + Λs)
0.45 . (13)

Rotation also influences stellar harmonick2. In terms ofΛs, the change can be written as

∆log k2 = −0.7Λs , (14)

where ∆log k2 is the logarithmic difference betweenk2 of rotating and non-rotating models,
∆log k2 = log k2(Ω) − log k2(Ω = 0).

The effects of rotation given in Equations (12)–(14) are notvalid for the whole mass range.
Therefore, we have constructed rotating models for masses 1.0, 1.2, 1.4, 2.0 and 2.4M⊙. From these
rotating models, we derive equations similar to Equations (12)–(14) withcL, cR andck2 defined as

Lrot =
Lo

(1 + Λs)cL

, (15)

Rrot = Ro(1 + Λs)
cR , (16)

∆log k2 = −ck2Λs. (17)

The coefficientscL, cR andck2 are listed in Table 7.

Table 7 The effect of rotation for a given surface value of rotational
parameter depends on the stellar mass. The parameters for the effect of
rotation on luminosity, radius and the second harmonic are listed.

M/M⊙ cL cR ck2

1.0 0.760 0.225 –0.097
1.2 0.484 0.250 –0.058
1.4 0.221 0.357 –0.342
2.0 0.184 0.507 –0.767
2.4 0.215 0.465 –0.752
2.8 0.250 0.450 –0.700
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Rotating models constructed by using the ANKİ code are compared with those of other studies in
the literatures. If we compare luminosities, our one-dimensional models (see fig. 2 in Yıldız 2004)
are in very good agreement with 2-dimensional models obtained by Roxburgh (2004). The radii
obtained by Roxburgh are also in good agreement with the radii we obtained, provided that we take
a mean radius of a 2-dimensional model as the geometrical mean of the equatorial and polar radii.
Our results concerningk2 of rotating models are in good agreement with results of Stothers (1974)
given for early-type stars.

7 CONCLUSIONS

Starting from the threshold of the stability point at which gravitational and internal energies are
nearly the same, we construct a series of evolutionary models for the mass interval of 0.74–10.0M⊙,
with a mass step of 0.01M⊙. The results are presented as grids of stellar evolution andisochrones.
We derive some basic expressions for ages, luminosities andeffective temperatures for ZAMS and
TAMS which may be useful for astrophysical applications. Wealso obtain some expressions for
certain stellar masses about how rotation affects the fundamental properties of MS stars.

We also discuss how deep a convective envelope of the cooleststars may be. It seems that there
are no fully convective stars and the maximum size of the convective envelope is about half the star’s
radius.

We compare the model results with the observational resultsof the Sun, the Hyades cluster, the
chemically peculiar Am stars and the eclipsing binaries with apsidal motion, and confirm a good
agreement between the results.
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Appendix A: APSIDAL ADVANCE

A.1. Apsidal Advance in Terms of Stellar Harmonics

Although the apsidal motion is active in all binary systems,we can only measure it in eclipsing
binary (or triple) systems with an elliptic orbit. Due to tidal interaction and rotational flattening, the
stars are not perfectly spherical. In this case, the second harmonic of componenti (1 for primary and
2 for secondary component), which is a measure of mass distribution throughout the star (Martynov
1971), is given as

k2i =
16π

5

∫ Ri

0

ρi(r)

Mi(r)

(

r

Ri

)5

r2dr (A.1)

wherer is the radius of the sphere having a mass ofMi(r), ρi(r) is the mass density at radiusr, and
Ri andMi = Mi(Ri) are the radius and total mass of the componenti, respectively. Since(r/Ri)

5

is negligible in the central region,k2i mostly depends on the mass distribution in the outer regions.
The apsidal motion is determined byk2i. The angular velocity of apsidal advance in the direction of
orbital motion is given by Kopal (1978) as

ω̇cl = k21b
5
1

[

15f2(e)
M2

M1
+

(

ωr,1

ωk

)2(

1 +
M2

M1

)

g(e)

]

+k22b
5
2

[

15f2(e)
M1

M2
+

(

ωr,2

ωk

)2(

1 +
M1

M2

)

g(e)

]

(A.2)
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whereMi, bi andωr,i are the total mass, relative radius (radius divided by the semimajor axisa)
and rotational angular velocity of componenti, respectively.ωk is orbital angular velocity ande is
eccentricity. Functionsg(e) andf2(e) are given below

g(e) =
1

(1 − e2)2
, (A.3)

f2(e) =
1

(1 − e2)5

(

1 +
3

2
e2 +

1

8
e4

)

.

The ratioωr,i/ωk occurring in Equation (A.2) is given by Kopal (1978) as

(

ωr,1

ωk

)2

=

(

ωr,2

ωk

)2

=
1 + e

(1 − e)3
. (A.4)

In addition to the classical term, the secular advance of apsides also arises from the general
relativistic framework (Kopal 1978)

ω̇rel = 6.35 × 10−6 M1 + M2

a(1 − e2)
, (A.5)

where the masses of the component stars (M1, M2) are expressed in solar units and the unit ofω̇rel

is degree cyc−1. Then, the total apsidal advance is the summation ofω̇rel andω̇cl.

A.2. Uncertainty in ω̇cl

Typical uncertainty inω̇cl (∆ω̇cl) is computed in terms of uncertainties in masses (∆Mi) and radii
(∆Ri) of component stars. We take the first row of Equation (A.2) and multiply it by 2. Then,

∆ω̇cl

ω̇cl

= 2

(

∆k21

k21
+ 5

∆b1

b1
+

∆s

s

)

, (A.6)

wheres is the term in square brackets in the first line of Equation (A.2). We find∆s as

∆s =

(

15f2(e) +

(

ωr,1

ωk

)2

g(e)

)

(

∆M2

M1 + ∆M1M2
M2

1

)

. (A.7)

Uncertainty ink21 is computed by using

∆k21

k21
=

∂ log k21

∂ log M1

∆M1

M1
+

∂ log k21

∂ log R1

∆R1

R1
. (A.8)

The partial derivatives∂ log k21/∂ log M1 and∂ log k21/∂ log R1 are derived from the models as
0.52 and 1.20, respectively.
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