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Abstract For most hierarchical triple stars, the classical double-body model of
zeroth-order cannot describe the motions of the componenisr the current observa-
tional accuracy. In this paper, Marchal’s first-order atiag} solution is implemented
and a more efficient simplified version is applied to reallérigtars. The results show
that, for most triple stars, the proposed first-order moslg@referable to the zeroth-
order model both in fitting observational data and in préagctomponent positions.

Key words: celestial mechanics — binaries: general — stars: kinesatia dy-
namics — methods: analytical

1 INTRODUCTION

A hierarchical triple star is composed of a close binary amlisgant third component. About one
thousand stars of this kind are contained in the latestrmdersion ofThe Multiple Star Catalog
(Tokovinin 1997). In these systems, the primary componargsusually bright. Bright stars are
useful in many aspects (e.g. Urban & Seidelmann 2014). Tihnaugget of isotropic and dense stars
is crucial for some applications such as navigation, thes stéth nearby companions are usually
excluded. This is the case for the Hipparcos Celestial Rafer Frame, as recommended in AU
resolution B1 (2000) For triple stars, the problem lies mainly in that the priynaositions generally
cannot be predicted accurately by the almost exclusivedgl usodel, namely the classical double
two-body model.

Hierarchical triple stars are also of great interest inl@tgihysics and galactic astronomy, due
to the fact that their dynamical evolution is important tatbetellar and galactic evolutions (e.g.
Binney & Merrifield 1998; Valtonen & Karttunen 2006; Aars&@03). Moreover, these systems are
often studied in terms of stability of the general threespptbblem (e.g. Marchal & Bozis 1982;
Li et al. 2009). In some case studies, the results are sengitithe mass parameters and the initial
conditions (e.g. Orlov & Zhuchkov 2005), the accuracies bfal are limited again by the double
two-body model used in fitting observations (e.g. Liu et 802).

As a zeroth-order solution of the hierarchical three-bodybfem, the double two-body model
has the advantage of being analytical and simple. The egiditist-order analytical solutions are

1 hitp://mww.iau.org/static/resol utions/| AU2000_ French. pdf
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more accurate. The former one is still dominantly used, evthie latter ones, as far as we know, re-
main little used in fitting observations. In this paper, thstforder solution by Marchal is efficiently
implemented. This is achieved mainly by making some singdifinodifications and high order
approximations to Marchal’s solution. In the context ofitfigt observations of triple stars, we call
Marchal’s solution and the double two-body solution, resipely, the M-model and the K-model.

In Section 2, the M-model is implemented. In Section 3, theromement in accuracy from
the M-model to the K-model is statistically discussed witaaple of triple stars. In Section 4, a
simplified M-model is given and applied to real triple st&@sncluding remarks are given in the last
section.

2 AN IMPLEMENTATION OF M-MODEL

Consider a hierarchical three-body problem in an inert@rdinate syste{O—xzyz}, where O is
the center of mass and theaxis is parallel to the total angular moment@mn Denoting the masses
of the inner two bodies byn; andmsy, and the mass of the third body bys, we will use the
following mass-dependent parameters,

mima _ (mi+mz)msa

me =my +ma + ms, mi = mitms’ me me ’

ﬁ' _ sz‘;’mg ﬂ _ G2(77’L1+77’L2)3mg ﬂ G2(77’L1+7TL2) m.g
! mi+msz ° my ’ L= Tmimam)®

whered is the gravitational constant. Letbe the position vector afi, relative tom;, and R the
position vector ofn; relative to the center of mass of the binary. The ratie = % is a small
quantity.

The Delaunay variables as expressed in terms of the ordambital elementsga, e, i, Q, w, M)

are

Li = mi/G(mi +m2)a;, G = E \/ —e?, H = Gjcosi;,
b = M;, g = =,
Lo = moyv/Gmyag , G, = E \/ ez, H = G, cosi,,
éo :]\/foa Jo = Wo, :Qoa

where the subscriptd™and “o” indicate the inner and outer orbits, respectively in thesgables.
The Hamiltonian up to the first order i ~ (fi )4 can be formally written as

H = H(Eiagiyﬁoagoagiagiagmgo,Hi + Hmho - hl)
Ho; + Hoo + Hy

_ B Bo B1 (1 —eicosE;)? (1-39?) (ﬁ>4’

Q

1)

2£2  2£2 " 2L2 (1 — e, cos By)?

Where@ = ¢(£i7giaangoaéiagiaéoag(hHi + Hoa ho - hl) = T‘R ’ andE - E (Elaglv ) and
E, = E,(L,, Go; {,) are the eccentric anomalies of the inner and outer orbipeaively.

In Equation (1)H, + H; andh, — h; are understood to be two single canonical variables con-
jugating respectively to the negligible and’,,, and so they are constants that can be calculated
from the initial conditions. The standard way to calculéte two negligible variables is by quadra-
ture, after all the other degrees of freedom are integr&atlin the present context, we have as
consequences of the integral of angular momentum

C?+G2 - G?

Hi+MHo=C=|C|, ho—hi=m, Ho= o6
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Therefore, onlyh; needs to be calculated by quadrature. Because of the stidodderms in the
integrand, computing the numerical quadrature is timesaoring. It is then preferable not to follow
the standard way and only decoufl,, h, — h;) from the other degrees of freedom at this stage.
For the system defined by the Hamiltonian in Equation (1) with— h; = =, a first-order
integrable system can be achieved by the Von Zeipel tramsftion (e.g. Harrington 1968, 1969;
Marchal 1978, 1990). In the resulting canonical varial(és, G, Lo, Go, C; 41, g1, Lo, go, hi),
called long-period Delaunay variables, the new Hamiltorm&the first order can be written as

H = H(ﬁl,QI,EO,QO,C;gI)
= Hy + Hoo + Hy

G Bo | BiB2—5)Lo (L1
=Tz ez T gy GS)’ @
where
_ G ?-G-G3\” g? C*—G2—G3\*| .

In this time-independent Hamiltonian with five degrees ekftom, there are four negligible vari-
ables&, lo, 90 anth Their conjugate variableS;, Lo, Go andC, together with the total energy
Handz = z(H L1, Lo,G0) as given by solving Equation (2), are constants known froitiain
conditions. This confirms the integrability of the transf@md Hamiltonian system.

The differential equations fa¥; andgi, the variables corresponding to the only non-negligible
degrees of freedom, can be integrated simultaneouslycshe more efficient we first integrate the

equation foiGy, decoupled frong;, by using Equation (3). In terms of= 2 52 € (0, 1), this equation
can be written as

3 L}

G =+ L
2 L} G

Pyi(z)Pa(z), (4)

. c?—g? _C
where, withA = 300 ﬁ’ andB = 2g1,

Py(z) = B?2? —2(1 + AB)z + 2 + A%,
Py(z) = 4B%13 — (5B% + 8AB + 3)2? + (4A% + 10AB — z + 5)x — 5A2%.

From the necessary conditidt (x) P> (x) > 0, Marchal (1990) pointed out thatoscillates between
two neighboring rootsy, € (0,1) andx, € (xq4,1), of Py(z)P2(x). To be specific, the function
z(t) defined in Equation (4) changes its sign from negative totpesitz,,, and the opposite is true
atxy.

The difficulty in integrating Equation (4) caused by this avdrable feature of the right-hand
side can be avoided. For this, we introduce a continuousiypgimg angular variable, for which
mod(2~) is not allowed, by the following variable substitution= z, + (z;, — x,) sin? 6.

Letos, 04, 05 be the other three roots &f (z) P> (z). We have

dr 1

@ =4 (9) = \/1—01 sin2(8)+cz sint () —cg sin®(6) (5)
where
3 /i Lh
T:—ﬁ?} 1430~t, a:\/(ag—a:a)(a4—:17a)(cr5—xa)>O,
4 ‘COgO

c1 = dy +dy +ds, co = dydy + dids + dads,

c3 = dyidods > 0, dj = %7 (.] = 17233)
j a
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Given the initial condition(ty, 6y), the value off at any timet can be obtained from an iterative
method. Also giverd, Gi(> 0) can be calculated from the defining formulagaindz.

As | sin g1(t)| can be solved from Equation (3), the key to determinjng its quadrant. Let
be the biggest integer no greater thah . The quadrant of;(¢) can be calculated, according to
the type of motion and the values @f0) andd. Depending on the initial conditions, there are three
types of motion.

Type 1 Py(z,) = 0 and P (x) = 0. In this type of motiong; oscillates around; or —7
periodically. In the case afin(g1(0)) > 0, ¢i(¢) is in the first quadrant ifi is odd and the second
quadrant ifn. is even. In the other case;(¢) is in the third quadrant if: is odd and the fourth
quadrantifn is even.

») = 0. In this caseg; always increases as time grows. Thé)

Type 2. Py(z,) = 0 and P, =

is in the same quadrant &,,6,, + Th whered, = (”’Tl)” if ¢1(0) is in the same quadrant as
isin

)

(x
én
[~Z, 1), andd,, = “EUT if 4;(0) is in the same quadrant %, 7).

Type 3. Pi(z,) = 0 and P2(xp) = 0. Thegr always decreases as time goes by. Ji{e) is in
the same quadrant &8, — 5 0,,), whered,, = (1 — %) mif g1(0) is in the same quadrant &, ],
andd,, = — 4 if g1(0) is in the same quadrant s, 0].

The other four angular variables can be obtained by quadratu

a(t) = 6(0) + &t + Jo Fr(z()T (9)d0,  Lo(t) = Lo(0) + Lt + gfg)g?;) (5—32)t,
go(t) = go(0) + [ Fa(x(0))Ty (9)do), hi(t) = ha(0) + [, F3(w(9))Z1(9)dv,
where

x(z— A—Bz)?
Fi(x) = g5 [(z = §) + 2gHABe |

Fo(w) = 52 + o =052 [1 4 2B(A — Ba))

2Bo
— C (2=z)(A—Buz)
F3((E) - _23120'% z—(A—Bz)?

If the first-order long-period solution is obtained, one caake inverse transformations of the
solution to the original coordinate system.

3 COMPARISON BETWEEN M-MODEL AND K-MODEL

In order to compare the accuracy of different models in dattwy the observational quantities, it
is necessary to do a numerical experiment. For the time beiagare only interested in the sys-
tems with negligible 2nd-order perturbations. Therefoeegenerated 1000 systems, which satisfy
|Haz|/|Hoi + Hoo + H1| < 0.01in [—100, 100] years, andd, is the second-order perturbation term
in the Hamiltonian defined in Equation (1). This time spanssdibecause the practical cycle of
a star catalog is usually less than one hundred years. As®xdor some of the generated sys-
tems, especially for the systems with large periods and aggientricities in their outer orbits, the
first-order averaged perturbations are too large. For swase, M-model fails to be the first-order
model. We only consider the samples that satisfy

|H1/H0i| < 0.1, |H1/H00| < 0.5, (6)

during[— P, P,] years, where’, > max(100, P,), and P, represents the initial period of the outer
orbit. Nearly90 samples are excluded by the condition stated in Equatiom@ddition, Delaunay
elements are not effective in describing the orbits thahaeely circular, nearly parabolic or near the
reference plane, and M-model is not suitable to be used itanapmotion. If there are very small
divisors, the implicit Zeipel transformations cannot b&ved by the iterative method. Another 40



A First-order Dynamical Model of Hierarchical Triple Stars 1861

samples are excluded, af@d0 samples remain. The remaining samples are used to do a maeri
experiment to check the accuracy of M-model compared withddel.

We calculate the positions of three bodies in the centana$s frame during the-100, 100]
years by both the M-model and K-model. As a standard for coismpa, these positions are
also calculated by the numerical solutidd-ifiodel for short). Denote the root-mean-squared er-
ror (RMSE) of the 9-dimensional vectors of M-model relative to those of N-mdole dy;, and
the RMSE of the9-dimensional vectors of K-model relative to those of N-midole dix. When
(r/R)® < (my + msy)/my, generallydy /dx < 1, as shown in Figure 1.

Figure 1 shows that M-model is apparently better than K-rhimdierms of accuracy when the
abscissa is smaller thanl.4. When the abscissa is greater thah4, Figure 1 reveals that for most
samples the M-model is still more accurate than the K-model.

For a few samples which are in the upper-right quarter of feiduithe accuracy of the M-model
is not as good as that of K-model. This phenomenon can beiarpldy the perturbations and the
improper use of Delaunay elements.

There is one sample whose ordinate is apparently greatefihan Figure 1. We found that the

outer orbit of this sample has a very large period and is kiglecentric. Thenax Wﬁ/T}?;/W

is really small during the considergd-100, 100] years, and K-model closely approximates N-
model, while M-model considers the averaged perturbatidrish are much greater. We calculated
max |H — Hy; — Hoo — Hy| in [—P,, P;] years andnax |H — Hy; — Hy,| in [—100,100] years.
The former is more thah000 times larger than the latter, and this supports that M-m@debt a
first-order model in such cases.

As the abscissas of samples represented by squared peamstaufficiently small (bigger than
—1.4), the inaccuracies caused by small divisors cannot be éghdétor some samples represented
by squared points in Figure 1, the detailed reasons are exmapld currently uncertain. In all, M-
model is better than K-model in accuracy fer80% of the samples, and can be credibly applied
when the abscissa is smaller tha.4.

4 THE APPLICATION

Simplifications of M-model can be made according to the tesafl the numerical experiment. In
Equation (5),x(6(¢)) can be solved efficiently by an approximation. Generallyy) can be writ-
ten as

Zi(0) = L2 (9) + [T (¥) — Z2(0)] (7

whereZ, () can be defined as

1 H 2
if —4 0,1— 0 0
IQ (19) = \/1_Ci sin2 ¥+ sin? 9’ (& co > U, c1+c2>c3>0,c0 >0,

\/1—cy sin? 9’

The formulas for caIcuIatingioe 7> (9)dv by elliptic functions can be referred to in Byrd & Friedman
(1971). Similar studies which used elliptic functions camréferred to in Kozai (1962), Soderhjelm
(1982) and Solovaya (2003). The remaining t&fn}) — Z» (1) is generally small and sometimes
can be ignored. [f; (9) —Z>(¥) can be ignoredj can be calculated analytically by elliptic functions.
However, her@f;0 [Z1(¥) — Z2(¥9)] A9 is considered by applying a simple Newton-Cotes integnatio
formula to make a better approximatiohcan be solved approximately by an iterative method.
The three angular variablés, go, h; can also be integrated simultaneously by a simple Newton-
Cotes integration formula. Another simplification is thiae implicit Zeipel transformations from
the averaged variables to the osculating elements can bedunto explicit forms. We call this
model the MC-model.

if 7 —4co <0,1—c1 > |ca —c3| > 0.
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Fig.1 The abscissas on the x-axis are calculatef-, P;] years. The abscissa of the dashed
line is —1.4. Circular points represent the samples that satisfydx < 0.9, while square points
represent the samples that satidfy/dx > 0.9. There arer98 circular points and’2 square points.
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Fig.2 From the N-model, the deviations of component positions &fS\02022+3643 calculated
separately by using M-model, MC-model and K-model.

We now apply this model to 25 real triple stars with deterrdidgnamical states (component
masses and kinematic parameters). The results are listédbile 1, including the system name,

the order of magnitude of the perturbatidoef, , m), the RMSEs of M-model, K-model

mi+mz
and MC-model, the ratio of the RMSE of the MC-model to thatle K-model {og;, ddh—;c) and
the type of motion. According to this table, the accuracymeein the M-model and MC-model is
comparable. For all these stars, the RMSE of the MC-modamngarison with that of the K-model
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Table 1 The Application Results of the 25 Observed Triple Starsrdptine Time Span from 1900.0

to 2100.0

System name Perturbation order dnv dyvc dk Improvement  Type
WDS)  (logyy mlriiiime ) (ay) (AU) AU (logyp ) @R)

00325+6714 -1.52 2. 27102 2.78x10~2 0.47 -1.23 2

01148+6056 —-4.64 6.3107 4.96x10~* 1.96x10~3 -0.59 1

02022+3643 -1.56 0.013 0.013 0.23 -1.25 1
03082+4057 -4.36 7.0610-% 1.43x102 8.32x1072 -0.76 2

04142+2812 -4.13 4.28107° 1.10x10~% 0.10 -2.96 1

04400+5328 -1.53 0.119 0.119 0.96 -0.91 2
06262+1845 —-7.69 2.3310~7 2.63x10~% 6.01x10° -1.36 2

07201+2159 -7.35 7211079 7.58x10~7 1.23x10~° -1.21 2

10373-4814 -2.88 2.6010~% 2.41x1073 2.72x102 -1.05 2

10373-4814 —2.77 3.4910~% 4.73x1073 3.60x10~2 -0.88 2

11308+4117 -6.22 1.2810~7 4.96x10~ 6% 4.06x10~% -1.91 2

12108+3953 -1.64 0.180 0.180 0.99 -0.74 2
12199-0040 -3.24 1.311073 3.26x103 0.18 -1.74 2

15183+2650 -1.76 0.014 0.014 0.12 —-0.93 2
16578+4722 -2.39 6.9710~% 8.63x10~* 1.66x10~3 -0.28 2

17539-3445 —7.14 4.5810~7 2.47x107° 9.87x10°° —0.60 2

19155-2515 -4.08 2.0610~5 2.03x10~* 1.89x102 -1.97 1

20396+0458 -1.45 7.371072  7.17x10~2 1.30 -1.26 1

20475+3629 -2.15 1.291073 1.19x10~3 5.27x10~2 -1.65 2

22038+6437 —5.52 4.2610-7 4.91x10° 1.40x10~% —0.46 2

22288-0001 -4.03 2.9510~% 3.32x10~% 2.44x102 -1.87 2

22388+4419 -1.86 1.9410~2 1.94x102 0.77 -1.60 2

23078+7523 -3.98 8.2610-¢ 1.18x10~> 2.08x10~3 -2.25 2

23393+4543 -1.77 5.061072 5.08x10~2 0.72 -1.15 2

23393+4543 -1.86 5.581072 5.53x102 0.45 -0.91 2

is reduced significantly. Indeed, fer 60% of stars, the RMSEs are reduced by more than one
order of magnitude. To show more details, we take WDS 020823 2s an example. From the N-
model, the deviations of component positions calculateMbyodel, MC-model and K-model are
all shown in Figure 2. From this figure, we know that the perfance of the MC-model is almost
as good as that of the M-model. When compared with K-modelnibdel accuracy is significantly
improved and the applicable time span is significantly insssl.

As is well known, one of the important factors deciding thalify of dynamical state deter-
mination is the accuracy of the dynamical model. In ordetimsthe improvement in this respect
brought by the highly accurate MC-model, we apply both thaxlei and the K-model to two sys-
tems, WDS 20396+0458 (HIP 101955, type 1) and WDS 00325+@7R12552, type 2).

Two kinds of observations, relative position data (RPD) dhe Hipparcos Intermediate
Astrometric Data (HIAD), are used in the fitting. RPD are exted from the Washington Double
Star (WDS) Catalog (Mason et al. 2001), and the Fourth Catafdnterferometric Measurements
of Binary Stars (Hartkopf et al. 2001). HIAD are the abscisssiduals with respect to a reference
point, the abscissa of which is calculated from a given smiutHIAD are read from the “resrec”
folder in the catalog DVD of van Leeuwen (2007). With thessebational data, the maximum
likelihood estimate of model parameters is obtained by mizing the objective functiony?)

Y= Zi\il(yi—y(wi;‘ill'”al\/[))Q ’ (8)
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Fig. 3 The fitting result of HIP 101955.

wherey; is the observational quantity andzi;a; - - - an) is the corresponding calculated value
according to the model parameters - - ay;. We use the Bounded Variable Least Squares (BVLS)
algorithm (Lawson & Hanson 1995) to minimizé.

HIP 101955 is a nearby low-mass triple star. TherelarBPD points spanning the range from
1998 to 2008 for the inner orbit,46 points from1934 to 2008 for the outer one, anéll HIAD
that rely on a solution with five parameters. In the previoetedninations of the dynamical state,
Kepler's two-body motion model is applied separately toitimer{ Aa, Ab} and the outef Am, B}
whereAm is the center-of-mass of the inner binary AaAb (Malogols\ettal. 2007). The results are
collected in theSixth Catalog of Orbits of Visual Binary Stars (ORB6Y, where the inner and outer
orbits are roughly evaluated as good and reliable, resdgtaccording to the orbital coverage of
the observations. Because more observations are addedsiaddo use the K-model to fit observa-
tions. In comparison with the previous results, fffeis found to be reduced by 66%. When the
fitting model is replaced by the MC-model, thé is further reduced by 44%. Therefore, we con-
clude that when using the highly accurate MC-model, theittesult is significantly better than the
previous K-model’s results. Using the fitted dynamicalesigarameters, the RMSEs of MC-model
and K-model are calculated during the followih@0 years, that is, from2008 to 2108. The RMSE
of MC-model in comparison with that of the K-model is sigrdifittly reduced by more thas0%,
from 35.9 mas (K-model) to~ 6.0 mas (MC-model). This result shows that although they staht w
the same initial conditions, for HIP 101955, the K-modelmatrbe used to predict the component
positions.

For HIP 2552, there aré6 RPD points spanning the range frarf89 to 2005 for the inner
orbit, 75 points from1923 to 2010 for the outer one, and51 HIAD that rely on a solution that
has acceleration with seven parameters. The inner and anoiés were provided by Docobo et al.
(2008) and are evaluated as good and indeterminate resggdiy ORB6. K-model is also firstly
used to fit the observations. In comparison with the previitisg results, they? is reduced by
~ 42%. When the fitting model is replaced by the MC-model, thoughnth is not significantly
reduced, the RMSE is reduced frarh.5 mas which is calculated by the K-model@d’4 mas by
the MC-model. Using the fitted dynamical parameters, dutiedgollowing 100 years after the year
2010, the RMSE of K-model is 51.8 mas while that of MC-modeli%.6 mas. Therefore, K-model
is also not suitable for predicting the component positiointd|P 2552.

We plot the fitted trajectories of HIP 101955 and HIP 2552peesively, in Figure 3 and
Figure 4. In these two figures, the filled circles are the RP&lus the fitting, dotted curves repre-
sent the previous double two-body model while the solid esrare the fitted trajectories calculated

2 hitp: //mmw.usno.navy.mil/USNO/astrometry/opti cal -1 R-prod/wds/or b6



A First-order Dynamical Model of Hierarchical Triple Stars 1865

0.6

N WDS 00325+6714  Aa-Ab T T j ] . [ wos 0032546714 AB I
sl
o3|
02|
o1

0.0 |-

Y(arcsec)
L
y(arcsec)

-0.1

0.2

-03

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -5 -4 -3 -2 -1 0 1 2 3

X(arcsec) x(arcsec)

Fig. 4 The fitting result of HIP 2552. The open circle is a discardeithip

using the MC-model. The trigonometric curves represenhtimodel. As shown in the two figures,
the difference between the MC-model and the N-model is seraugh to be ignored. The fitted
dynamical state parameters and theiretrors are listed in Tables 2 and 3.

Table 2 The Fitted Dynamical Masses and Kinematic Parameters ofldIP55

Parameter Unit

M 0.786+0.11 0.4930.11 0.516-0.21 Me

T Ap —0.0598t0.0050 0.12#0.0050 —0.01880.022 arcsec
rBp —0.188£0.0040 0.173:0.0038 0.902-0.025 arcsec
VA —0.102+:0.0062 —0.206:0.016 0.1130.039 arcsec yrt
vp 0.0367:0.0027 —0.1740.0066  0.0669-0.016 arcsec yr!

Table 3 The Fitted Dynamical Masses and Kinematic Parameters oREH2

Parameter Unit

M 0.389+0.038 0.0969-0.038 0.17240.212 Me

T Ap —0.0614+:0.047 -0.298-0.029 0.296:-0.032 arcsec
rB —4.029:0.016 0.609:0.015 -0.318:1.8 arcsec
Vap 0.235£0.015 —-0.033%0.013 0.0006680.025 arcsec yr'
vp 0.0478:0.0059 —0.0554:0.0029 0.0455%:0.0097 arcsec yr!

5 CONCLUSIONS AND DISCUSSION

Marchal’s first-order analytical solution is implementedia more efficient simplified version is ap-
plied to real hierarchical triple stars. The results shoat the proposed first-order model is prefer-
able to the classical double two-body model both in fittingervational data and in predicting
component positions.

As pointed out in Section 3, there are a few cases to which tmeddel does not apply, because
of the inadequacy of the Delaunay elements. For these cBses;aré elements should be used
instead. There are also a few cases when the first-orderlpatians are very small in the time span
of observations, but their maximum values over the wholéopsrof the outer orbits are too large
to apply M-model. For these cases, our preliminary studiesvghat it is possible to give a suitable
first-order solution without resorting to averaging oves tuter orbit.
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