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Abstract To pursue a higher imaging resolution for exploring more details in the in-
formation conveyed by the Universe, the next generation of optical telescopes based
on a direct drive widely employ the extremely large aperturestructure, which also
introduces more disturbances and uncertain factors to the control system. Facing this
new challenge, the PID control method in main-axis control systems of traditional
astronomical telescopes cannot suffice for the requirementof the tracking precision
and disturbance sensitivity in angular velocity. To overcome this shortcoming, we es-
tablish a dynamic model and propose an H∞ controller for a 4-meter azimuth direct
drive control system that consists of a revolving platform (azimuth axis), a three-phase
torque motor, a motor drive, an encoder, a data acquisition card and a small comput-
ers. Simulations are carried out to analyze the model and guide the real experiments.
Experimental results show that the proposed H∞ controller reduces the tracking error
by a maximum of 80.69% (average 57.8%) and the disturbance sensitivity by a max-
imum of 82.3% (average 50.96%) compared with the traditional tuned PI controller;
furthermore, the order of the model describing the proposedcontroller can be reduced
to three, thus its feasibility in real systems is guaranteed.

Key words: H∞ control — direct-drive telescope — PMSM — disturbance rejection

1 INTRODUCTION

The extremely large aperture structure (ELAS) design is widely applied to new generation ground-
based direct-drive astronomical telescopes, such as the Very Large Telescope (VLT) and the Gran
Telescopio Canarias (GTC), to acquire more information about the Universe. On one hand, the ELAS
can achieve a higher imaging resolution, which is a desired significant characteristic in the design of
telescopes; however, on the other hand, the large aperture structure concomitantly introduces extra
negative influences to many aspects, e.g. wind shakes, the thermal effect (Erm & Gutierrez 2000;
Cho et al. 2001; Angeli et al. 2002; Farahani et al. 2012), andunexpected disturbance (Antoniou
et al. 1992; Carlstrom et al. 2011). These disadvantages present a challenge to the required stability
of the control system, especially for the direct-drive scheme.

For control systems of the main axes of telescopes applied inthe field of astronomy, the PID
controller is widely adopted for the control of angular velocity because of its simplicity. The VLT
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utilizes a typical PI controller with the feed-forward method and a certain number of filters; the
GTC selects a dual-feedback PI controller with excess filters; the Thirty Meter Telescope (TMT)
plans to implement PID feedback. Nonetheless, the disadvantages inherent in the ELAS design make
PID controllers unable to stabilize angular velocity; so itis difficult for the VLT to resist wind
disturbances (Ravensbergen 1994); the GTC is ineffective in controlling the disturbance caused by
extremely flukey changes in wind and other uncertain sourcesthat suddenly appear (Suárez et al.
2008). Thus, advanced control methods should be consideredin the future design of the controller
used on astronomical telescopes to satisfy the requirements of both high accuracy and excellent
performance in disturbance rejection.

H∞ control theory has attracted much attention during the pastdecades because of the robust
characteristics provided by its controllers (Ortega & Rubio 2004). As a controller that focuses on
the minimization problem in maximal energy-limited disturbance suppression within the working
frequency band and guarantees performance in a worst-case scenario (Kwakernaak 1993), the H∞
method is an ideal candidate for handling uncertain disturbances in large aperture telescopes. So far,
although the H∞ control method has been applied to the field of astronomy, thecurrent situation
remains immature. For example, studies of its applicationsin the control systems for main axes of
antennae that are part of radio telescopes (Gawronski 2001)and in segmented mirrors that are part
of the TMT (Baris Ulutas & Jennifer Dunn 2012) have only been simulations.

To solve the disturbance rejection and stabilization problems in the control systems for the main
axes and to achieve a better steady-state performance that is more significant for large telescopes,
we propose an H∞ controller for the 4-meter azimuth direct-drive control system, and establish
a dynamic model via least-squares (LS) estimation. To evaluate the performance of the proposed
controller, a comparison of the steady-state response errors between the traditional PI controller
and the proposed controller for system inputs contaminatedby different types of disturbance and
frequencies is carried out by simulation. The two controllers are also tested on a real closed-loop
control system. The quantified comparison results for tracking error and disturbance sensitivity are
given.

Section 2 introduces our experiment environment, establishes the mathematical model for the
4-meter direct-drive motor, and identifies the parameters of the model. Section 3 designs an H∞

controller for the motor. Section 4 states the simulation results of the H∞ controller for inputs with
disturbances. Section 5 shows the implementation of the H∞ controller, and compares its perfor-
mance with PID controllers via experiments. Finally, Section 6 concludes.

2 SYSTEM MODEL AND IDENTIFICATION

2.1 System Structure

The 4-meter azimuth direct-drive control system consists of an azimuth axis, a three-phase torque
motor, a motor drive, a photoelectric encoder, a small computer and a data acquisition card. The
revolving platform has a diameter of 3.76 meters and a weightof 11.2 tons, as shown in Figure 1(a).
The rotary direct-drive motor (with a peak torque of 2313 N·m in the linear range; 3145 N·m in
the saturation range) is installed coaxially under the platform. The photoelectric encoder is installed
on the stator. A metronixTM motor drive ARS 2310 FS is used to control the motor, as shown in
Figure 1(b). Before the motor starts to work, the rotor will be floated by the hydraulic system. The
small computer connects the motor drive through the serial port, receiving the parameters of the
motor and sending control instructions. The velocity of therotor is sampled by the PCI-1784U data
acquisition card which acquires pulse signals from the encoder. The H∞ controller is implemented
via the small computer.
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Fig. 1 System structure: (a) 3.76-meter revolving platform. (b) metronixTM motor drive ARS 2310
FS. The three-phase permanent magnet synchronous motor, with a direct drive that is powered by
the motor drive, can provide a peak torque of 2313 N·m in the linear range and 3145 N·m in the
saturation range. The motor and the revolving platform are coaxial.

2.2 Model and Identification

The behavior of the three-phase permanent magnet synchronous motor can be expressed in the model
in the rotor reference frame as

d

dt
id =

1

Ld
vd −
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id +

Lq
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pωriq , (1)
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λiq + (Ld − Lq) idiq

]

, (3)

whereLq andLd respectively denote the quadrature-axis (q-axis) and the direct-axis (d-axis) in-
ductances;R denotes the resistance of the stator windings;iq andid denote the q-axis and d-axis
currents respectively;vq andvd denote the q-axis and d-axis voltages respectively;ωr denotes the
angular velocity of the rotor;λ denotes the amplitude of the flux induced by the permanent magnets
of the rotor in the stator phases;p denotes the number of pole pairs;Te denotes the electromagnetic
torque (Krause et al. 2013). To simplify the implementation, the reference ofid is set to zero in the
current control loop (Louis 2013), so the electromagnetic torque is proportional toiq as

Te(t) = kmiq(t) , (4)

wherekm is a constant. For large telescopes directly driven by motors, the rate of change for the
current is much faster than that of the angular speed of the platform (the typical value is only 360◦

per 24 hours), thus for the current control loop, the counter-electromotive force (counter EMF) can
be considered to be invariant during the time that the current transition occurs (Dixon et al. 1996). By
ignoring the counter EMF effect and the d-axis currentid, the current control loop can be described
by a simple model like that of a DC motor, as shown in Figure 2. The closed-loop current control
transfer function can be obtained from Figure 2(c)

Gc(s) =
Iq(s)

I⋆
q (s)

=
Iq(s)

U⋆
q (s)/β

=
KI

TΣis2 + s + KI

, (5)
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(a)

(b)

(c)

Fig. 2 Classic simplification of the q-axis current control loop (Ruan & Chen 2006).U⋆
q (s) denotes

the reference voltage for a desired currentIq(s), GACR denotes the transfer function of the automatic
current regulator (ACR),β andToi respectively denote the amplification factor and the time constant
of the current feedback filter,Ks andTs respectively denote the amplification factor and the time
constant of the thyristor trigger and rectifier module, andR andT1 respectively denote the resistance
and the time constant of the armature. (a) The original modelignoring the counter EMF effect. (b)
The equivalent block diagram with a unit negative feedback.(c) Simplification. Designed as a PI
controller, GACR = Ki

(T1s+1)
T1s

whereKi is the proportional term, and the ACR eliminatesT1s + 1

in the denominator to regulate the open-loop transfer function asGo(s) = KI

s(Tois+1)(Tss+1)
where

KI = KiKsβ

T1R
; then becauseToi andTs are small, the term 1

(Tois+1)(Tss+1)
is further simplified as

1
TΣis+1

, whereTΣi = Toi + Ts.

whereKI is a constant coefficient properly regulated by the automatic current regulator (ACR), and
TΣi is used for merging the effects of the poles caused by thecurrent feedback filterand thethyristor
trigger and rectifier module. The angular velocity open-loop control adopts the classicmechanical
modelTL(t) = Jω̇(t) + µω(t), whereTL is the load torque,J is the moment of inertia of the
revolving platform,µ is the coefficient of friction, andω(t) is the angular velocity (Dorf & Bishop
2011). When ignoring the disturbance torque (actually it isconsidered to be the disturbance to the
input reference current in the next section),Te(t) = TL(t), thus the transfer function from the q-axis
current to the angular velocity is

Gv(s) =
Ω(s)

Iq(s)
=

km

Js + µ
. (6)

Consider the angular velocity open-loop transfer function

G(s) = Gc(s)Gv(s) =
km/µ

[(√
TΣi

KI
s
)2

+ 1
KI

s + 1

](
J
µ
s + 1

) , (7)
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Fig. 3 Comparison of the responses between the model and the measured data to the mixed sinu-
soidal inputi⋆q(t) = 8+0.5 sin(2π·0.1t)+0.5 sin(2π·0.05t)+0.5 sin(2π·0.02t) A, 0 ≤ t ≤ 800 s.
The sampling period is 2 s. The root-mean-square error is 0.7095 deg s−1 in this trial.

in which generallyTΣi is small (about10−3 s), KITΣi is set to 0.5 so thatKI ranges from102 to
103 s−1, µ is about 0.1 kg m2 s−1, andJ has an immense value for large telescopes (about1.8×104

kg m2 in our system). As a result, on the Bode diagram, the break frequencyω1 = µ/J is much
smaller than another oneω2 =

√

KI/TΣi, as is the cut-off frequency ofG(s). Thus, by ignoring the
two-order term in Equation (5), the transfer function Equation (7) is approximated as

G(s) ≈
kmKI

(Js + µ) (s + KI)
=

kmKI/J

s2 + (KI + µ/J) s + µKI/J
. (8)

Since this is a second-order linear model, the parameters can be identified by LS estimation via their
discrete form and the sampled data of the measured system response (Keesman 2011). Using this
approach, the result for this model is

G(s) =
Ω(s)

I⋆
q (s)

=
0.08253

s2 + 0.3268s + 0.1594
, (9)

where the unit of the input reference currenti⋆q(t) is ampere, and the unit of the angular speedω(t)

is scaled from rad s−1 to deg s−1. Figure 3 illustrates one trial of the measured system response to
the mixed sinusoidal inputi⋆q(t) = 8+0.5 sin(2π ·0.1t)+0.5 sin(2π ·0.05t)+0.5 sin(2π ·0.02t) A,
0 ≤ t ≤ 800 s, compared to the model’s response.

3 DESIGN OF THE H∞ CONTROLLER

The design of a standard H∞ controller consists of an electronic implementation of thetransfer
function matrixP (s) and the controllerK(s), as shown in Figure 4(a), forming a closed-loop linear
system wherew denotes the exogenous input (including the reference control and disturbances),u
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(a)
(b)

Fig. 4 Standard H∞ frame: (a) H∞ control loop; (b) schematic diagram of the implementation of
the 4-meter azimuth system with weighting functions.P (s) is an implementation of the augmented
matrix for the linear system;K(s) is the H∞ controller;w is the exogenous input (including the ref-
erence control and disturbances);z is the augmented output;u is the control signal;y is the measured
output;G is the nominal transfer function of the control object;We, Wu, andW∆ are the weight-
ing functions of the tracking performanceZe, the control inputZu, and the robust performanceZ∆

respectively.

denotes the control signal,y denotes the measured output, andz denotes the generalized perfor-
mance formulated by actual requirements, e.g. the trackingperformance. The relationships among
the variables are described by

[
Z(s)
Y (s)

]

=

[
P11(s) P12(s)
P21(s) P22(s)

]

︸ ︷︷ ︸

P (s)

[
W (s)
U(s)

]

, (10)

U(s) = K(s)Y (s). (11)

The objective is to produce a controllerK(s) that first guarantees the stability of the closed-loop
system and then minimizes the H∞ norm of the system fromw to z, i.e.

J = inf
K(s)∈Sk

‖Tzw(s)‖
∞

, (12)

whereSk denotes the set of all the stabilizing controllers and

Tzw(s) =
Z(s)

W (s)
= P11(s) + P12(s)K(s) [I − P22(s)K(s)]−1 P21(s) . (13)

The solution to this optimization problem can be solved by the Algebraic Riccati Equations (Zhou
et al. 1996).

The 4-meter azimuth closed-loop control problem for the 4-meter azimuth can be solved in the
standard H∞ frame with appropriate weighting functions, as shown in Figure 4(b). The weighting
functions perform an important role in adjusting the sensitivity area and the uncertain boundary,
averting the actuator from saturation, removing noise fromthe input, and suppressing a disturbance
based on its design characteristics (Shen 1996). Under thisframe, the behavior of the implementation
of our system can be modeled by the augmented matrix

P (s) =







We −WeG
0 Wu

0 W∆G
I −G







, (14)
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whereWe(s), Wu(s) andW∆(s) are the weighting functions of the tracking performanceZe, the
control inputZu, and the robust performanceZ∆, respectively (Bibel & Malyevac 1992).

Although the design of weighting functions inevitably introduces a subjective tuning process,
several guidelines can be followed (Ortega & Rubio 2004; Bibel & Malyevac 1992). To avoid satu-
ration of the actuator, the reference current should be constrained by a constant less than the max-
imal feasible valueImax, thusWu(s) could be defined as a small constant close to1/Imax (Bibel
& Malyevac 1992). To adjust the tracking performance and thefrequency response characteristic,
We(s) adopts a low-pass filter structure (Kwakernaak 1993). To deal with uncertain factors and en-
sure robust, stable performance,|W∆(jω)| can be designed to cover|1 − G(jω)/G0(jω)| on the
Bode diagram whereG0 denotes the nominal transfer function ofG (Mei et al. 2003). Because
high disturbance rejection and high stability are requiredfor this system, an equilibrium should
be approached between the selections ofWe(s) andW∆(s). After a tuning process is applied, the
weighting functions are defined as follows

Wu(s) = 0.05, (15)

We(s) =
3.5

s2 + 11s + 0.01
, (16)

W∆(s) =
4.5s + 1

s + 20
. (17)

By solving the optimization problem defined by Equation (12)and compensating the controller gain,
the H∞ controllerK(s) can be obtained as a fifth-order transfer function

K(s) =
I⋆
q (s)

∆Ω(s)
=

9.1111(s + 11)(s + 20)(s2 + 0.3268s + 0.1594)

(s + 20)(s + 11)(s + 0.0009092)(s2 + 1.874s + 1.69)
(18)

=
9.1111(s2 + 0.3268s + 0.1594)

(s + 0.0009092)(s2 + 1.874s + 1.69)
(19)

which can be simplified to third-order by canceling two pole-zero pairsz1 = p1 = −11 andz2 =
p2 = −20. The Bode diagrams of the weighting functions are shown in Figure 5(a). The Bode
diagrams of Equations (18) and (19) are shown in Figure 5(b),which illustrates that the controller
can keep almost the same frequency response after approximation—this feature benefits a simple
realization of the controller. Using the controller definedby Equation (19), the behavior of the closed-
loop system is described by

GH(s) =
Ω(s)

Ω⋆(s)
=

K(s)G(s)

1 + K(s)G(s)
=

0.7519

s3 + 1.8749s2 + 1.697s + 0.7534
, (20)

whereΩ⋆(s) is the reference angular velocity andG(s) is defined in Equation (9).

4 SIMULATIONS

4.1 Hypotheses Related to Model Inputs

To compare the performance between the H∞ and the classic PI controller, the following idealiza-
tions are considered in the simulation:

(1) All exogenous noises are equivalent to a disturbance∆Ω⋆ affecting the referenceΩ⋆ in
Equation (20). This results from the fact that many originaldisturbances can be traced in the
models, thus their overall effect can be modeled as a properly chosen∆Ω⋆.
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Fig. 5 (a) Bode diagrams for the weighting functionsWe(s), Wu(s) andW∆(s). (b) Bode diagrams
for transfer function of the original H∞ controllerK(s) Eq. (18) and the one after pole-zero cancel-
lation Eq. (19). The superposed curves on the diagram show that Eq. (18) and Eq. (19) have almost
the same frequency response.

(2) Four cases of the inputu(t), i.e. the input function on the time domain, are examined in the
simulation:u0(t) = h(t) for a standard step response test,u1(t) = ω⋆ + w1(t) = h(t) +
a sin 2πf0t for band-limited disturbances,u2(t) = ω⋆ + w2(t) = h(t) + a ·

∑
∞

n=0 δ(t− n/f0)
for periodic shocks, andu3(t) = ω⋆ + w3(t) = ε(t) for random disturbances, whereh(t)
denotes the unit step function,a is a coefficient for tuning magnitude,f0 is a constant frequency
(Hz), δ(·) denotes the Dirac delta function, andε(t) ∼ GP (1, σ) denotes a Gaussian process
with mean 1 and standard deviationσ.

The u1 andu2 cases can roughly reflect the system response characteristics to different kinds of
“colored” disturbances, and theu3 case represents the synthetic effect of all disturbances which can
be considered random occurrences.
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4.2 Simulation Results

Because a trade-off should be made in the choice of the controller gain, for the purpose of comparing
two PI controllersKPI(s) = kp + ki/s after tuning

KPI(s) = 12.5 +
0.8334

s
, (21)

K ′

PI(s) = 9.2 +
0.8474

s
. (22)

These are considered such that the largerkp is, the less settling time is needed but the worse the
disturbance suppression performs andvice versa. They will substitute for the H∞ controllerK(s) in
Figure 4(b) in simulations. The transfer functions of the closed-loop system using the PI controllers
whose behaviors are defined by Equation (21) and Equation (22) are respectively

GPI(s) =
KPI(s)G(s)

1 + KPI(s)G(s)
=

1.036s + 0.0688

s3 + 0.3268s2 + 1.191s + 0.0688
, (23)

G′

PI(s) =
KPI(s)G(s)

1 + KPI(s)G(s)
=

0.7593s + 0.0699

s3 + 0.3268s2 + 0.9187s + 0.0699
. (24)

Four kinds of inputs,u0, u1, u2 andu3 mentioned in Subsection 4.1, will be applied to the systems
GH, GPI andG′

PI for the simulations.
The tests ofu1 andu2 include five different disturbance frequenciesf0, 0.2, 0.5, 1.0, 1.5 and

2.0 Hz, which are chosen in accordance with the power spectral density analysis for the significant
disturbances. The low frequency 0.2 Hz represents the disturbance caused by the stiffness deficiency
of the rotator-axis and the hydraulic vibration, and the tests stop at 2.0 Hz because it is the Nyquist
frequency of sampling. The test ofu3 also adopts values of the standard deviationσ to be 0.2, 0.5,
1.0, 1.5, and 2.0. The closed-loop system responses in the tests ofu0, u1, u2 andu3, with cases 0.2,
0.5, 1.0 Hz forf0 and 0.2, 0.5, 1.0 forσ, are shown in Figure 6.

To quantify thetracking error and thedisturbance sensitivityin the steady state, the response
datayi, i = 1, 2, . . . , L, after the settling time are utilized to respectively definethese two indicators

et =

√
∑L

k=1 (yi − r)2

L
, (25)

es =

√
∑L

k=1 (yi − ȳ)
2

L
, (26)

wherer ≡ 1 is the expected steady-state value for the unit step input, thuset measures the steady-
state tracking error;̄y denotes the average of allyi, thuses measures the extent of steady-state oscil-
lations, i.e. the disturbance sensitivity. The comparisonof the indicatorset andes for the controllers
with inputsu1(t), u2(t) andu3(t) is shown in Table 1. Results indicate that the H∞ controllerGH(s)
has a better steady-state performance, i.e. lower trackingerror and disturbance sensitivity, than the
PI controllersGPI andG′

PI—on the working frequency band, the proposed H∞ controller can:

– reduce the tracking error of the PI controllers on average by 68.8% for the sinusoidal distur-
bance, by 14.1% for the periodic impulse disturbance, and by57.8% for the Gaussian distur-
bance;

– reduce the disturbance sensitivity of the PI controllers on average by 90.1% for the sinusoidal
disturbance, by 91.3% for the periodic impulse disturbance, and by 58.32% for the Gaussian
disturbance.



1940 L. Y. Chen et al.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 000 . 51
1 . 5

T i m e ( s )A ngul arvel ocit y(d egs®1 )
P I D ( k p = 9 . 2 )P I D ( k p = 1 2 . 5 )H

(a)

00 . 511 . 52 f 0 = 0 . 2 0 H z
00 . 51 f 0 = 0 . 5 0 H z

0 2 0 4 0 6 0 8 0 1 0 0 1 2 000 . 51 f 0 = 1 . 0 0 H zA ngul arvel ocit y(d egs×1 )
T i m e ( s ) P I D ( k p = 9 . 2 )P I D ( k p = 1 2 . 5 )H

1 . 51 . 5
(b)

00 . 511 . 5 f 0 = 0 . 2 0 H z
00 . 511 . 5 f 0 = 0 . 5 0 H z

0 2 0 4 0 6 0 8 0 1 0 0 1 2 000 . 511 . 5 f 0 = 1 . 0 0 H zA ngul arvel ocit y(d egs�1 )
T i m e ( s ) P I D ( k p = 9 . 2 )P I D ( k p = 1 2 . 5 )H

22
(c)

00 . 512 = 0 . 2 0
00 . 51 = 0 . 5 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 000 . 51 = 1 . 0 0A ngul arvel ocit y(d egs/1 )
T i m e ( s ) P I D ( k p = 9 . 2 )P I D ( k p = 1 2 . 5 )H

1 . 51 . 5
1 . 5

(d)

Fig. 6 Closed-loop system responses to (a)u0(t) = 1, (b) u1(t) = 1 + 0.2 sin 2πf0t, (c) u2(t) =
1 + 0.2 ·

∑
∞

n=0 δ(t− n/f0), and (d)u3(t) ∼ GP (1, σ), 0 ≤ t ≤ 117.36 s, whereδ(·) denotes the
Dirac delta function, andGP (1, σ) denotes the Gaussian process with mean 1 and standard deviation
σ. The simulation results show that, in the sense of steady-state performance, the H∞ controllerGH

is better than the PI controllersGPI andG′

PI. A detailed quantified advantage ofGH is shown in
Table 1.

5 EXPERIMENT

5.1 Implementation of Controllers

As shown in Figure 4(b), the input of the controllerK(s) is the error∆Ω(s) between the reference
angular velocity and its true value, and the output is the reference currentI⋆

q (s) for the motor model
G(s). For the transfer functionK(s) = I⋆

q (s)/∆Ω(s), the time domain controller can be obtained
by i⋆q(t) = L−1{∆Ω(s)K(s)}. After approximation and discretization for implementingon a small
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Table 1 Simulation: Comparison of Performance for Different Controllers inGPI, G′

PI andGH

Parameter
Tracking Erroret (×10−2 deg s−1)

Inputu1 Inputu2 Inputu3

GPI G′

PI GH GPI G′

PI GH GPI G′

PI GH

0.2 27.6 14.3 4.82 1.14 0.68 0.27 2.09 1.88 0.96
0.5 1.73 1.22 0.40 0.79 0.88 0.77 4.97 4.73 1.89
1.0 0.61 0.39 0.21 1.69 1.83 1.75 6.85 4.80 2.61
1.5 0.50 0.30 0.20 2.65 2.80 2.72 8.79 6.26 3.70
2.0 0.49 0.29 0.20 3.62 3.77 3.70 8.31 9.58 3.90

Parameter
Disturbance Sensitivityes (×10−3 deg s−1)

Inputu1 Inputu2 Inputu3

GPI G′

PI GH GPI G′

PI GH GPI G′

PI GH

0.2 276 143 48.1 11.3 6.28 1.90 20.7 18.7 9.42
0.5 17.0 12.1 3.38 4.14 2.68 0.36 49.3 47.2 18.1
1.0 5.24 3.62 0.42 3.91 2.51 0.20 68.5 46.8 26.0
1.5 4.00 2.67 0.12 3.89 2.56 0.20 87.9 62.6 37.0
2.0 3.77 2.48 0.05 4.12 2.61 0.32 82.6 95.5 38.1

Notes: (1) The header “Parameter” denotesf0 for u1(t) andu2(t), andσ for u3(t). (2) u1(t) = 1 + 0.2 sin 2πf0t,
u2(t) = 1 + 0.2 ·

∑
∞

n=0 δ(t − n/f0), andu3(t) ∼ GP (1, σ). (3) et and es are defined in Equation (25) and
Equation (26) respectively.

computer, the H∞ controller Equation (19) is derived as

iH(k) = L−1 {∆Ω(s)K(s)} (27)

≈ 9.11 ·
k∑

i=p

∆ω(iT )
{

0.0943 + 1.19e−0.937(k−i)T cos [0.901(k − i)T + 0.708]
}

+ c1(ω
⋆),

(28)

wherek denotes thek-th timestep,k ∈ Z
+; T is the sampling interval (0.5 s in this experiment);

p = 0 is the theoretical solution butp = k − 19 whenk > 19 is employed, because in practice
the previous timesteps have little effect oniH(k); c1 is an empirical constant, which is related to the
reference angular velocityω⋆, for approximating the initial values of the inverse Laplace transform
result. The tuning process ofc1 starts with the value that refers to the current-velocity open-loop
relation for each specific angular velocityω⋆, and stops when a satisfactory performance is achieved.
In our experiment, the values ofc1 are respectively 5.65, 5.75, 6.2, 6.45, 6.65, 7.12, 7.39, 7.42, and
7.78 A for 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 deg s−1 of ω⋆.

For comparison, a PI controller is properly tuned by using the simulation result as guidance. The
PI controller used in the experiment is

K ′′

PI(s) = 12.5 +
4.98 × 10−5

s
. (29)

Similarly, this controller is implemented as

iPI(k) = L−1 {∆Ω(s)K ′′

PI(s)} (30)

= 12.5∆ω(kT ) + 4.98 × 10−5 ·

k∑

i=0

∆ω(iT ) + c2(ω
⋆), (31)

wherec2 is also a value whose starting value is set to an empirical constant and whose tuning
procedure is the same asc1. The values ofc2 in our experiment are respectively 5.65, 5.75, 6.2, 6.45,
7.6, 7.8, 7.12, 7.39, and 7.42 A for 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 deg s−1 of ω⋆.
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Table 2 Experiment: Performance Comparison of ControllersiH(k) andiPI(k)

ω⋆ (deg s−1)

Tracking Erroret Disturbance Sensitivityes

iH (deg s−1) iPI (deg s−1) Improved (%) iH (deg s−1) iPI (deg s−1) Improved (%)

1.0 0.0139 0.0232 40.09 0.0126 0.0222 43.40

1.5 0.0179 0.0338 47.04 0.0143 0.0210 31.78

2.0 0.0135 0.0601 77.54 0.0129 0.0283 54.47

2.5 0.0146 0.0315 64.99 0.0144 0.0416 65.44

3.0 0.0090 0.0443 79.68 0.0090 0.0389 76.91

3.5 0.0241 0.0348 30.75 0.0220 0.0275 20.00

4.0 0.0216 0.0421 48.69 0.0196 0.0417 53.02

4.5 0.0193 0.0392 50.77 0.0191 0.0278 31.32

5.0 0.0186 0.0963 80.69 0.0169 0.0957 82.30

Notes: (1)iH(k) is the H∞ controller defined in Equation (28) andiPI(k) is the PI controller defined in Equation (31).
(2) ω⋆ is the reference angular velocity input for the closed-loopsystem. (3)et andes are defined in Equation (25)
and Equation (26) respectively. (4) The “Improved” indicator for Tracking Erroret is calculated by(et{iPI} −

et{iH})/et{iPI} × 100% and the “Improved” indicator for Disturbance Sensitivityes is calculated by(es{iPI} −

es{iH})/es{iPI} × 100%.

Finally, an upper bound for bothiH(k) andiPI(k) should be assigned according to engineering
limits on the system and safety considerations. Pragmatic values of the upper bound used in our
experiment are 0–17.68 A under angular velocities 1–5 deg s−1. Any calculatediH(k) or iPI(k) that
exceeds the upper bound will be restricted to the feasible region.

5.2 Experimental Results

Nine reference angular velocitiesω⋆ are implemented as inputs to the closed-loop system: 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 deg s−1. The outputs of the closed-loop system, which are real
angular velocities measured by the photoelectric encoder,are illustrated in Figure 7: (a) for the
system using the H∞ controlleriH(k) described in Equation (28), and (b) for the system using the
PI controlleriPI(k) described in Equation (31). Quantified results that can be used for comparison
of the tracking erroret and the disturbance sensitivityes are shown in Table 2. Results indicate that
the H∞ controller has better behavior in terms of disturbance rejection and stability, and is able to
significantly improve the steady-state performance of the PI controller for reducing the tracking error
by 30.75%–80.68% (average 58%) and the disturbance sensitivity by 20.0%–82.3% (average 51%).

6 CONCLUSIONS

This paper reviews the external disturbances that exist in several well-known large aperture tele-
scopes such as VLT, GTC and TMT, and briefly analyzes insufficiency in their control strategies that
are mainly carried out with the PID controller. Based on the necessities of disturbance rejection and
stabilization for such kind of telescopes, we establish an H∞ controller and highlight its advantages
on an experimental 4-meter azimuth direct-drive control system step by step. First, the model of the
real system is identified by the LS method. Second, an H∞ controller is designed and then compared
with two tuned PI controllers in the simulations, which include three different contaminated step
signals. Finally, guided by the simulation results, an H∞ controller and a tuned PI controller, used
as a comparison, are implemented in a real velocity closed-loop control system. The experimental
results show that the H∞ controller can improve the performance in terms of disturbance rejection
and stabilization with the corresponding quantitative indicators.



H∞ Controller for 4-meter Direct-drive Azimuth Axis 1943

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 001
23
45
6

A ngul arV el ocit y(d egsX1 )
S a m p l e N u m b e r ( 0 . 5 s n u m i 1 ) * = 1 . 0* = 1 . 5* = 2 . 0* = 2 . 5* = 3 . 0* = 3 . 5* = 4 . 0* = 4 . 5* = 5 . 0

(a)

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 001
23
45
6

A ngul arV el ocit y(d egs�1 )
S a m p l e N u m b e r ( 0 . 5 s n u m � 1 ) * = 1 . 0* = 1 . 5* = 2 . 0* = 2 . 5* = 3 . 0* = 3 . 5* = 4 . 0* = 4 . 5* = 5 . 0

(b)

Fig. 7 Real angular velocities of the closed-loop system that are responses to the reference inputs
ω⋆ from 1.0 to 5.0 deg s−1, controlled by (a) the H∞ controlleriH(k) described in Eq. (28), and (b)
the PI controlleriPI(k) described in Eq. (31).
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