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Abstract To pursue a higher imaging resolution for exploring moradein the in-
formation conveyed by the Universe, the next generatiorptital telescopes based
on a direct drive widely employ the extremely large aperstrecture, which also
introduces more disturbances and uncertain factors toghial system. Facing this
new challenge, the PID control method in main-axis contystems of traditional
astronomical telescopes cannot suffice for the requirewietite tracking precision
and disturbance sensitivity in angular velocity. To ovenechis shortcoming, we es-
tablish a dynamic model and propose ag ldontroller for a 4-meter azimuth direct
drive control system that consists of a revolving platfoazihuth axis), a three-phase
torque motor, a motor drive, an encoder, a data acquisigod and a small comput-
ers. Simulations are carried out to analyze the model ardkghie real experiments.
Experimental results show that the proposed ebntroller reduces the tracking error
by a maximum of 80.69% (average 57.8%) and the disturbamsétisty by a max-
imum of 82.3% (average 50.96%) compared with the tradititimaed PI controller;
furthermore, the order of the model describing the propesedroller can be reduced
to three, thus its feasibility in real systems is guaranteed
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1 INTRODUCTION

The extremely large aperture structure (ELAS) design ielyidpplied to new generation ground-
based direct-drive astronomical telescopes, such as thel\#ege Telescope (VLT) and the Gran
Telescopio Canarias (GTC), to acquire more informatioruatiee Universe. On one hand, the ELAS
can achieve a higher imaging resolution, which is a desigaficant characteristic in the design of
telescopes; however, on the other hand, the large apettumtuse concomitantly introduces extra
negative influences to many aspects, e.g. wind shakes, ¢hmdh effect (Erm & Gutierrez 2000;
Cho et al. 2001; Angeli et al. 2002; Farahani et al. 2012), amekpected disturbance (Antoniou
et al. 1992; Carlstrom et al. 2011). These disadvantagsepta challenge to the required stability
of the control system, especially for the direct-drive sobe

For control systems of the main axes of telescopes appli¢hkifield of astronomy, the PID
controller is widely adopted for the control of angular \@tg because of its simplicity. The VLT



1932 L.Y.Chenetal.

utilizes a typical PI controller with the feed-forward methand a certain number of filters; the
GTC selects a dual-feedback PI controller with excess diltére Thirty Meter Telescope (TMT)
plans to implement PID feedback. Nonetheless, the disadgasinherent in the ELAS design make
PID controllers unable to stabilize angular velocity; sasitdifficult for the VLT to resist wind
disturbances (Ravensbergen 1994); the GTC is ineffeativ®ntrolling the disturbance caused by
extremely flukey changes in wind and other uncertain souttassuddenly appear (Suarez et al.
2008). Thus, advanced control methods should be considteteé future design of the controller
used on astronomical telescopes to satisfy the requirenadrtioth high accuracy and excellent
performance in disturbance rejection.

H. control theory has attracted much attention during the gasades because of the robust
characteristics provided by its controllers (Ortega & RubBD04). As a controller that focuses on
the minimization problem in maximal energy-limited didiance suppression within the working
frequency band and guarantees performance in a worst-casar® (Kwakernaak 1993), the.H
method is an ideal candidate for handling uncertain distaichs in large aperture telescopes. So far,
although the H, control method has been applied to the field of astronomyg¢tieent situation
remains immature. For example, studies of its applicatioribe control systems for main axes of
antennae that are part of radio telescopes (Gawronski 20@il)h segmented mirrors that are part
of the TMT (Baris Ulutas & Jennifer Dunn 2012) have only bemmuations.

To solve the disturbance rejection and stabilization pots in the control systems for the main
axes and to achieve a better steady-state performancestivaire significant for large telescopes,
we propose an K controller for the 4-meter azimuth direct-drive controbm, and establish
a dynamic model via least-squares (LS) estimation. To etelthe performance of the proposed
controller, a comparison of the steady-state responseseletween the traditional Pl controller
and the proposed controller for system inputs contaminbyedifferent types of disturbance and
frequencies is carried out by simulation. The two contrsliere also tested on a real closed-loop
control system. The quantified comparison results for frackrror and disturbance sensitivity are
given.

Section 2 introduces our experiment environment, estasdishe mathematical model for the
4-meter direct-drive motor, and identifies the parametéth® model. Section 3 designs anH
controller for the motor. Section 4 states the simulaticults of the H, controller for inputs with
disturbances. Section 5 shows the implementation of theddntroller, and compares its perfor-
mance with PID controllers via experiments. Finally, St concludes.

2 SYSTEM MODEL AND IDENTIFICATION
2.1 System Structure

The 4-meter azimuth direct-drive control system consi$@noazimuth axis, a three-phase torque
motor, a motor drive, a photoelectric encoder, a small cderpand a data acquisition card. The
revolving platform has a diameter of 3.76 meters and a weaifjht.2 tons, as shown in Figure 1(a).
The rotary direct-drive motor (with a peak torque of 2313nNn the linear range; 3145 N in
the saturation range) is installed coaxially under thefptat. The photoelectric encoder is installed
on the stator. A metron®¥" motor drive ARS 2310 FS is used to control the motor, as shown i
Figure 1(b). Before the motor starts to work, the rotor wél floated by the hydraulic system. The
small computer connects the motor drive through the send, peceiving the parameters of the
motor and sending control instructions. The velocity of thr is sampled by the PCI-1784U data
acquisition card which acquires pulse signals from the dacarhe H, controller is implemented
via the small computer.
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Fig.1 System structure: (a) 3.76-meter revolving platform. (Etmonix™ motor drive ARS 2310
FS. The three-phase permanent magnet synchronous motioradirect drive that is powered by
the motor drive, can provide a peak torque of 231&Nn the linear range and 3145 in the
saturation range. The motor and the revolving platform aexial.

2.2 Model and ldentification

The behavior of the three-phase permanent magnet synalsomator can be expressed in the model
in the rotor reference frame as

d. 1 R Ly .
Eld_L_dvd_L_dld—i_L_dpwrlq’ 1)
A Ly DB Ld A @)
T R R R L R e
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where L, and L4 respectively denote the quadrature-axis (g-axis) and itieetebxis (d-axis) in-
ductancesR denotes the resistance of the stator windirigsandiq denote the g-axis and d-axis
currents respectivelyy, andvg denote the g-axis and d-axis voltages respectivelydenotes the
angular velocity of the rotory denotes the amplitude of the flux induced by the permanenhetag
of the rotor in the stator phasesdenotes the number of pole paiffg; denotes the electromagnetic
torque (Krause et al. 2013). To simplify the implementatibe reference of; is set to zero in the
current control loop (Louis 2013), so the electromagnetique is proportional to, as

To(t) = kmiq(t), (4)

wherek,, is a constant. For large telescopes directly driven by nsotbie rate of change for the
current is much faster than that of the angular speed of ttéopin (the typical value is only 360
per 24 hours), thus for the current control loop, the couatectromotive force (counter EMF) can
be considered to be invariant during the time that the ctitransition occurs (Dixon et al. 1996). By
ignoring the counter EMF effect and the d-axis currgnthe current control loop can be described
by a simple model like that of a DC motor, as shown in Figure 2 Tlosed-loop current control
transfer function can be obtained from Figure 2(c)

Iq(s) o Iq(s) K

Gels) = Ix(s)  Ui(s)/B T T2 +s+ Kp

®)
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Fig. 2 Classic simplification of the g-axis current control loopuéR & Chen 2006)U; (s) denotes
the reference voltage for a desired currgyits), Gacr denotes the transfer function of the automatic
current regulator (ACR)3 andT,; respectively denote the amplification factor and the tinrestant

of the current feedback filtef{s and T respectively denote the amplification factor and the time
constant of the thyristor trigger and rectifier module, &@and7} respectively denote the resistance
and the time constant of the armature. (a) The original migphelring the counter EMF effect. (b)
The equivalent block diagram with a unit negative feedbgck Simplification. Designed as a Pl

controller, Gecr = Ki% whereK; is the proportional term, and the ACR eliminafes + 1

in the denominator to regulate the open-loop transfer fanasG,(s) = MW where
Kr = K%’ﬁ;ﬁ; then becausé),; and7’s are small, the tern?m is further simplified as
L, whereTs; = Tp; + Ts.

Ts;s+1?

whereK is a constant coefficient properly regulated by the autantatirent regulator (ACR), and
Ts; is used for merging the effects of the poles caused byuhent feedback filteand thethyristor
trigger and rectifier moduleThe angular velocity open-loop control adopts the classchanical
model Ty, (t) = Jw(t) + pw(t), whereTy, is the load torque/J is the moment of inertia of the
revolving platform . is the coefficient of friction, and(t) is the angular velocity (Dorf & Bishop
2011). When ignoring the disturbance torque (actually @édasidered to be the disturbance to the
input reference current in the next sectidh)t) = T1,(¢), thus the transfer function from the g-axis
current to the angular velocity is

Q(s) km,
Gy(s) = = . 6
(S) Iq(s) JS _|_ [/L ( )
Consider the angular velocity open-loop transfer function
km
G(s) = Cel8)Guls) = i , ™

{(\/%5)2 + s+ 1] (is + 1)
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Fig. 3 Comparison of the responses between the model and the redafata to the mixed sinu-
soidal inputi;; (t) = 8+4-0.5 sin(27-0.1¢)+0.5 sin(27-0.05¢)+0.5 sin(27-0.02t) A, 0 < ¢ < 800 s.
The sampling period is 2 s. The root-mean-square error 898.deg s* in this trial.

in which generallyTs; is small (aboufl0—2 s), K;Tk; is set to 0.5 so thak’; ranges fronmi0? to
103 s71, pis about 0.1 kg rhs™!, and.J has an immense value for large telescopes (ab8ut 10*
kg m? in our system). As a result, on the Bode diagram, the breajuéacyw; = y/J is much
smaller than another one = /K /T, as is the cut-off frequency @#(s). Thus, by ignoring the
two-order term in Equation (5), the transfer function Edurat7) is approximated as
km K1 kmKr/J
G(s) = = . 8

() (Js+p)(s+Kp) 2+ (Kr+p/J)s+pKr/J ®
Since this is a second-order linear model, the parametarseaentified by LS estimation via their
discrete form and the sampled data of the measured syst@onss (Keesman 2011). Using this
approach, the result for this model is

Q(s) 0.08253

= = 9
I3(s) 52+ 0.3268s + 0.1594 ©

G(s)

where the unit of the input reference curréfitt) is ampere, and the unit of the angular spe¢t)
is scaled from rads' to deg s'. Figure 3 illustrates one trial of the measured system mespto
the mixed sinusoidal inpuf, () = 8 +0.5 sin(27-0.1¢) + 0.5 sin(27 - 0.05¢) + 0.5 sin(27 - 0.02t) A,
0 <t < 800 s, compared to the model’s response.

3 DESIGN OF THE H,, CONTROLLER

The design of a standard i controller consists of an electronic implementation of ttasfer
function matrixP(s) and the controllef (s), as shown in Figure 4(a), forming a closed-loop linear
system wherev denotes the exogenous input (including the reference aloentid disturbances),
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Fig.4 Standard H, frame: (a) Ho control loop; (b) schematic diagram of the implementatién o
the 4-meter azimuth system with weighting functioRgs) is an implementation of the augmented
matrix for the linear systen¥ (s) is the H,, controller;w is the exogenous input (including the ref-
erence control and disturbances)s the augmented outpuit;is the control signaly is the measured
output; GG is the nominal transfer function of the control objeidt;, ., andWWa are the weight-
ing functions of the tracking performanég, the control inputZ,,, and the robust performancée,
respectively.

denotes the control signaj, denotes the measured output, andenotes the generalized perfor-
mance formulated by actual requirements, e.g. the tragk@mfprmance. The relationships among
the variables are described by

7o) = [ ) [o6) 10)
e
U(s) = K(s)Y (s). (11)

The objective is to produce a controll&f(s) that first guarantees the stability of the closed-loop
system and then minimizes the Hhorm of the system fromv to z, i.e.

J= inf ||Tow , 12
e IT=(8) (12)
wheresS), denotes the set of all the stabilizing controllers and
Z _
Towls) = W((i)) = Piy(s) + Pio(s)K (s) [I — Paa(s)K (5)] ™" Paa(s). (13)

The solution to this optimization problem can be solved ey Atgebraic Riccati Equations (Zhou
et al. 1996).

The 4-meter azimuth closed-loop control problem for theetanazimuth can be solved in the
standard H, frame with appropriate weighting functions, as shown inuirég4(b). The weighting
functions perform an important role in adjusting the sévisjtarea and the uncertain boundary,
averting the actuator from saturation, removing noise ftbeninput, and suppressing a disturbance
based on its design characteristics (Shen 1996). Unddrainie, the behavior of the implementation
of our system can be modeled by the augmented matrix

; (14)
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whereW.(s), W, (s) andWa(s) are the weighting functions of the tracking performattethe
control inputZ,,, and the robust performanég , respectively (Bibel & Malyevac 1992).

Although the design of weighting functions inevitably mdiuces a subjective tuning process,
several guidelines can be followed (Ortega & Rubio 2004 B Malyevac 1992). To avoid satu-
ration of the actuator, the reference current should betcined by a constant less than the max-
imal feasible valud,,.x, thusW, (s) could be defined as a small constant closé Af},,.x (Bibel
& Malyevac 1992). To adjust the tracking performance andftequency response characteristic,
W, (s) adopts a low-pass filter structure (Kwakernaak 1993). Towith uncertain factors and en-
sure robust, stable performan¢B/a (jw)| can be designed to cover — G(jw)/Go(jw)| on the
Bode diagram wheré:, denotes the nominal transfer function Gf (Mei et al. 2003). Because
high disturbance rejection and high stability are requii@dthis system, an equilibrium should
be approached between the selection8lofs) andWa (s). After a tuning process is applied, the
weighting functions are defined as follows

Wy (s) = 0.05, (15)
35
e = . A~ A 16
We(s) = 57115 o0 (16)
4.55+1
Wals) = =700 (17)

By solving the optimization problem defined by Equation (42)l compensating the controller gain,
the H,, controllerK (s) can be obtained as a fifth-order transfer function

K(s) = I5(s) _ 9.1111(s + 11)(s + 20)(s? + 0.3268s + 0.1594) (18)
AQ(s)  (s+20)(s+ 11)(s+ 0.0009092)(s% + 1.874s + 1.69)
_ 9.1111(s? + 0.3268s + 0.1594) (19)
(s +0.0009092)(s2 + 1.874s + 1.69)
which can be simplified to third-order by canceling two pa&Feo pairsz; = p; = —11 andz, =
p2 = —20. The Bode diagrams of the weighting functions are shown guié 5(a). The Bode

diagrams of Equations (18) and (19) are shown in Figure S(bich illustrates that the controller

can keep almost the same frequency response after appt@amadhis feature benefits a simple
realization of the controller. Using the controller defitgdEquation (19), the behavior of the closed-
loop system is described by

Q(S) K(S)G(S) _ 0.7519 (20)

Gls) = 0 (s) 1+K(s)G(s) s°+ 1.874952 + 1.697s + 0.7534

whereQ)*(s) is the reference angular velocity a6ls) is defined in Equation (9).

4 SIMULATIONS
4.1 Hypotheses Related to Model Inputs

To compare the performance between the Bind the classic PI controller, the following idealiza-
tions are considered in the simulation:

(1) All exogenous noises are equivalent to a disturbanée" affecting the referenc&* in
Equation (20). This results from the fact that many origigisturbances can be traced in the
models, thus their overall effect can be modeled as a prppkdsenAQ*.



1938 L.Y.Chenetal.

Magnitude (dB)

—— WA(jm)
T

10° i i i i
102 10° 102 10*
Frequency (rad s™)

@)

. .
., S~

Magnitude (dB)

NN

i
Original
,,,,,,,, After pole-zero

Phase (deg)

i i 1 ! h
10° 10" 10° 107" 107" 10 10 10°
Frequency (rad s)

(b)

Fig. 5 (a) Bode diagrams for the weighting functioi& (s), W (s) andWa (s). (b) Bode diagrams
for transfer function of the original H controller K'(s) Eq. (18) and the one after pole-zero cancel-
lation Eq. (19). The superposed curves on the diagram shawEtp (18) and Eg. (19) have almost
the same frequency response.

(2) Four cases of the input(t), i.e. the input function on the time domain, are examinechin t
simulation:ug(t) = h(t) for a standard step response test(t) = w* + w1 (t) = h(t) +
asin 27 fot for band-limited disturbancesy (t) = w* +wa(t) = h(t) +a- Y .2, d(t —n/ fo)
for periodic shocks, ands(t) = w* + ws(t) = e(t) for random disturbances, whetgt)
denotes the unit step functiomnjs a coefficient for tuning magnitudé; is a constant frequency
(Hz), 6(-) denotes the Dirac delta function, ant) ~ GP(1,0) denotes a Gaussian process
with mean 1 and standard deviation

The u; anduy cases can roughly reflect the system response charactetistdifferent kinds of
“colored” disturbances, and thg case represents the synthetic effect of all disturbancédwean
be considered random occurrences.
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4.2 Simulation Results

Because a trade-off should be made in the choice of the dlamntgain, for the purpose of comparing
two PI controllersKpi(s) = k, + k;/s after tuning

0.8334

Kpi(s) = 12.5 + , (21)
S
8474
Kpy(s) = 9.2+ 88 iy (22)

These are considered such that the larigeis, the less settling time is needed but the worse the
disturbance suppression performs aiwt versaThey will substitute for the K, controllerK (s) in
Figure 4(b) in simulations. The transfer functions of theseld-loop system using the PI controllers
whose behaviors are defined by Equation (21) and Equatigra(@Zespectively

Kpi(s)G(s) 1.036s 4 0.0688

Goi(s) — _ 23
pi(s) = 73 Kpi(s)G(s) s +0.326852 + 1.1915s + 0.0688 ’ (23)

L (s) = Kpi(s)G(s) 0.7593s + 0.0699
PR 1 4+ Kpi(s)G(s) 53 +0.326852 4 0.9187s + 0.0699 °

Four kinds of inputsy, u1, us andus mentioned in Subsection 4.1, will be applied to the systems
Gu, Gpr andGp, for the simulations.

The tests ofu; andusy include five different disturbance frequencigs 0.2, 0.5, 1.0, 1.5 and
2.0 Hz, which are chosen in accordance with the power spelereity analysis for the significant
disturbances. The low frequency 0.2 Hz represents theretge caused by the stiffness deficiency
of the rotator-axis and the hydraulic vibration, and théstetop at 2.0 Hz because it is the Nyquist
frequency of sampling. The test of also adopts values of the standard deviatido be 0.2, 0.5,
1.0, 1.5, and 2.0. The closed-loop system responses indtsedR:, u1, us andus, with cases 0.2,
0.5, 1.0 Hz forfy and 0.2, 0.5, 1.0 fosr, are shown in Figure 6.

To quantify thetracking error and thedisturbance sensitivitin the steady state, the response
datay;, 7 = 1,2,..., L, after the settling time are utilized to respectively defimese two indicators

L 2

- ”M’ (25)
L —\2

€, = UM7 (26)

wherer = 1 is the expected steady-state value for the unit step inpuse; measures the steady-
state tracking errorj denotes the average of gll, thuse; measures the extent of steady-state oscil-
lations, i.e. the disturbance sensitivity. The comparsihe indicators;, ande, for the controllers
with inputsu, (t), us(t) andus(t) is shown in Table 1. Results indicate that the HontrollerGy (s)

has a better steady-state performance, i.e. lower traekitng and disturbance sensitivity, than the
Pl controllersGp; andG;—on the working frequency band, the proposed Ebntroller can:

(24)

— reduce the tracking error of the PI controllers on averagé&8% for the sinusoidal distur-
bance, by 14.1% for the periodic impulse disturbance, an818% for the Gaussian distur-
bance;

— reduce the disturbance sensitivity of the Pl controlleraeerage by 90.1% for the sinusoidal
disturbance, by 91.3% for the periodic impulse disturbaacel by 58.32% for the Gaussian
disturbance.
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Fig.6 Closed-loop system responses to«a)t) = 1, (b) ui(t) = 1 + 0.2sin 27 fot, (C) u2(t) =

14+0.2-32 ,6(t—n/fo), and (dyus(t) ~ GP(1,0),0 <t < 117.36 s, wherej(-) denotes the
Dirac delta function, and’P(1, o) denotes the Gaussian process with mean 1 and standardafeviat
o. The simulation results show that, in the sense of steaate-performance, the H controllerGu
is better than the PI controllerSpr and G- A detailed quantified advantage 6%y is shown in

Table 1.

5 EXPERIMENT

5.1 Implementation of Controllers

As shown in Figure 4(b), the input of the controllgl(s) is the errorAQ(s) between the reference
angular velocity and its true value, and the output is theregfce current; (s) for the motor model
G(s). For the transfer functiof (s) = I;5(s)/AQ(s), the time domain controller can be obtained

by if(t) = L~'{AQ(s)K(s)}. After approximation and discretization for implementimga small
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Table 1 Simulation: Comparison of Performance for Different Coliérs inGp1, Gp; andGy

Tracking Errore; (x10~2 deg s 1)

Parameter Input uy Input uo Input us
Gp1 Gpy Gy Gp1 Gpy Gy Gp1 Gpy Gu
0.2 27.6 14.3 4.82 1.14 0.68 0.27 2.09 1.88 0.96
0.5 1.73 1.22 0.40 0.79 0.88 0.77 4.97 4.73 1.89
1.0 0.61 0.39 0.21 1.69 1.83 1.75 6.85 4.80 2.61
1.5 0.50 0.30 0.20 2.65 2.80 2.72 8.79 6.26 3.70
2.0 0.49 0.29 0.20 3.62 3.77 3.70 8.31 9.58 3.90
Disturbance Sensitivitys (x10~3 deg s™1)
Parameter Input uy Input uo Input us
Gp1 Gpy Gy Gp1 Gpby Gy Gp1 Gpy Gu
0.2 276 143 48.1 11.3 6.28 1.90 20.7 18.7 9.42
0.5 17.0 12.1 3.38 4.14 2.68 0.36 49.3 47.2 18.1
1.0 5.24 3.62 0.42 3.91 2.51 0.20 68.5 46.8 26.0
15 4.00 2.67 0.12 3.89 2.56 0.20 87.9 62.6 37.0
2.0 3.77 2.48 0.05 4.12 2.61 0.32 82.6 95.5 38.1

Notes: (1) The header “Parameter” denofgsor w1 (t) andusa(t), ando for usz(t). (2) ui(t) = 1 + 0.2sin 27 fot,
ug(t) = 140237 6(t —n/fo), andus(t) ~ GP(1,0). (3) e; andes are defined in Equation (25) and
Equation (26) respectively.

computer, the H, controller Equation (19) is derived as
in(k) = L7 {AQ(s)K (5)} (27)

k
~ 9113 Aw(iT) {0.0943 +1.19e0937(=T ¢05[0.901(k — i)T + 0.708]} (W),
1=p

(28)

wherek denotes thé-th timestepk € Z*; T is the sampling interval (0.5 s in this experiment);
p = 0 is the theoretical solution byt = & — 19 whenk > 19 is employed, because in practice
the previous timesteps have little effecti(k); ¢; is an empirical constant, which is related to the
reference angular velocity*, for approximating the initial values of the inverse Lagd@ansform
result. The tuning process of starts with the value that refers to the current-velocitgrofoop
relation for each specific angular velocity, and stops when a satisfactory performance is achieved.
In our experiment, the values of are respectively 5.65, 5.75, 6.2, 6.45, 6.65, 7.12, 7.32,And
7.78 Afor1,1.5,2,25,3,3.5,4,4.5,and 5 deg sf w*.

For comparison, a Pl controller is properly tuned by usirggdimulation result as guidance. The
PI controller used in the experiment is

Ky(s) = 12.5 4 228X 107 (29)
S
Similarly, this controller is implemented as
iri(k) = L7 {AQ(s) Kpy(s)} (30)
k
= 12.5Aw(kT) +4.98 x 107° - Y~ Aw(iT) + ca(w*), (31)
1=0

wherec, is also a value whose starting value is set to an empiricastaoh and whose tuning
procedure is the same as The values o in our experiment are respectively 5.65, 5.75, 6.2, 6.45,
7.6,7.8,7.12,7.39,and 7.42 Afor 1, 1.5, 2, 2.5, 3, 3.5,8,dnd 5 deg s' of w*.
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Table 2 Experiment: Performance Comparison of Controllgr&k) andip1(k)

Tracking Errore; Disturbance Sensitivity s
w* (degs') ig(degs!) ipr(degs!) Improved (%) g (degs!) ipr(degs!)  Improved (%)
1.0 0.0139 0.0232 40.09 0.0126 0.0222 43.40
1.5 0.0179 0.0338 47.04 0.0143 0.0210 31.78
2.0 0.0135 0.0601 77.54 0.0129 0.0283 54.47
2.5 0.0146 0.0315 64.99 0.0144 0.0416 65.44
3.0 0.0090 0.0443 79.68 0.0090 0.0389 76.91
3.5 0.0241 0.0348 30.75 0.0220 0.0275 20.00
4.0 0.0216 0.0421 48.69 0.0196 0.0417 53.02
4.5 0.0193 0.0392 50.77 0.0191 0.0278 31.32
5.0 0.0186 0.0963 80.69 0.0169 0.0957 82.30

Notes: (1)irg (k) is the Hy controller defined in Equation (28) arigl (k) is the PI controller defined in Equation (31).
(2) w* is the reference angular velocity input for the closed-legptem. (3)e; andes are defined in Equation (25)
and Equation (26) respectively. (4) The “Improved” indarafor Tracking Errore; is calculated by(e:{ip1} —
et{in})/e:{irr} x 100% and the “Improved” indicator for Disturbance Sensitivity is calculated by(es{ipr} —
es{iH})/es{iPI} x 100%.

Finally, an upper bound for bothy (k) andip; (k) should be assigned according to engineering
limits on the system and safety considerations. Pragmatices of the upper bound used in our
experiment are 0-17.68 A under angular velocities 1-5 dégAny calculatedy (k) orip; (k) that
exceeds the upper bound will be restricted to the feasilgiemne

5.2 Experimental Results

Nine reference angular velocities are implemented as inputs to the closed-loop system: 150, 1.
2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 deg sThe outputs of the closed-loop system, which are real
angular velocities measured by the photoelectric encaderijllustrated in Figure 7: (a) for the
system using the i controllerig (k) described in Equation (28), and (b) for the system using the
PI controllerip; (k) described in Equation (31). Quantified results that can led fr comparison

of the tracking erroe; and the disturbance sensitivity are shown in Table 2. Results indicate that
the H,, controller has better behavior in terms of disturbancectga and stability, and is able to
significantly improve the steady-state performance of fteBtroller for reducing the tracking error
by 30.75%—-80.68% (average 58%) and the disturbance setydity 20.0%—82.3% (average 51%).

6 CONCLUSIONS

This paper reviews the external disturbances that exisewersl well-known large aperture tele-
scopes such as VLT, GTC and TMT, and briefly analyzes insaffiy in their control strategies that
are mainly carried out with the PID controller. Based on tkeassities of disturbance rejection and
stabilization for such kind of telescopes, we establish andantroller and highlight its advantages
on an experimental 4-meter azimuth direct-drive contretem step by step. First, the model of the
real system is identified by the LS method. Second, anddntroller is designed and then compared
with two tuned PI controllers in the simulations, which idé three different contaminated step
signals. Finally, guided by the simulation results, ag Hontroller and a tuned PI controller, used
as a comparison, are implemented in a real velocity closed-tontrol system. The experimental
results show that the d controller can improve the performance in terms of distodearejection
and stabilization with the corresponding quantitativa¢atbrs.
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Fig. 7 Real angular velocities of the closed-loop system that espanses to the reference inputs
w* from 1.0 to 5.0 deg's', controlled by (a) the K, controllerix (k) described in Eq. (28), and (b)
the PI controllerip1 (k) described in Eq. (31).
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