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Abstract Carbon stars are excellent kinematic tracers of galaxies and can serve as a
viable standard candle, so it is worthwhile to automatically search for them in a large
amount of spectra. In this paper, we apply the efficient manifold ranking algorithm
to search for carbon stars from the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) pilot survey, whose performance and robustness are verified
comprehensively with four test experiments. Using this algorithm, we find a total of
183 carbon stars, and 158 of them are new findings. According to different spectral
features, our carbon stars are classified as 58 C-H stars, 11 C-H star candidates, 56
C-R stars, ten C-R star candidates, 30 C-N stars, three C-N star candidates, and four
C-J stars. There are also ten objects which have no spectral type because of low spec-
tral quality, and a composite spectrum consisting of a whitedwarf and a carbon star.
Applying the support vector machine algorithm, we obtain the linear optimum clas-
sification plane in theJ − H versusH − Ks color diagram which can be used to
distinguish C-H from C-N stars with theirJ − H andH − Ks colors. In addition,
we identify 18 dwarf carbon stars with their relatively highproper motions, and find
three carbon stars with FUV detections likely have optical invisible companions by
cross matching with data from the Galaxy Evolution Explorer. In the end, we detect
four variable carbon stars with the Northern Sky Variability Survey, the Catalina Sky
Survey and the LINEAR variability databases. According to their periods and ampli-
tudes derived by fitting light curves with a sinusoidal function, three of them are likely
semiregular variable stars and one is likely a Mira variablestar.
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1 INTRODUCTION

Carbon stars were first recognized by Secchi (1869), and are defined as cases whose optical spectra
are dominated by carbon molecular absorption bands, such asCN, CH or Swan bands of C2, and
SiC2 and C3 in cooler stars. Based on the spectral features ineach band, they are classified as a
visual carbon star, an infrared carbon star, an extreme carbon star, a silicate carbon star and so on. In
this paper, we just focus on searching for and studying visual carbon stars with the Large Sky Area
Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectra. The optical spectra of carbon stars
with late spectral type are similar to M-type stars, but their atmosphere contains more carbon than
oxygen, because most of the carbon in M-type stars is depleted by CO and more oxygen is left to
form molecular bands of TiO which are specific features of M-type stars. However in carbon stars,
most of the oxygen is exhausted by CO, and more carbon remainsshowing C2, CN or CH molecular
bands, which are dominant features that are used to distinguish a carbon star from other types of
stars.

Carbon stars are peculiar and rare objects compared with normal stellar objects, and they are
excellent kinematic tracers of the Galaxy. Dean (1976) analyzed kinematic properties of 425 carbon
stars with radial velocities and spectral types, and concluded that the majority of these carbon stars
were dynamically similar to dwarf F5 stars. Metzger & Schechter (1994) measured radial veloci-
ties of 179 carbon stars toward the Galactic anticenter withaccuracies of 4 km s−1, derived their
distances usingK-band photometry, and estimated an average Galactocentricdistance of 13.9 kpc.
From the velocities of carbon stars, they found that one carbon star was moving radially outward
with respect to the local standard of rest at a velocity of 6.6km s−1. Recently, the rotation curve
of the Milky Way has been studied based on carbon stars with radial velocities in many literatures
(Battinelli et al. 2013; Demers & Battinelli 2007; Demers etal. 2009), and they extended the rota-
tion curve of the Milky Way to different distances. In addition, carbon stars can also serve as viable
standard candles. Richer et al. (1984) estimated the distance modulus of NGC 205 to be 24.5 using
the mean apparent magnitude of carbon stars in NGC 205, and Richer & Crabtree (1985) made use
of carbon stars to derive the distance modulus of NGC 300, which is 25.87 magnitude.

So far, many carbon stars have been found from different sky surveys. Totten & Irwin (1998)
found 48 cool carbon stars in the Galactic halo from the APM survey using color relations be-
tweenBj , R, O andE. Gigoyan et al. (2012) systematically searched for faint high-latitude carbon
stars from the low-resolution spectral database of the Digitized First Byurakan Survey (DFBS), and
identified 13 new faint high-latitude carbon stars including five C-N stars, five C-H stars and three
possible dwarf carbon (dC) stars. Mauron (2008) identified 58 carbon star candidates usingJHKs

colors from the Two Micron All Sky Survey (2MASS), and found 18 new carbon stars from them.
From the year 2002 to 2013, carbon stars were systematicallysearched for in the Sloan Digital
Sky Survey (SDSS). Margon et al. (2002) and Downes et al. (2004) respectively found 39 and 251
faint high-latitude carbon stars using SDSS photometry, and also Green (2013) identified 1220 high
Galactic latitude carbon stars using the Cross-Correlation Function (CCF) method.

We (Si et al. 2014) applied the label propagation algorithm to search for carbon stars in Data
Release Eight (DR8) of SDSS, and found 202 new carbon stars. However, the method of label
propagation has high time complexity, and needs a large amount of memory. In this paper, we use
the efficient manifold ranking (EMR) method proposed by Xu etal. (2011) to search for carbon stars
from the LAMOST pilot survey, which is extremely efficient and scalable for a large dataset, and has
similar performance as the label propagation algorithm when applied to searching for carbon stars .

The structure of this paper is organized as follows. In Section 2, we present the EMR algorithm in
detail, and analyze its time and space complexity. In Section 3, we analyze the algorithmic efficiency
and performance using four experiments with SDSS DR8 stellar spectra, then apply the method to
the LAMOST pilot survey, and find 183 carbon stars. In Section4, we classify these carbon stars
into four groups with spectral features, and then obtain a linear optimum classification plane in the
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J −H versusH −Ks color diagram, and use it to distinguish the C-H and C-N stars. In this section,
we also identify 18 possible dC stars, three possible carbonstar binaries with FUV detections, and
four possible variable carbon stars. Finally, a brief conclusion is provided in Section 5.

2 EMR ALGORITHM

Let a massive dataset be represented asX = {x1, x2, . . . , xq, xq+1 . . . , xn}, whereq is the number
of query samples,n-q is the number of unlabeled samples and generallyq ≪ n. We aim to efficiently
search for objects which have the same class as queries from massive unlabeled samples. One of the
efficient solutions is to rank the unlabeled samples by making full use of relationships between
unlabeled samples, and samples ranking at the top are the results of the search. Becauseq ≪ n
andn is quite large, relationships between massive pairs of unlabeled samples should be considered.
Initially, we can assign query samples a high score, and thencalculate the score of unlabeled samples
subject to the constraint that similar samples have similarscores and the query samples keep high
scores. Finally, samples are ranked in descending order by their scores. LetR = {r1, r2, . . . , rn}
be the ranking scores that need to be calculated,Y = {y1, y2, . . . , yn} is the initial ranking scores,
where ifxi is in the queryyi = 1, otherwiseyi = 0. The cost function associated withRcost can be
represented by the following formula

min
Rcost

Q(Rcost) = 1/2

( n
∑

i,j=1

Wi,j ‖ 1√
Dii

ri −
1

√

Djj

rj ‖2 + µ

n
∑

i=1

‖ ri − yi ‖2

)

, (1)

whereµ > 0 is the regularization factor andD is a diagonal matrixDii =
∑n

j=1 Wi,j . The first
term can ensure that neighbors have similar rankings, and the second term can keep queries near the
top. There are generally two solutions forRcost by minimizing the cost function. One is the optimal
analytical solution defined as follows

R∗ = (In − αS)−1Y, (2)

whereα = 1
1+µ , In is an identity matrix withn × n, andS = D−1/2WD−1/2 is normalization of

W . However, the analytical solution does not work whenn is large because it needs a large amount
of memory, and is very time consuming to invert a large matrixwith a time complexity ofO(n3).
The iterative solution is another approach, which can be obtained by differentiating the cost function.
It is efficient and needs a relatively small memory compared with the analytical solution, but it still
has a high time complexity ofO(kn2) because of the construction of the K-nearest neighbors (KNN)
graph.

R∗ = αS × R + (1 − α)Y . (3)

2.1 Scalable Graph Construction

Most of the datasets with high dimensions have a manifold structure embedded, and the KNN graph
is generally used to describe the manifold structure. The KNN graph can be denoted by adjacency
matrixW with elementWij , which indicates similarity between samplesi andj. An apparent short-
coming of the KNN graph is the large time complexityO(kn2) and the large amount of memory
required. Anchors can be applied to construct a scalable graph to overcome this shortcoming. Let a
data set beX = {x1, x2, . . . , xn}, and anchors beU = {u1, u2, . . . , ud}, whered ≪ n. According
to the principal of mean shift, each data point ofX can be estimated by a weighted combination of
its KNN, so the weights between the data point and its KNN fromanchors can be used to represent
the data point, namelyxi =

∑d
k=1 zki ×uk wherezki denotes the normalized weights between data
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pointxi and anchoruk, i.e.zk = {zk1, zk2, . . . , zkd} is the representation of the data pointxi. The
weights can be well measured using the Nadaraya-Watson kernel, so we get

zki =
K

(

|xi−uk|
λ

)

∑d
l=1 K

(

|xi−ul|
λ

) , (4)

whereλ is the smoothing parameter andK(t) =
{

0.75(1 − t2) if|t| ≤ 1,
0 otherwise.

The parameterλ

is important, which determines the number of neighbors usedto estimate the data point. In this
paper, we adopt the distance between data pointxi and itskth nearest neighbor from anchors as
λ, namelyλ(xi) = |xi − u[k]| whereu[k] is thekth nearest anchor ofxi. Once we obtain the
weighted matrixZ = {z1, z2, . . . zn} wherezi is ad-dimensional vector with elementzki, we can
construct the scalable graphW = ZT Z. If the data pointxi andxj share one or more anchors,
they are correlative, namelyWij > 0, otherwise not. The sparsity of the graph is determined by the
parameterλ, and the largerλ is, the sparser the graph is. In general,λ is adapted to be distance from
data pointxi to itskth anchor, andk, ranging from 5 to 15, is proper empirically. So, high sparseness
of Z ensures the graphW is sparse. One advantage is that we need not keep then × n matrix in
memory, and only keep the more sparsed × n matrix Z in memory, which is very useful for large
scale problems. Its computation time is more efficient, which can be seen in Section 3.4.

2.2 Solution and Complexity

Let H = ZD−1/2 andS = HT H , then we can obtain the analytical solution as follows.

R∗ = (In − αHT H)−1Y =
[

In − HT
(

HHT − 1

α
Id

)−1

H
]

Y . (5)

The issue of inverting ann × n matrix is converted to inverting thed × d matrix, andDii =
∑n

j=1 Wi,j can be calculated byZT Ze, wheree is an n dimensional vector with elements that
have a value of 1.

The time complexity isO(dn+d3), and the space complexity isO(kn), so for a large scale prob-
lem on the order of a million data points, a common personal computer can satisfy the computational
requirements.

2.3 Relevance Feedback

For the retrieval problem, relevant results can generally be used as new queries to improve the re-
trieval results, because although queries are assigned to the same class, there are differences caused
by noises or deformations. In large datasets, the improvement is more apparent, and the high effi-
ciency of the EMR algorithm makes multiple relevance feedback possible.

3 EXPERIMENTS AND RESULTS

3.1 Features

Features are key for a machine learning algorithm. A good definition of a feature which describes
the object well can improve the algorithm’s performance, but a bad one can degrade it, which can be
seen in Subsection 3.4. For spectra, there are two importantfeatures. One is the continuum, and the
other is spectral lines. So here, we adopt spectra and continuum-subtracted spectra as features that
are analyzed by our algorithm. For spectra, a median filter isapplied with a width of 5̊A, which can
delete narrow strong lines, as illustrated in Figure 1. The continuum-subtracted spectra are obtained
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Fig. 1 Median filtered spectra with a width of 5̊A.

using filtered flux to divide the pseudo-continuum derived bythe median filter with a width of 300̊A.
From Figure 1, we can see that it is efficient to delete strong narrow lines, and we also find that the
red and blue ends of the spectra have a large amount of noise, so we delete parts of the spectra with
a length of 200̊A from both of these two ends. Based on these two features, we constructed two
weighted matrixesZ1 andZ2, and the final weighted matrixZ = Z1 + Z2.

3.2 Anchor Construction

Principal component analysis (PCA) (Jolliffe 2002) is one of the most important and practical meth-
ods for dimension reduction and feature extraction, and k-means clustering (Wu et al. 2008) is one
of the most useful data mining algorithms. These are widely applied in many fields including astron-
omy. Here, we use PCA and k-means clustering to construct anchors. Initially, PCA is applied to the
whole dataset, and 100 principal components are obtained. Then, all of the data points are mapped
on these principal components, and the coefficients are returned. In the end, k-means clustering is
applied to these coefficients, and the centers of clusters are adopted as our anchors. However, the
final result of k-means is greatly affected by initial seeds,so we perform k-means clustering twice
using different random initializations, and both of the obtained centers are implemented as our final
anchors. We then divide the whole dataset into two equal numbers of samples, and apply k-means
clustering to both of them.

3.3 Efficiency and Performance of the Algorithm

We use 656 801 stellar spectra from SDSS DR8 to test the performance of the algorithm in searching
for carbon stars. Green (2013) systematically searched forcarbon stars using a CCF and classified
results of the SDSS pipeline, then built the largest carbon star catalog identified spectroscopically.
By a cross matching with positions of this carbon star catalog, we obtain 1313 carbon star spectra
which are classified as ‘STAR,’ so we can test the algorithm supposing that there are only 1313
carbon star spectra in the 656 801 stellar spectra. Recall and precision are two important methods to
evaluate an algorithm in terms of information retrieval. Wechoose 20 carbon spectra as queries with
different signal-to-noise ratios (SNRs) that are listed inTable 1.

There is no doubt that the number of anchors is important for this algorithm, so we calculate
the recalls of the top 2000 using different numbers of anchors, which are plotted in Figure 2. It is
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Table 1 Queries Used to Verify the Performance of the Algorithm

Query ID Plate MJD Fiber ID SNR

1 453 51915 53 9.41
2 613 52345 344 6.08
3 696 52209 133 19.45
4 1067 52616 602 5.73
5 1274 52995 359 5.09
6 1307 52999 116 24.09
7 1311 52765 571 10.44
8 1326 52764 502 5.39
9 1465 53082 570 22.55
10 1486 52993 368 4.69
11 1521 52945 596 8.05
12 1687 53260 83 6.85
13 1881 53261 165 7.71
14 2083 53359 93 4.81
15 2183 53536 447 36.82
16 2619 54506 279 29.08
17 2795 54563 618 6.05
18 2866 54478 351 71.97
19 3232 54882 307 36.75
20 726 52207 239 5.76
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Fig. 2 Recalls of different numbers of anchors.

shown that recall significantly increases when the number ofanchors changes from 2000 to 3000.
The rate of increase becomes slow when the number of anchors changes from 3000 to 6000, but
there is almost no change when the number of anchors changes from 6000 to 10 000. Considering
that the running time increases sharply with an increase in the number of anchors, we finally choose
6000 anchors.

In order to explain the importance of the features, we calculate the recalls of the top 2000 and
the top 3000 using 20 queries with different features, whichare plotted in Figure 3. In Figure 3, the
blue bars indicate the results of using filtered flux, the green bars indicate the results of continuum-
subtracted flux, and the red bars indicate the results of filtered flux combined with continuum-
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Fig. 3 Recalls using different queries based on different features. The upper panel shows recalls of
the top 2000 and the bottom panel shows recalls of the top 3000.

subtracted flux. From Figure 3, we can see that the results of using continuum-subtracted flux are
stable compared with the results of using filtered flux. The results would be quite bad if we choose
queries poorly when using the feature of filtered flux, but thecombined feature is quite stable and
can greatly improve the performance. Using the combined feature, recalls of the top 2000 for all
queries with the exception of query 18 are more than 90%, manyof which are larger than 94%, and
all the recalls of the top 3000 are more than 95%, some of whichare up to 98%.

The parameters used are also important for an algorithm, andsometimes dominate the perfor-
mance of the algorithm, causing difficulties in tuning the algorithm. Here, we check the performance
of the algorithm with different parameters illustrated in Figure 4, which are curves of recall versus
precision for the top 1 to 5000 with different parameters. Wecan see that the algorithm is quite
robust, and they all have high recalls and precisions with different parameters, even ifK = 3. It can
also be seen that whenK = 15 or K = 3 andα = 0.99, recalls are a little poorer than those with
other parameters. In our paper, we chooseα = 0.85 andK = 6 to search for carbon stars from the
LAMOST pilot survey.

In order to display the role of relevance feedback, we first choose one query, and recalculate
relevance feedback four times by increasing the most relevant samples to 5, 10, 20 and 50 as new
queries step by step according to the searching results. Their recalls and precisions for the top 1 to
5000 are plotted in Figure 5. It is clearly seen that relevantfeedback can improve the results from
one query to five queries.

In order to test whether the algorithm is fast and scalable for a large dataset, we calculate running
time for each process of constructing 6000 anchors by applying PCA and k-means clustering using a
12-core Intel(R) Xeon(R) 3.47 GHz machine with 96 GB of RAM. The results are listed in Table 2.
The algorithm is encoded and executed in MATLAB, and we can see that the main running time is
spent on constructing anchors andZ, and the total time is less than half an hour. The time to calculate
Rcost is only 19 seconds, and this allows us to calculate relevancefeedback many times. Compared
with the label propagation algorithm we used to search for carbon stars and DZ white dwarfs (WDs)
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Fig. 4 Recalls and precisions of the top 1 to 5000 cases corresponding to different values for param-
etersα andK.
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Table 2 Running Time

Process Time (s)

Anchor constructiona 1306
Z calculation 334
Rcost calculation 19
Total 1659

Notes: Constructing 6000 anchors using PCA and k-means clustering.

from SDSS DR8 (Si et al. 2014), the time efficiency of this algorithm is significantly improved under
the condition that the performance has no significant decrease, as illustrated in Figure 6. It is 55.3
times as fast as the label propagation algorithm in searching for carbon stars from a dataset with
more than 650 000 spectra in the same running environment, and this advantage is more significant
when the dataset is larger.

In summary, the algorithm is efficient and scalable for a large dataset, and can be practically
applied in searching for carbon stars from a large spectral dataset.

3.4 Results of Searching for Carbon Stars from the LAMOST Pilot Survey

LAMOST has the potential to efficiently survey a large volumeof space for stars and galaxies, and
can acquire 4000 spectra as faint asr = 19 magnitude in a single exposure at resolutionR = 1800
(Zhao et al. 2012). The performance of LAMOST was greatly improved after the year 2009. The ac-
curacy of the optical fiber positioning has been better than 1arcsecond, and after being finely tuned,
the stability and the overall efficiency of the associated spectrographs have also been improved1.
In order to check the performance and feasibility of the science goals, LAMOST has successfully
finished the pilot survey which began on 2011 October 24, and ended in June 2012 (Luo et al. 2012).
During the pilot survey, 640 000 spectra were observed, and 319 000 spectra were finally released
(Luo et al. 2012). We aim to search for carbon stars from all the spectra observed in the pilot survey.

1 http://www.lamost.org/public/news/6?locale=en
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Fig. 6 Recalls of the label propagation algorithm and the EMR algorithm. LP indicates the label
propagation algorithm and EMR indicates the efficient manifold ranking algorithm.

Table 3 The New Carbon Star Catalog

Designation u g r i z J H Ks SpTa db Newc

(mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

J065609.26+104247.8 16.94 14.79 13.15 12.83 13.09 11.47 10.92 10.82 CH d Y
J015629.10+042344.1 16.88 15.34 14.59 14.34 14.25 13.30 12.90 12.86 CH d Y
J093547.66+270939.3 19.29 16.73 15.62 15.29 15.14 14.04 13.53 13.39 CH d N
J101754.72+251201.1 16.75 15.32 14.64 14.43 14.34 13.4 13.02 12.92 CH d Y
J134816.26-004921.5 16.27 14.97 13.11 12.82 13.46 11.54 10.99 10.89 CH d Y
J064858.00+285421.3 20.99 17.81 15.96 15.29 14.84 13.34 12.53 12.28 CR d Y
J101946.89+252932.8 16.25 15.18 13.48 14.57 13.51 11.93 11.43 11.35 CR d Y
J093608.72+121634.1 21.75 19.4 18.25 17.86 17.65 16.48 16.05 15.05 CR d Y
J123204.75+270952.2 19.74 17.19 16.01 15.58 15.45 14.45 13.91 13.75 CR? d Y
J081157.14+143533.0 15.71 15.95 15.74 15.56 15.37 14.22 13.53 13.33 BINARY u N
J000215.77+311117.9 17.58 16.03 14.66 14.93 14.39 13.03 12.50 12.44 CH u Y
J065136.94+131350.0 17.43 15.57 12.83 14.42 12.52 10.64 9.89 9.71 CR u Y
J065314.97+110720.4 16.28 13.64 14.45 11.98 12.47 10.38 9.70 9.58 CH? u Y
J003858.71+394504.2 18.04 16.43 17.04 14.16 14.87 12.82 12.29 12.22 CH? u Y
J003511.27+402231.4 NAd NA NA NA NA 13.65 13.13 13.01 CH u Y
J055520.99+260812.2 NA NA NA NA NA 9.24 7.82 7.02 CN? u N
J010629.35+381440.0 NA NA NA NA NA 12.22 11.54 11.34 CH u Y
... ... ... ... ... ... ... ... ... ... ... ...

Notes:a The marker ‘?’ indicates an uncertain observation, and ‘CH?’, ‘CN?’ and ‘CR?’ indicate possible C-H,
C-N and C-R stars respectively.b ‘d’ indicates dC stars, and ‘u’ indicates an uncertain observation.
c ‘Y’ indicates a new finding and ‘N’ indicates the star has beenpublished.d ‘NA’ indicates the parameter is
not available. Notes: The entire table can be found onhttp://www.raa-journal.org/docs/Supp/ms2148table3.csv.
A portion is shown here for guidance regarding its form and content.

We firstly use 20 SDSS carbon stars as initial queries and 138 carbon star spectra are obtained
by visually inspecting the top 1000 results. Then, we select50 carbon spectra with higher quality
as new queries. By manually checking the top 5000 results, weidentify 183 carbon stars listed
in Table 3, and 158 of them are new findings that were cross identified with the SIMBAD, NED
and ADS databases and are marked ‘Y’ in the last column of Table 3. We plot their locations in
Galactic coordinates and in equatorial coordinates in Figure 7, and it is shown that the distribution
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Fig. 7 Positions of our carbon stars and observed regions by the LAMOST pilot survey in Galactic
coordinates and equatorial coordinates. The red points arepositions of our carbon stars, the circles
are positions of observed plates, the black bold curve in theupper panel is the equatorial plane, and
the black bold curve in the lower panel is the Galactic plane.

of our carbon stars only depends on the spatial distributionof the observations and shows no regular
pattern.

4 DISCUSSION

4.1 Spectral Classification

With the discovery of more carbon stars, we know that carbon stars span a wide variety of different
populations and origins, which are indicated by their different spectral characteristics. In the past
decades, many studies have proposed various classificationsystems for carbon stars (Cannon &
Pickering 1918; Keenan & Morgan 1941; Yamashita 1972, 1975), but they did not include all types
of carbon stars. Keenan (1993) revised the MK carbon star classification system, and carbon stars
were divided into five types in this system. This classification system is widely accepted, and used
in many studies (Wallerstein & Knapp 1998; Barnbaum et al. 1996; Goswami et al. 2010; Goswami
2005; Lloyd Evans 2010). We classify our carbon stars using arevised classification system, and the
classification criteria are summarized as follows:

(1) There is a strong G band from the CH molecule atλ4300Å with a secondary P branch head at
λ4342Å. The P branch forms the most prominent features that can be used to distinguish C-H
stars from C-R stars.
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(2) A strong Ca I line atλ4226Å compared with the CN band atλ4215Å is a useful indicator for
C-R stars.

(3) Lines of atomic hydrogen and s-process element Ba II atλ4554Å, λ4935Å andλ6496Å are
distinctly seen in C-H stars, but not in C-R stars.

(4) There is a strong suppression of light belowλ 5000Å, and little or no flux shortward ofλ
4400Å, which are the key features that distinguish C-N stars fromC-H and C-R stars.

(5) There is a larger enhancement of s-process elements for C-N stars than for C-R stars.
(6) A high isotope ratio of13C to 12C is the main characteristic of C-J stars, which can be mea-

sured by the ratio of strengths in bands of13C12C atλ6168Å and12C12C atλ6192Å, and the
equivalent width ratio of bands associated with13C14N atλ6260Å and12C14N atλ6206Å.

(7) The C-HD stars are characterized by weak or an absence of hydrogen lines and the G-band of
CH, and also characterized by stronger bands ofCN andC2 than normal carbon stars.

De Mello et al. (2009) concluded that carbon stars withCj-index≥ 4 are surely C-J stars,
thus we firstly identify C-J stars by calculating theCj-index for our carbon stars using a method
described by Margon et al. (2002) and De Mello et al. (2009), which quantizes the isotope ratio of
13C and12C. Margon et al. (2002) and De Mello et al. (2009) defined theCj-index based on two
well correlated parameters as described in criterion (6) shown above. One is the ratio of strengths of
isotopic bands associated with13C12Cλ6168Å and12C12Cλ6192Å, and the other is the equivalent
width of isotopic bands associated with12C14Nλ6206Å and13C14Nλ6260Å. In our carbon stars,
there are four C-J stars with theCj-index≥ 4, and their parameters are listed in Table 4. Figure 8
shows an example of the local continuum and normalized flux ofthe two isotopic bands.

For the remaining stars, 58 stars are identified as C-H stars and 11 stars as C-H star candidates
with criteria (1), (2) and (3), 56 stars are identified as C-R stars and ten stars as C-R star candidates
with criteria (1), (2), (3), (4) and (5), and 30 stars are identified as C-N stars and three as C-N star
candidates with criteria (4) and (6). In addition, there areten objects which were not assigned spec-
tral types because of the low quality of their spectra, and weare unable to find a C-HD star with
criterion (7). Figure 9 shows spectra of four kinds of carbonstars in our samples, which include a
C-J star LAMOST J220514.58+000845.5, a C-N star LAMOST J052611.18+382237.6, a C-H star
LAMOST J091451.96+332901.6 and a C-R star LAMOST J065136.94+131350.0. Their charac-
teristic spectral lines are indicated in Figure 10, and the local spectra near these spectral lines are
also plotted.

In addition, we find a composite spectrum J081157.14+143533.0 consisting of a WD, that is
identified as type PG 1159, and a carbon star plotted in Figure11. J081157.14+143533.0 displays
strong CIV absorption lines at 4660Å and He II at 4686̊A which are significant features for typical
PG 1159 WDs, and shows strong CN absorption bands in the red end which are dominant features
of carbon stars. Deciding whether it is a physical binary needs more observations in future epochs.
We have also plotted the SDSS spectrum of this star in Figure 11, and the composite SDSS spectrum
was decomposed into a WD with type of PG 1159 and a carbon star which was described in Si et al.
(2014).

Table 4 Cj -index for C-J Stars

Designation p1a p2b Cj -index

J220514.58+000845.5 0.5375 0.7536 5
J063328.79+274522.5 0.6248 0.6696 5
J052826.57+352943.9 0.7431 1.1299 6
J072530.61+074603.2 0.5477 0.4939 4

Notes: a ‘p1’: the ratio of strengths of isotopic bands associated with
13C12Cλ6168Å and 12C12Cλ6192Å. b ‘p2’: the equivalent width of isotopic
bands associated with12C14Nλ6206Å and13C14N λ6260Å.
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Fig. 8 The left figures of panels (a) and (b) are local spectra of isotopic bands of13C12
Cλ6168Å and

12
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Cλ 6192Å, and12
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are shown by two red lines (color online). The right plots of the two panels are their normalized
spectra.

4000 5000 6000 7000 8000 9000
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

LAMOST J065136.94+131350.0 (C−R)

LAMOST J091451.96+332901.6 (C−H)

LAMOST J052611.18+382237.6 (C−N)

LAMOST J220514.58+000845.5 (C−J)

Wavelength (Å)
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Fig. 9 Spectra of four LAMOST carbon stars, which include a C-J star, a C-N star, a C-H star and a
C-R star.

4.2 Identifications of dC Stars

Carbon stars are defined as those with molecular absorption bands of C2, CN or CH in their optical
spectra, and it has long been assumed that carbon stars are always giants as carbon is thought to reach
the photosphere only during dredge-up in asymptotic giant branch stars (Green 2013). In 1977, the
first dC star, G77−61, was discovered based on its high proper motion, and strong C2 and CH bands
(Dahn et al. 1977). Until 2003, 30 dC stars had been subsequently found based on their relatively
high proper motions, and near-infrared wide band colors, which were summarized by Lowrance
et al. (2003). Different from classical giant carbon stars,the origins of those dC stars are most likely
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R
el
a
ti
v
e
F
lu
x

(d)

Fig. 10 Prominent spectral feature associated with each of the fourcarbon stars in Fig. 9. (a)
LAMOST J220514.58+000845.5 (C-J), (b) LAMOST J052611.18+382237.6 (C-N), (c) LAMOST
J091451.96+332901.6 (C-H), (d) LAMOST J065136.94+131350.0 (C-R).

explained by close binary systems, where the dC star has received material from a now ‘invisible’
companion (probably a WD withTeff below 5000 K) when the companion was ascending up to
the asymptotic giant branch as a carbon giant (Totten et al. 2000; Heber et al. 1993). From 2002 to
2013, Margon et al. (2002), Downes et al. (2004) and Green (2013) searched for faint high-latitude
carbon stars from SDSS, and reported 39, 251 and 1220 carbon stars respectively. Among those stars,
there are 17, 110 and 729 dC stars respectively, which approximately account for 43.6%, 50% and
69.4% of their total samples of carbon stars. Such a significant fraction of nearby dC stars in faint
high-latitude carbon stars demonstrates that they are numerically dominant in the Galaxy, which is
different from what was previously assumed. Therefore, it is imperative to investigate dC stars from
our carbon samples, which can enlarge the amount of known dC stars.

Until recently, the only way to distinguish between a dC and acarbon giant was luminosity,
and hence one needed the parallax or a distance indicator, such as proper motion (Lowrance et al.
2003), to identify dC stars. Except for the two dC stars CBS 311 (Liebert et al. 1994) and PG
0824+289 (Heber et al. 1993), which were identified by their spectra, all known dC stars have been
detected by their relatively high proper motions. Of course, other luminosity discriminators based
on spectroscopy or photometry have also been proposed, but none of them are currently a reliable
criterion and further ancillary clues are needed (Lowranceet al. 2003). Green et al. (1992) suggested
that the near-infraredJHK colors and the appearance of an unusually strongC2 band head at
λ6169Å might be a luminosity indicator to distinguish dC stars. They proposed that dC stars were
defined as those withJ −H < 0.75 andH −K > 0.25. However, Margon et al. (2002) pointed out
thatJHK photometry is not yet a reliable luminosity indicator and more carbon samples are needed
for further confirmation this criterion. They also suggested that theλ6169 band feature may be
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Fig. 11 Spectra of J081157.14+143533.0. The upper one was observedby SDSS and the bottom one
was observed by LAMOST.

temperature as well as luminosity sensitive, so it is also not yet a reliable luminosity discriminator.
Lowrance et al. (2003) pointed out that some of the dCs haveJ − H colors like those of giants,
therefore they cannot be distinguished by theJ − H versusH − Ks photometry relationship, and
they suggested that theR − J versusJ − Ks diagram may be used to select possible dC stars.

In this paper, we plan to use the high ‘proper motion’ criterion to distinguish dC stars from our
183 carbon samples. Green (2013) identified 729 faint high-latitude dC stars from SDSS DR8 with
significant proper motions, and they define a high proper motion as follows: (1) at least one USNO-B
detection and one SDSS detection per source (nfit > 2, which is stored in the proper motion catalog
in the SDSS schema); (2) proper motion in at least one coordinate is larger than3σ, whereσ is the
proper motion uncertainty in that coordinate; (3) total proper motion is larger than 11 mas yr−1. In
order to use the above criteria, we first cross match our carbon stars with the proper motion catalog
of SDSS DR10 with a radius of two arcseconds, and obtain proper motions of 80 carbon stars. Then,
we obtain 71 faint high-latitude carbon stars using anr band magnitude larger than 13 and|b| > 30◦.
Finally, we apply the previous three criteria to the 71 samples, and 18 of them are identified as dC
stars, plotted in Figure 12, of which position and proper motion are listed in Table 5.

4.3 Locations in the Diagram ofJ − H versusH − Ks Color

The locations of carbon stars in the two color diagram ofJ−H andH−K can be used to distinguish
C-H stars from C-N stars, and can also be used to determine thefraction of dC star candidates.
Totten et al. (2000) concluded that C-N, C-H and dC stars could be well separated by the two-
color diagram ofJ − H versusH − K from the SAAO photometric system, and described their
three corresponding regions. In addition, Gigoyan et al. (2012) made use of this infrared photometry
method as a supplementary diagnostic tool for classifying carbon stars.

Here, we try to compile more carbon stars with known types to analyze the locations of different
types of carbon stars in the diagram ofJ−H versusH−Ks color from the 2MASS photometric sys-
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Fig. 12 Spectra of 18 dC stars.
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Table 5 The Catalog of dC Stars

Designation RA Dec µα cos(δ) µδ µα cos(δ) err µδ err µ

(mas yr−1) (mas yr−1) (mas yr−1) (mas yr−1) (mas yr−1)

J015629.10+042344.1 29.12124 4.3956 25.48 –16.94 2.3 2.3 30.59
J092943.86+293013.6 142.4328 29.5038 –50.19 –83.62 2.63 2.63 97.53
J093547.66+270939.3 143.9486 27.1608 17.08 –93.48 2.49 2.49 95.03

143.9486 27.1608 18.15 –93.78 2.48 2.48 95.52
J093608.72+121634.1 144.0363 12.2761 3.85 –15.98 3.21 3.21 16.44

144.0363 12.2762 2.08 –16.37 3.39 3.39 16.5
144.0363 12.2761 2.54 –16.54 3.32 3.32 16.73

J101754.72+251201.1 154.478 25.2003 –3.88 –13.17 2.52 2.52 13.73
154.478 25.2003 –3.22 –14.35 2.52 2.52 14.71
154.4779 25.2003 –5.1 –14.22 2.52 2.52 15.11

J101946.89+252932.8 154.9453 25.4924 –43.49 –58.38 2.54 2.54 72.8
154.9453 25.4924 –42.41 –60.41 2.54 2.54 73.81

J102830.93+463656.4 157.1289 46.6157 –25.3 –35 3.5 3.5 43.19
157.1289 46.6156 –26.1 –38.86 3.55 3.55 46.81

J103344.19+442641.3 158.4341 44.4448 4.79 –29.58 3.44 3.44 29.96
J111326.00+275206.8 168.3584 27.8681 43.64 –217.13 2.34 2.34 221.47
J112251.15+521732.3 170.7131 52.2922 –11.4 –7.6 2.52 2.52 13.7
J114214.21+305617.9 175.5592 30.9384 –25.24 –5.14 2.63 2.63 25.76
J120959.03+262025.6 182.4959 26.3404 –9.24 –7.61 2.58 2.58 11.97
J123204.75+270952.2 188.0198 27.1643 –28.56 –146.41 2.38 2.38 149.17
J124055.15+485114.2 190.2298 48.8539 11.1 1.88 2.76 2.76 11.25
J131549.85+280227.7 198.9577 28.041 6.4 9.59 2.59 2.59 11.53

198.9577 28.041 6.59 11.55 2.55 2.55 13.3
J134356.97+300859.6 205.9873 30.1499 –12.73 0.62 2.36 2.36 12.75
J134816.26–004921.5 207.0677 –0.8227 –12.88 –3.63 2.33 2.33 13.38
J135333.02–004039.4 208.3875 –0.6776 –52.57 –29.08 2.91 2.91 60.07

208.3876 –0.6776 –52.13 –30.59 2.98 2.98 60.44

tem. In total we obtain 190 carbon stars with known spectral type in literature (Totten & Irwin 1998;
Barnbaum et al. 1996), and 137 of them haveJHKs magnitudes from the 2MASS photometric
system. The Galactic dust reddening and extinction corrections were calculated by the method pre-
sented by Schlafly & Finkbeiner (2011). They predicted magnitudes in five bands for each MARCS
synthetic spectrum with the method of Gunn et al. (1998), andconstructed a synthetic grid of mag-
nitudes. For each star, magnitude in a single SDSS band can bepredicted by linearly interpolating
this synthetic magnitude grid, and the difference between the predicted colors and the measured col-
ors from the SDSS imaging can give the reddening estimates. Considering the impact of extinction,
we remove five of them withKs band extinction larger than 0.5. The two-color diagram ofJ − H
versusH −Ks for the 132 carbon stars is shown in Figure 13. The left panel is a two-color diagram
plotted in the SAAO photometry system by transforming theJ andKs magnitude of the 2MASS
system to the SAAO system using the transformation formula derived by Koen et al. (2007), and
the superimposed dotted boundaries are the locations of different carbon types, which were defined
in Figure 3 of Totten et al. (2000). The right panel is a two-color diagram in the 2MASS system,
and the superimposed dotted boundaries were plotted by applying an affine transformation to the
locations in the SAAO system using the transformation formula derived by Koen et al. (2007). From
Figure 13, we can see that there are a few C-N stars located outside of their superimposed dashed
boundary regions given by Totten et al. (2000) in the SAAO system, and in the 2MASS system, there
are more C-N stars outside of their corresponding region, which indicates that C-N stars may cover
larger regions. We can also see that the C-J stars are locatedin the same region as the C-N stars, and
the C-R stars are in the region where C-N and the C-H stars are also positioned, which can also be
seen in figure 5 of Downes et al. (2004). In addition, dC regions only contain a few dC stars, and the
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Fig. 13 Distributions for different types of carbon stars in the diagram ofJ −H andH −K colors
in the SAAO system andJ − H andH − Ks colors in the 2MASS system.

large majority of them are located outside of this region. Inthe end, we can also conclude that the
JHKs color of 2MASS can be used to separate C-N stars from C-H stars, which might be explained
in thatJHKs colors are a good indicator of effective temperature (Wang &Jiang 2014), and C-N
stars are cooler than C-H stars.

Because the C-N, C-H and dC stars could be separated well by the two-color diagram ofJ −H
versusH−Ks, we adopt a support vector machine (SVM) method, which is oneof the most practical
and widely applied methods in this field, which was proposed by Cortes & Vapnik (1995). When
applying SVM to this study, the goal is to obtain an optimum linear classification plane that can
distinguish C-N from C-H stars. In theJ − H versusH − Ks color diagram, we find that the
locations of five C-N stars withKs band extinction larger than 0.5 are far from other points in the
graph, and they might be selected as support vectors which could seriously affect the fitting of the
classification plane. To overcome this problem, we primarily exclude them from 137 stars.

Figure 14 shows the selected support vectors indicated by black open circles, and the linear
classification plane(J − H) = −0.6851 × (H − Ks) + 1.0974 marked by the black solid line.
The diagram ofJ − H versusH − Ks color of our 187 carbon stars with theJHKs photometry
from the 2MASS is plotted in Figure 15. It is clearly seen thatthe distributions are consistent with
those in Figure 13, and the optimum linear classification plane obtained by the SVM algorithm can
distinguish the C-N stars from the C-H stars well, which alsoindicates that our classification results
in Subsection 4.1 are reliable. In addition, there are two identified dwarfs located in the region where
dC stars are located given by Totten et al. (2000), which is indicated with green dashed lines, and
another 19 dC stars are located outside of this region.

4.4 GALEX Detected Stars

The Galaxy Evolution Explorer (GALEX)2 (Martin et al. 2005), a NASA small explorer mission
launched on April 2003, performed the first UV sky imaging andspectroscopic survey in two bands
(NUV: 1344 – 1786̊A and FUV: 1771–2831̊A). The primary goal of the GALEX survey was to

2 www.galex.caltech.edu/index.html
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Fig. 14 The optimum classification plane for C-N and C-H stars in the near-infrared color diagram
of J − H versusH − Ks using the SVM algorithm.
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Fig. 15 Distributions of our carbon stars in the diagram ofJ − H versusH − Ks colors from
2MASS.

study star formation and evolution in galaxies in UV bands, which makes it feasible for detecting
hot WDs in unresolved binaries with main-sequence companions as early as G and K types, and
cooler WDs with companions that are early M type or later (Green 2013).

Through the CASjob tool of GALEX DR6, we find 81 GALEX NUV-detected carbon stars
with a search radius of 3 arcseconds, which correspond to 48 distinct stars because of repeated
observations. As evidence for our capacity to detect carbonstar binaries with a hot WD companion
in GALEX, 48 NUV-detected carbon stars are approximately 26% of our 183 findings, which is
about nine times (3%) the spurious match rate, so the vast majority of the 48 starsare true detections.

Of these 48 GALEX-detected carbon stars, 37 are G types. These 37 detections represent
about 70% of all (53) the G type carbon stars in our sample, an extremelyhigh detection frac-
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Table 6 Objects with NUV and FUV Detections

Designation nuvmag nuvmagerr fuvmag fuvmagerr
(mag) (mag) (mag) (mag)

J083021.22+154319.6 22.21 0.17 23.08 0.28
22.11 0.17 23.01 0.32

J101423.22+302200.4 21.07 0.01 25.20 0.25
J101946.89+252932.8 20.32 0.11 22.45 0.41

20.80 0.23 21.49 0.36

tion. Only three of them have FUV detections listed in Table 6, of which J083021.22+154319.6 and
J101946.89+252932.8 were observed twice. According to Green (2013), a high NUV detection rate
of G type carbon stars is not evidence for hot WD companions, and FUV detections could indicate
hot WD companions. Therefore, the three FUV G type detections could have hot WD companions.
Besides having a hot WD component, UV brightness may arise from the active regions, transition
regions, or chromospheric emission of young and active objects. However, none of the three G type
FUV-detected carbon stars show emission lines, which is a remarkable feature in such stellar spectra.

4.5 Variability of Our Carbon Stars: Exploring the NSVS, Catalina and LINEAR Databases

In order to study the variability of our carbon stars, we search for our 183 carbon stars in the Northern
Sky Variability Survey (NSVS) database3 (Woźniak et al. 2004b), the Catalina Sky Survey database4

(Drake et al. 2014) and the LINEAR database5 (Stokes et al. 2000) by cross matching within a five
arcsecond radius.

The NSVS survey was conducted from Los Alamos, New Mexico, and acquired photometry data
for approximately 14 million objects. With a 1 yr baseline and typically 100 to 500 measurements
for each object, this survey is the most extensive variability survey of the northern sky, and some
data in the southern sky are also available in the range−38◦ < δ < 0◦, although with fewer epochs.
In a median field, bright unsaturated stars have a point to point magnitude scatter of about 0.02
magnitude and position errors are within 2 arcseconds (Woźniak et al. 2004b).

The Catalina Sky Survey (CSS) database began in 2004. It initially aimed at studying near-earth
objects (NEOs), or more specifically, potentially hazardous asteroids (PHAs), and was also used to
study variable stars (Drake et al. 2014). The CSS combines data taken from the Mount Lemmon
Survey (MLS) in Tucson, Arizona and the Siding Spring Survey(SSS) in Siding Spring, Australia.
In this paper, we concentrate on the second public data release data (CSDR2) of CSS, which covers
a time span from April 2005 to June 2012. The CSDR2 offered photometry data for 500 million
objects (about 40 billion measurements), and the photometry data encompass different observation
epochs, CatalinaV magnitudes and errors. The sky coverage of this survey is limited to the range
−75◦ < δ < 70◦ and|b| > 15◦, for an area of 33 000 square degrees (Drake et al. 2014).

The LINEAR database began in 1998 and ended in 2009, and compiled photometry data for
about 25 million objects (over 5 billion measurements). Thesky coverage of this survey is smaller
than that of Catalina, but extends over more than about 10 000square degrees in the northern hemi-
sphere. The photometry errors are typically 0.2 mag at Sloanr band magnitude∼ 18 (Stokes et al.
2000).

In our carbon stars, 79 were found to have entries in the NSVS data, 80 were found to have
entries in the Catalina data, and 42 were found to have entries in the LINEAR data. In order to
study their variability, a periodogram of the data was obtained first. Then, we used the sinusoidal
function defined in Equation (6) to fit the light curves by the Levenberg-Marquardt non-linear least

3 http://skydot.lanl.gov/nsvs/nsvs.php
4 http://www.lpl.arizona.edu/css/
5 https://astroweb.lanl.gov/lineardb/
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Table 7 Four Variable Carbon Stars

Designation P1a P2b P3c A1d A2e A3f Class
(d) (d) (d) (mag) (mag) (mag)

J040401.78+271545.4 370.4 364.3 NA 1.18 1.23 NA SR
J064815.90+080240.7 200.6 NA NA 1.12 NA NA SR
J133557.08+062355.0 NA 242.4 243.0 NA 1.46 1.42 SR
J220514.58+000845.5 NA 222.5 221.3 NA 2.40 2.22 Mira

Notes:a Period derived by NSVS data.b Period derived by Catalina data.c Period derived by LINEAR
data.d Amplitude derived by NSVS data.e Amplitude derived through Catalina data.f Amplitude
derived by LINEAR data.g ‘NA’ means parameter is not available.

squares fitting method, and finally retain four objects that have clear periodicity, which represents
a proportion of about 2% of the objects analyzed. Other stars were rejected for threereasons as
described in Mauron et al. (2014): (1) the number of data points was smaller than 15; (2) the light
variation was weak, which could be ascertained by magnitudeerrors; (3) the light curve was irregular
and could not be fitted with the sinusoidal function. The photometry data, fitted sinusoidal function
and periodicity are shown in Figure 16, and their fitted periodicity and amplitude are listed in Table 7.

y = a1 × sin
[

a2 × (x − a3)
]

+ a4 . (6)

The four variable carbon stars are J064815.90+080240.7, J040401.78+271545.4, J133557.08
+062355.0 and J220514.58+000845.5 respectively. The starJ064815.90+080240.7 is a C-N star with
an Hα emission line, which was identified by Woźniak et al. (2004a), and classified as a semiregu-
lar variable star with a period of 202 d. Our fitted period is about 200.6 d which is consistent with
the result estimated by Woźniak et al. (2004a). The amplitude of theV -magnitudes is 0.55 mag,
which verifies that it is a semiregular variable star according to the candidate criteria proposed by
Usatov & Nosulchik (2008). The star J040401.78+271545.4 isalso a C-N star, which is our new
finding, and has entries in both the NSVS data and the Catalinadata. The fitted result of NSVS data
suggests that its period is 370.4 d, and the amplitude ofV -magnitude is 1.18. In addition, the fitted
result of Catalina data shows that its period is 364.3 d, and the amplitude of theV -magnitude is 1.23.
Similarly, according to the criteria of Usatov & Nosulchik (2008), the object J040401.78+271545.4
is also a semiregular variable star. The stars J133557.08+062355.0 and J220514.58+000845.5 both
have entries in the Catalina and LINEAR data, and their periods derived from the two data sets are
very consistent and are listed in Table 7. With the criterionmentioned in Mauron et al. (2014), the
star J133557.08+062355.0 with Catalina amplitude lower than 1.5, is considered as a semiregular
variable star, while the CatalinaV -magnitude amplitudes of star J220514.58+000845.5 suggest that
it is a Mira star.

5 CONCLUSIONS

Carbon stars are excellent kinematic tracers of galaxies, and can be used to derive the rotation curve
of the Milky Way. They can also serve as a viable standard candle for galaxies that can be used to
derive the distance of these galaxies. So, it is quite usefulto automatically search for them from large
datasets. In this paper, we apply the EMR algorithm to searchfor carbon stars from the LAMOST
pilot survey.

In the paper, we analyze the performance of the EMR algorithmwith four test experiments
using the SDSS DR8 stellar spectra. The first experiment tests the robustness of spectral features
used in this paper, and the feature of median filtered spectracombined with continuum-subtracted
spectra can significantly improve the performance. Using this combined feature, recalls of the top
2000 cases for all queries with one exception of query 18 are more than 90%, many of which are
up to 95%, and all the recalls of the top 3000 are more than 95%,some of which are up to 98%.
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Fig. 16 Light curves of four variables with the NSVS data (blue), the Catalina data (cyan) and the
LINEAR data (green), and the fitted sinusoids. (a) J064815.90+080240.7, (b) J040401.78+271545.4,
(c) J133557.08+062355.0, (d) J220514.58+000845.5.

The second experiment tests the effect of parameters on the performance of the algorithm, and the
algorithm is robust to parameter variability. In the third experiment, we test the performance of the
relevance feedback, and confirm that it can also improve the performance of the algorithm. In the
fourth experiment, running times of each step of the algorithm are calculated, and we can conclude
that the algorithm is quite fast and scalable for a large dataset. In summary, the EMR algorithm is
quite efficient and scalable when searching for carbon starswith a large amount of spectra.

After applying the EMR algorithm, we find a total of 183 carbonstars from the LAMOST pilot
survey, and 158 of them are new findings. They are classified as58 C-H stars, 11 C-H star candidates,
56 C-R stars, ten C-R star candidates, 30 C-N stars, three C-Nstar candidates, and four C-J stars
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based on their spectral features. There are also ten objectswhich have no spectral types because of
low quality spectra, and one binary consisting of a WD and a carbon star. Locations of these carbon
stars in the diagram ofJ−H versusH−Ks color have been checked carefully, and we can conclude
that theJHKs colors of 2MASS can separate C-N stars from C-H stars, and we classify the C-N
and C-H stars on theJ −H andH−Ks color diagram with the optimum linear classification planes
obtained by the SVM method.

We identify 18 dC stars from our 183 carbon star samples with three proper motion criteria, and
also find three possible carbon star binaries which may have optical invisible companions, which
could be a hot WD by cross matching with the GALEX. In addition, four variable carbon stars
are found through fitting their light curves, which are obtained from the NSVS database, the CSS
database and LINEAR database. Three of them are likely semiregular variable stars and one of them
is likely a Mira star.
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