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Abstract This paper provides a method to study the solution of equations for syn-
chronous binary stars with large eccentricity on the main sequence. The theoretical
results show that the evolution of the eccentricity is linear with time or follows an
exponential form, and the semi-major axis and spin vary withtime in an exponen-
tial form that are different from the results given in a previous paper. The improved
method is applicable in both cases of large eccentricity andsmall eccentricity. In ad-
dition, the number of terms in the expansion of a series with small eccentricity is very
long due to the series converging slowly. The advantage of this method is that it is
applicable to cases with large eccentricity due to the series converging quickly. This
paper chooses the synchronous binary star V1143 Cyg that is on the main sequence
and has a large eccentricity (e = 0.54) as an example calculation and gives the nu-
merical results. Lastly, the evolutionary tendency including the evolution of orbit and
spin, the time for the speed up of spin, the circularization time, the orbital collapse
time and the life time are given in the discussion and conclusion. The results shown in
this paper are an improvement on those from the previous paper.
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1 INTRODUCTION

Tidal friction can synchronize the orbit and spin of two components in a binary system. In general,
synchronization is stronger in an old binary system due to tidal friction so that synchronization of the
orbit and rotation in a binary system is the result of the interaction of mutual tidal friction. The set of
equations describing non-synchronizationof the orbit androtation are given by Zahn (1989). Solving
the set of non-synchronous equations given by Zahn must use numerical integration. However, if
we solve the equation for the synchronous case, we may reducethe non-synchronous equation to
the synchronous case, for which we may utilize the solution derived by an analytical method or
numerical method. Zahn & Bouchet (1989) used these methods to study the orbital circularization
of late-type binaries. Li (2012) used the analytical methodto solve the evolution of orbit and spin
of a synchronous binary star with small eccentricity,β Per (also called Algol). Li (2013) also used
a numerical method to study the evolution of a synchronous binary star that has a large eccentricity
named EK Cep. However, the analytical method used by the author is only applicable to a binary star
with small eccentricity likeβ Per (e = 0.015) and it is not suitable for cases with large eccentricity. In
this paper the author provides a method which is appropriatefor binary stars with large eccentricity,
but the eccentricity varies with time in a linear form, whichis different from the result of Li (2012),
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hereafter called the previous paper. Therefore, this paperrepresents an improvement on the previous
paper.

2 THE MAIN RESULTS IN THE PREVIOUS PAPER

The equations describing the secular evolution of the orbital elements (a, e) and rotational angu-
lar velocityΩ due to the tidal friction in non-synchronous binary stars are given by Zahn (1989).
However, the non-synchronous equations were reduced to thefollowing synchronous equations in
the previous paper by using the coefficients of tidal friction λ12 = λ21 = λ10 = λ32 = λ, but
λ22 6= λ. (Zahn 1989)
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All symbols are the same as in the previous paper.M andR denote the mass and radius of the
primary star.q = M ′/M , M ′ denotes the mass of the secondary star, andλ = k2, which represents
the constant of apsidal motion.I is the moment of inertia of the primary star.a ande denote the
semi-major axis and eccentricity respectively.Ω is the angular velocity of the primary star. The
convective friction timetf is given by Zahn & Bouchet (1989)

tf =
(MR2

L

)1/3

= tf⊙(M/M⊙)1/3(Te/Te⊙
)−4/3. (4)

The previous paper that combines Equation (1) with Equation(2) yielded the first solution for
the semi-major axis
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Combining Equation (1) with Equation (3) provides the solution for the angular velocity of the
primary star
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Substitution of the solution (5) into Equation (2) producesthe solution for eccentricity described
in the previous paper
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In the previous paper when we studied a star with small eccentricity, such asβ Per withe =
0.015, the second term1

2
c(e2−e2

0) could be neglected due to it being small enough, and the solution
was given by

e = e0 exp[−21q(1 + q)Q(t − t0)]. (9)
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3 THEORETICAL IMPROVEMENT TO THE ANALYTICAL METHOD

The results of the previous paper are not applicable to a binary system with large eccentricity because
in the case of a large eccentricity, the second term1

2
c(e2 − e2

0) cannot be neglected. Because the
solution (9) is not applicable to a star with large eccentricity, we must find an improved method for
these cases, which is the aim of this paper.

It is well known that an equation for a series expansion is
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by letting1 + x = e2, ∴ x = e2 − 1 (e: eccentricity).
The above formula can be transformed as
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In the series expansion we can see that if we retain the term toordere2 and neglect higher order

termse4, e6, e8, e10. . . , the results that remain are onlyne2 and−
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The first term of the numerator on the right side of Equation (7) can be written as
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Heren is an undetermined constant, i.e.,n denotes a number such that we may retain the first term
to thenth term and neglect all lower order terms. This assumes a different value for different binary
star systems. It is determined mainly by the eccentricity.

Substituting (ln e
e0

) for Equation (12) into Equation (7), the solution for the eccentricity is ob-
tained by the formula
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Also, substituting Equation (13) into Equation (5), we get

a = a0 exp
[

−
114q(1 + q)Q(t − t0)

n + c

]

. (16)

∴ δa = a0

[

exp
(

−
114q(1 + q)Q(t − t0)

n + c

)

− 1
]

. (17)

∵ a2 − a2
0 = a2

0

[

exp
(

−
228q(1 + q)Q(t − t0)

n + c

)

− 1
]

. (18)



1698 L. S. Li

Substituting Equation (18) into Equation (6), we obtain
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4 NUMERICAL RESULTS FOR THE SYNCHRONOUS BINARY STAR V1143 CYG
THAT HAS A LARGE ECCENTRICITY

We choose the eclipsing binary V1143 Cyg, which has a large eccentricity, as a case for an example
calculation. Both components of the system V1143 Cyg (HD 185912) are similar main sequence
stars with spectral type F. Synchronization of the system was analyzed by the following authors.

The analysis by Tan et al. (1995): The synchronization of theorbit with respect to the spin
of the primary star:(V sin i)syn = 8.9 (km s−1): (V sin i)M = 9 (km s−1), F − 1 = 0.011.
This is a synchronous star. The synchronization of orbit relative to the spin of the secondary star:
(V sin i)syn = 8.5 (km s−1): (V sin i)M = 20 (km s−1), F − 1 = 1.35. This is a non-synchronous
star. The analysis by Li (2004) showed that synchronizationof the orbit relative to the spin of the
primary starQ1 = 0.98 (type A: synchronization). Synchronization of the orbit relative to the spin
of the secondary starQ = 0.34 (type D: non-synchronization). According to the conclusions above,
this paper studies the synchronization of the orbit relative to the spin of the primary star and does
not consider the synchronization of the orbit relative to the spin of the secondary star.

The eccentricity in the orbit of V1134 Cyg is given by Hegedüs (1988), Batten et al. (1989) and
Tan et al. (1995):e0 = 0.54.

The physical and orbital parameters are provided by Brancewicz & Dworak (1980) and Tan
et al. (1995). This paper cites data from the latter. The parameters we use areP = 7.6408 (d),
M = 1.29(M⊙), M ′ = 1.28(M⊙), R = 1.35(R⊙), R′ = 1.28(R⊙), q = 0.99, a = 22.24(R⊙),
andi = 78◦.

The luminosityL and effective temperatureTe are from data given by Popper (1980):log L =
0.41(L = 2.5704L⊙), log Te = 3.806 (Te = 6397 K). Zahn & Bouchet (1989) gaveTe⊙ = 5770 K
andtf⊙ = 0.433 yr.

The period of the apsidal motionU is cited from the data published by Hegedüs (1988):U =
10 725 yr.

The velocity of rotation of the primary star may be calculated from Ω0 = V
R = 9.7978 ×

10−7 rad s−1, V = 9
sin i km s−1, andi = 78◦.

At first, it is necessary to determine the value ofn (number). Substitution ofe = 0.54 into the
expanded expression (10) yields

ln e2 = −0.7084− 0.2509− 0.1185− 0.0630− 0.0357− 0.0211− 0.0128− 0.0079− · · · . (21)

We can see that all terms smaller than the fourth term−0.0630 may be neglected, thus, we can
retain the first to the fourth terms. Hence we may taken (number) as four (n = 4).

By substituting the above data into the following formulae,we can obtain

tf = tf⊙(M/M⊙)1/3(Te/Te⊙)−4/3 = 0.4107 yr . (22)
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(R
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a )5(1 + 16 M
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)
= 0.0788 (23)

from Cowling (1938).
Substitutingtf⊙, λ = k2, n = 4, c = 152/7 andR0, a0, e0 into Equation (8), we get
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Q = 1.9883× 10−8 yr−1 . (24)

M

I
=

1

KR2
= 9.3466× 10−12 km−2, (K = 0.1212). (25)

We taket − t0 = 100 yr = cy (the evolutional time) and substitute values ofa0, e0, Ω0 andq,
n, c into Equations (15), (17) and (20), then we find the solution for the orbital and spin evolution of
V1143 Cyg per century

δa = −0.000385R⊙ cy−1 , (26)

δe = −0.000059e0 cy−1 , (27)

δΩ = 0.00623Ω0 cy−1 . (28)

The timescale of circularization is given by Equation (2)
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The orbital decay (the collapse time of the system) is

ta =
a

ȧ
=

tf
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= 4.32 × 109 yr. (31)

The lifetime is
tlife = M/Ṁ = 2.10 × 1014 yr. (32)

By using the expressions from Nieuwenhuijzen & de Jager (1990)

log Ṁ = −14.02 + 1.24 log(L/L⊙) + 0.81 log(R/R⊙) + 0.16(M/M⊙) ,

Ṁ = −6.14 × 10−13M⊙ yr−1 .

5 DISCUSSION AND CONCLUSIONS

(1) The improved method in this paper is not only applicable to a synchronous binary star with large
eccentricity, but also to a synchronous binary star with small eccentricity.

(2) For choosing a value for the numbern, the larger the eccentricity is, the smaller the value ofn
that can be used, which is due to the fact that the series (10) converges quickly, such asn = 4
for V1143 Cyg (e = 0.54) in this paper. On the other hand, the smaller the eccentricity is,
the larger the value ofn can be, which is due to the series (10) converging slowly, such as for
β Per (e = 0.015) in the previous paper. Substitutinge = 0.015 into the series (10), we get
ln e2 = −0.9997−0.4997−0.3330−0.2497−0.1997−0.1663−0.1425−0.1247−0.1108−
0.0997 − 0.0996 · · · . All the terms after the 10th term 0.0997 can be neglected. Thus, we may
retain the first term to the 10th term and hencen = 10.
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(3) The improved method is different from the method described in the previous paper. In terms of
theoretical results, the eccentricity is linear with time in this paper. However, the eccentricity
varies with time in an exponential form in the previous paper. Although the semi-major axis and
the rotational angular velocity of the primary star also vary with time in an exponential form,
the forms of both formulae are different, which is due to the fact that the eccentricity is linear
with time. This aspect represents an improvement on the previous paper.

(4) On the other hand, if we change Equation (10) to bee2 − e2
0 = 2

n ln( e
e0

), and then substitute it
into Equation (7), we get the result that the eccentricity still varies with time in an exponential
form, i.e.
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We can see that although the forms of solutions (33), (34) and(35) have exponential forms like
in the previous paper, both solutions are different becausethe solution of the previous paper is
only applicable to cases with small eccentricity but the solution of this paper suits cases with
higher eccentricity.

(5) The conclusion of this paper is that the evolutionary tendency of system V1143 Cyg is such
that the semi-major axis and eccentricity decrease with time, especially the eccentricity which
decreases to nearly zero until the circularization time. This paper also infers that in this system,
at first the speed up of spin of the primary star occurs at time 1.35×106 yr, and then the or-
bital circularization occurs at time 6.83×108 yr, and lastly the collapse of the system occurs at
4.92×109 yr before the life time of this system is at an end in 2.10×1014 yr.
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