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Abstract By linear perturbation theory, a sensitivity study is presented to calculate the
contribution of the Mars gravity field to the orbital perturbations in velocity for space-
crafts in both low eccentricity Mars orbits and high eccentricity orbits (HEOs). In
order to improve the solution of some low degree/order gravity coefficients, a method
of choosing an appropriate semimajor axis is often used to calculate an expected or-
bital resonance, which will significantly amplify the magnitude of the position and
velocity perturbations produced by certain gravity coefficients. We can then assess to
what degree/order gravity coefficients can be recovered from the tracking data of the
spacecraft. However, this existing method can only be applied to a low eccentricity
orbit, and is not valid for an HEO. A new approach to choosing an appropriate semi-
major axis is proposed here to analyze an orbital resonance. This approach can be
applied to both low eccentricity orbits and HEOs. This small adjustment in the semi-
major axis can improve the precision of gravity field coefficients and does not affect
other scientific objectives.

Key words: planets and satellites — Mars methods — analytical variables: gravity,
resonance

1 INTRODUCTION

Mars is the second closest planet to the Earth in the solar system and it has many similarities to
Earth; therefore, there have been many missions to explore Mars since the 1960s. The gravity field
of Mars plays an important role in ensuring successful fulfilment of Mars missions and achieving
the desired orbit configuration for specific scientific objectives. Mars gravity field models are mainly
derived from the tracking data of available spacecrafts orbiting Mars, and orbital geometry is a key
issue in the recovery of the Mars gravity field.

The evolution of a spacecraft moving around Mars is dominated by perturbing forces due to
the non-spherical part of gravity from Mars, whose effects can be classified as secular or periodic
perturbations. The former corresponds to the precession of the orbit in which the argument of pe-
riapsis ω, the right ascension of ascending node Ω and the mean anomaly M undergo a secular
change proportional to all even zonal harmonics, while the semimajor axis a, the eccentricity e and

∗ Supported by the National Natural Science Foundation of China.



108 Z. Z. He & C. L. Huang

the inclination i do not undergo a secular change. On the other hand, all gravitational coefficients
contribute, at different levels, to periodic variations, which can be calculated by linear analytical
methods (Rosenblatt & Dehant 2010). Using the relations between Keplerian orbital elements and
Cartesian coordinates in radial, transverse and normal components, the contribution of each gravity
coefficient to the orbital perturbation in position and velocity can be obtained and then compared
with the precision of the tracking system. A theoretical upper limit for the sensitivity of an orbit to
the gravity field can finally be determined (Lemoine 1992).

In practice, the formal error or/and the signal-to-noise ratio (SNR) are usually used to judge
whether a certain coefficient of gravity can be reliably estimated or not. On the other hand, the
sensitivity of a specific orbit to the gravity field of Mars can also be evaluated and quantified in
terms of the magnitude of perturbations in both orbital positions and velocities. This information,
associated with the coverage and accuracy of the tracking data, provides insight into the strength
or weakness of each spacecraft when treated as a sensor for the Martian gravity field. Indeed, this
method makes use of analytical perturbations on the orbit caused by a particular gravity coefficient,
which is identical to the SNR method, since the perturbation is the ‘signal’ while the precision of
tracking data is the ‘noise.’

The perturbations of a spacecraft in position and velocity are not very sensitive to the high de-
gree/order coefficients, therefore, these coefficients are usually not well determined (i.e. have a low
accuracy) from the tracking data of spacecrafts. One possible way to improve this situation is to
put the spacecraft on a resonant orbit with the rotation of Mars, by choosing an appropriate semi-
major axis. This resonance will increase the perturbations on the orbital velocity caused by these
degree/order coefficients, thereby providing a much better determination with respect to the case
without resonance. This small adjustment in the semimajor axis can improve the gravity field solu-
tion and does not significantly change the original orbit. For example, Klokočnı́k et al. (2003), using
this resonance effect on CHAMP’s recovery of 46 order coefficients, indicate that this method can
provide useful checks or improvements. This resonance analysis can also be applied to spacecrafts
orbiting Mars. An analysis of the Mars Global Surveyor (MGS) mission shows that a small adjust-
ment in the semimajor axis can induce various higher-order resonances and help in the recovery of
the Mars gravity field (Klokocnik et al. 2010). However, the existing method is only valid for low
eccentricity orbits, and problems still persist for high eccentricity orbits (HEOs). The new approach
proposed in this paper to analyze the orbital resonance can be applied to both low eccentricity orbits
and HEOs.

Linear perturbation theory is often applied for sensitivity studies using orbital motion. The ba-
sics of this theory are briefly described in Section 2. This sensitivity study is applied to the MGS
in Section 3 to evaluate which coefficients can be better determined from the associated orbit track-
ing data. Considering the fact that the existing method can only find the exact resonance of low
eccentricity orbits, the new approach, valid for both low eccentricity orbits and HEOs, is proposed
in Section 4 as the main content of this paper, to analyze the exact orbital resonances. The exact
resonances for near circular orbits (such as MGS) and assumed HEOs are searched for and also plot-
ted in Section 4. As a validation of this new approach for HEO resonance, in Section 5 we use the
sensitivity study to calculate the velocity perturbations on the orbit induced by gravity coefficients
for the two cases 8:3 and 29:11. The results confirm that our method of searching the semimajor axis
for exact resonances is valid for an HEO. Section 6 gives a summary and discussion. We hope that
this information will be useful for the orbit design of future missions to Mars.

2 THEORY OF ORBITAL PERTURBATION

The external gravitational potential can be represented by an expansion of spherical harmonics as,

U(r, φ, λ) =
GM
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where C̄lm and S̄lm are fully normalized harmonic coefficients of degree l and order m, and P̄lm is
the fully normalized associated Legendre function. ae is the semimajor axis of the reference ellipsoid
of Mars (3396.2 km). GM is the product of the universal constant of gravitation and the mass
of Mars. r, φ and λ are respectively the distance, latitude and longitude of the spacecraft in the
coordinate frame centered on Mars.

The summation term in Equation (1) is the non-spherical perturbing potential R, which can be
expressed in terms of the six Keplerian orbital elements by means of a change of variables (Kaula
1966)

R =
GM

a

K∑
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(ae

a

)l l∑
m=0
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F̄lmp(i)
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q=−Q

Glpq(e)Slmpq(ω, M, Ω, θ) , (2)

where F̄lmp(i) is a function of the orbital inclination i and Glpq(e) is the eccentricity function. p and
q are summation indexes. Q is a number that depends on the eccentricity, which will be discussed
later, and Slmpq is a function defined by harmonic coefficients, ω, M, Ω and sidereal time θ.

The orbit and its variations are usually described by Lagrange planetary equations, whose so-
lutions are given by linear perturbation theory. The solution requires a reference orbit in which the
mean semimajor axis ā, the eccentricity ē and the inclination ī are constant, and the argument of
periapsis ω, the right ascension of ascending node Ω and the mean anomaly M undergo a linear
variation with time. Their linear change at rates ω̇, Ω̇ and Ṁ can be represented as (Kaula 1966)
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(3)

where n is the mean motion, n =
√

GM
ā3 . At epoch t, the reference orbit is described by the mean

elements ā, ē, ī, ω0, Ω0 and M0 at t0, with linear change of rates ω̇, Ω̇ and Ṁ . Given the refer-
ence orbit, and integrating both sides of the Lagrange equations, the periodic perturbations can be
expressed as (Kaula 1966)

∆α =
K∑

l=2

l∑
m=0

l∑
p=0

Q∑

q=−Q

∆αlmpq , (4)

where α stands for any of the six Keplerian elements. More details about ∆αlmpq can be found in
Kaula (1966). For a spacecraft in a low eccentricity orbit, Q is usually taken as 1 or 2, but for one
in an HEO, this value has to be increased to make the linear analytical perturbations converge to a
reasonable accuracy.

Linear perturbation theory is only valid within the so-called Laplace limit, i.e. e ≈ 0.662. This
condition is valid for most of the present spacecrafts orbiting Mars, so in these cases this approach
is still valuable for sensitivity studies of the Mars gravity field. When e is close to the Laplace
limit, Equation (4) converges slowly and one needs to increase the value of Q, although this method
becomes inefficient. If a target orbit’s eccentricity exceeds the Laplace limit, an alternative numerical
method described in Lemoine (1992) and Rosborough & Lemoine (1991) can be used.

After calculating perturbations ∆αlmpq , the next step is to transform the Keplerian perturbations
into radial, transverse and normal components of orbital position and velocity perturbations. The
magnitude of the position and velocity perturbations can then be directly compared with the precision
of the tracking data (range or range-rate measurements) to ascertain which coefficients of the gravity
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field may be determined with sufficient accuracy. In general, two trajectories are then produced:
the reference trajectory (a secularly precessing ellipse as already explained above) and the perturbed
trajectory, with the latter being defined by adding the linear perturbations induced by each coefficient
of the gravity field (i.e. Clm or Slm for a given pair of (l, m)) to the reference orbit.

These two trajectories are then converted to and subtracted in Cartesian space and the resulting
differences are rotated into the radial, transverse and normal directions. Thus, a time series of the
differences in position and velocity is directly obtained, from which the root mean square (RMS)
of the differences can be computed for each component. Then, by comparing the RMS of the dif-
ferences with the capabilities/precision of the tracking system, we can assess to what degree/order
the gravity field can be recovered from the tracking data of the spacecraft (Rosborough & Lemoine
1991).

It is necessary to mention that contributions to the orbital perturbations by some high de-
gree/order gravity terms are usually very small if there is no resonance, so that they cannot be
determined very well from tracking data. Thus the main goal of this work is to search for one (or
more) orbital resonances by choosing a reasonable semimajor axis, so that the orbital perturbations
by certain high degree/order gravity coefficients are amplified with respect to the precision of the
tracking data and thereby become determinable. This will be done by using the linear analytical
method described in this section rather than a numerical integration method.

3 CASE STUDIES: A SPACECRAFT IN A NEARLY CIRCULAR ORBIT

The MGS spacecraft is in a nearly circular orbit. For gravity recovery, the best quality tracking data
of MGS were acquired in the three weeks of the Gravity Calibration Orbit (GCO) phase and one
month of the mapping transition phase using a stewed high gain antenna. In these phases, the MGS
periapsis altitude reached 380 km. The MGS tracking data were collected by NASA’s Deep Space
Network (DSN), and the X band data were used for gravity recovery. The precision of the two-way
and three-way Doppler data is better than 0.05 mm s−1 for an integration time of 10 s, while the
precision of the one-way Doppler data is better than 1 mm s−1 for an integration time of 10 s (Yuan
et al. 2001).

In order to analyze the velocity perturbation induced on MGS by the Mars gravity field, we used
an analytical method to simulate the velocity perturbation during the GCO phase. In this simulation,
we used the GMM-2B spherical harmonic expansion of the static field (Lemoine et al. 2001) as
input, which is complete up to a degree and order of 80. The MGS ephemeris is given by the software
SPICE (www.naif.jpl.nasa.gov/naif/aboutspice.html).

Figure 1 shows the time evolution of some orbital elements of MGS during the GCO phase.
Regarding the initial parameters of the MGS reference orbit, ā, ē and ī can be obtained by averaging
a, e and i, while ω0, Ω0 and M0 can be obtained by least-squares fitting. The values obtained in
this way are the initial parameters ā = 3795.95 km, ē = 0.0063, ī = 92.9◦, ω0 = 225.92◦,
Ω0 = 351.05◦ and M0 = 194.68◦, while ω̇, Ω̇ and Ṁ can be obtained from Equation (3).

Figure 2 summarizes the velocity perturbations of MGS induced by different coefficients; only
the contributions of these gravity coefficients giving perturbations larger than 0.1 mm s−1 (at the
level of DSN observation capabilities) are plotted. Figure 2 clearly shows that the largest perturba-
tions are mainly due to zonal gravity coefficients, but other peaks, like those at orders 13, 25, 38
and 50, are induced by resonance effects (see Sect. 4 for details). Comparing the values of Figure 2
with the observation precision of DNS (0.05 mm s−1 for two-/three-way Doppler measurements
over 10 s), one can deduce that MGS tracking data can only provide a full solution of the Mars
gravity field up to degree and order 50–60. Although some higher degree and order terms can also
induce significant perturbations by resonance effects (Marty et al. 2009), a priori constraints on
these coefficients above a certain higher degree is still needed to solve these coefficients. Usually,
these constraints are defined by a power rule derived from Kaula’s theory (Lemoine et al. 2001) that



Sensitivity Studies of High Eccentricity Orbits for Mars Gravity Recovery 111

Fig. 1 Diagram of variation of orbital elements in MGS GCO phase. The GCO phase started on
1999 February 4 and lasted three weeks.

Fig. 2 The velocity perturbations on the orbit of MGS (GCO phase) by Mars gravity coefficient
(Clm, Slm) pairs. Only perturbations larger than 0.1 mm s−1 are plotted.

is represented by the power of Mars gravity coefficients in the spectral domain (Yuan et al. 2001).
For the above reason, the GMM-2B model is only well determined up to degree 60 (Lemoine et al.
2001).

4 RESONANCE EFFECTS

Resonance is a common effect experienced by almost all spacecraft orbiting around a rotating planet.
This phenomenon occurs when the motion of the spacecraft and the rotation of the planet satisfies
certain relationships, and it plays an important role in studying the sensitivity of the orbits to the
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associated gravity field. Indeed, the analysis of the velocity perturbation shown in Section 2 confirms
the importance of the resonance effect on the orbit in determining the Mars gravity field.

In this and the next section, we will discuss under which conditions the resonance will occur for
both MGS (being representative of a circular polar orbit) and HEO.

As shown by Reigber (1989), large perturbations will occur if the argument ψ̇lmpq is very small
or becomes singular, i.e. resonance exists if

ψ̇lmpq = (l − 2p)ω̇ + (l − 2p + q)Ṁ + m(Ω̇− θ̇) ≈ 0 , (5)

where θ̇ is the angular rate of rotation for Mars. To simplify the analysis, we are mainly interested in
the case q = 0. In this situation, Equation (5) can be written as

α(ω̇ + Ṁ) ≈ β(θ̇ − Ω̇) , (6)

where α and β are some pairs of mutually prime integers. The exact resonance occurs when β
α is

commensurable, i.e. the spacecraft completes β nodal periods when Mars rotates α times relative
to the spacecraft’s precessing orbital plane. α and β can be correspondingly represented as αγ =
(l − 2p);βγ = m; γ = 1, 2, 3, · · · .

If exact resonance occurs, ψ̇ in Equation (5) is equal to zero (Klokočnı́k et al. 2003). Writing Ṁ
as Ṁ = σ̇ + n, we obtain from Equation (3)

σ̇ = − 3nC20a
2
e
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3
2 ā2

(3 cos2 ī− 1). (7)

Putting σ̇ into Equation (5), and using α and β in place of l − 2p and m respectively, then

ψ̇ β
α

= α(ω̇ + n + σ̇) + β(Ω̇− θ̇) ≈ αn− βθ̇. (8)

The condition ψ̇ β
α

= 0, required for exact resonance, implies

n =
β

α
(θ̇ − Ω̇)− ω̇ − σ̇. (9)

For a spacecraft in a nearly circular orbit such as MGS, using Equations (3) and (7) in (9), neglecting
ē2 terms, and replacing n by β

α θ̇ in the correction term, we obtain
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β

α
θ̇{1− 3

2
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R

ā
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α
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where J2 = −√5C20.
There are two ways to compute the mean semimajor axis ā from Equation (10). The first one

takes β
α θ̇ as an initial estimate for n and by subsequent iterations on Equation (10), the mean element

ā is obtained. However, this method can only be applied to a low eccentricity orbit and is not valid
for an HEO.

A new approach is proposed here. Starting with n2ā3 = GM and letting periapsis altitude ap

change in a certain range, one can find the range of n. Then from the equation αn − βθ̇ = 0, one
can obtain the range of β

α .
Taking a spacecraft in a nearly circular orbit as an example, in this case ā can be written as

ā ≈ r + ap. If the periapsis altitude ap changes from 200 to 400 km, the range of β
α becomes

12.4826 ∼ 13.5382. Letting α = 1, 2, 3, · · · , one can obtain the corresponding values of β with
the conditions that β should be an integer and that β

α should be commensurable. The value of β
α is

then put into Equation (9) to get the value of n. Finally, the value of ā can be obtained from relation
ā = (GM

n2 )
1
3 .
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Fig. 3 The resonance diagram for a spacecraft orbiting Mars with periapsis altitude between 200
and 400 km. The X axis indicates the α and the Y axis indicates the value of the periapsis altitude
when the exact resonance occurs. The dots in the figure mean the location of the β/α resonance and
the numbers after the dots denote β. (a) A nearly circular orbit with inclination 92.9◦ like MGS, (b)
An HEO with inclination 98◦ and eccentricity 0.65507.

In Equation (9), ω̇, σ̇ and Ω̇ also affect the value of n, but these effects are much smaller than
that of θ̇. From our simulation, the effects of ω̇, σ̇ and Ω̇ on ā are smaller than 1 km. Therefore, in
the later computing process, we use the mean value of ω̇, σ̇ and Ω̇ to simplify the procedure. For
most spacecrafts in orbit, since the exact resonance condition is not satisfied, the result given by ā
has a reasonable accuracy.

From this approach, some possible resonances of a spacecraft moving around Mars in a nearly
circular and a nearly polar orbit (such as MGS) are found. In this calculation, the inclination is fixed
at ī = 92.9◦, and the periapsis altitude ap changes from 200 to 400 km. The results of ap when the
exact resonances occur are presented in Figure 3(a). X and Y axes indicate the α and the value of
ap respectively. Dots in the figure indicate the locations of β

α resonances and the numbers after the
dots denote values of β. In the MGS GCO phase, the periapsis altitude ap is about 399.75 km, and
the corresponding resonance is 25:2. In the whole mission of MGS, its orbits, with large variation
in altitude due to maneuvers, have passed through various higher order resonances (for example,
188:15), which was also discussed in Klokocnik et al. (2010). Figure 3(b) shows the result of a
similar analysis for an HEO, which will be described in the next section.

5 CASE STUDIES: THE HEOS

The main tasks of a spacecraft in an HEO include exploring the space environment and surveying
the geology and other surface features of Mars. It can also provide some valuable tracking data to
improve the determination of the Mars gravity field (Wu et al. 2009), especially when a specific orbit
can be designed with a reasonable ā to have a resonance. This is one of the main purposes of this
paper.
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Fig. 4 The velocity perturbations on the HEO (resonance of 8:3) by Mars gravity coefficient
(Clm, Slm) pairs. Only the perturbations larger than 0.1mm s−1 are plotted.

We put our method of finding the resonance condition to the test by considering, as a case study,
a Mars mission to be launched in December 2018; reaching its destination after 10 mon, it maneuvers
into an elliptical orbit around Mars. The spacecraft in orbit carries out its main scientific tasks from a
high eccentricity elliptical orbital with the following parameters: the apoapsis altitude is 14 150 km;
the periapsis altitude is 260 km. This gives the orbital parameters ā = 10 602 km and ē = 0.65507,
and we will also suppose ī = 98◦.

Using the same method as for the nearly circular orbit in Section 4, one can find the exact
resonance conditions for this spacecraft in an HEO, and the results are shown in Figure 3(b). It
is worth noting that the eccentricity ē is very close to, but smaller than, the Laplace limit, so the
analytical method presented in Sections 2 and 4 can still be adopted by only using a larger value of
Q (as the convergence becomes slow), although the computational cost will increase. In this case,
we took the value of Q = 50, so the result of the perturbing potential calculated from Equation (2)
differs from that calculated from Equation (1) by less than 5%. Such an HEO satisfies the conditions
for an 8:3 orbital resonance, and the velocity perturbations induced on the spacecraft by the Mars
gravity field are shown in Figure 4 where, as before, only terms greater than 0.1 mm s−1 are plotted.

The Chinese VLBI Network (CVN) organized three experiments that tracked the Mars Express
spacecraft and performed orbit determination in 2008 and 2009. It is shown that the 5 s inte-
grated three-way Doppler measurement noise is 0.3 mm s−1, at roughly the same noise level as
the European Space Agency. These experiments demonstrate that China has the capability to track
and determine the trajectory of a spacecraft in orbit around Mars (Cao et al. 2010). Considering the
results of Figure 4 and those of the CVN tracking precision, it can be stated that the orbital data can
provide the solution of most of the gravity coefficients up to degree and order 50 ∼ 60. There are
some large perturbations dominated by zonal spherical harmonics and those of orders 8, 16 and 24,
which are induced by the resonance effects. Comparing Figure 4 with Figure 2, it is shown that these
coefficients induce larger velocity perturbations on this spacecraft in an HEO, at least by 1 mm s−1,
with respect to those on MGS.

In conclusion, this HEO can also contribute to or complement spacecrafts in circular orbits (such
as MGS) in order to recover the Mars gravity field; i.e. incorporating these HEO tracking data with
MGS data may improve some low and mid degree/order terms in Mars gravity field models.
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Fig. 5 The velocity perturbations on the HEO (resonance of 29:11) by Mars gravity coefficient
(Clm, Slm) pairs. Only the perturbations larger than 0.1 mm s−1 are plotted.

In order to obtain more information on the perturbation of an HEO by higher degree/order grav-
ity coefficients, one can choose another appropriate parameter ap in orbit design so that a higher
order resonance exists, such as 21:8, 29:11, etc. Taking the 29:11 resonance as another example, it
can be identified from Figure 3(b) that the periapsis altitude is about 294 km and the mean semi-
major axis ā is 10 700 km. Figure 5 shows the corresponding velocity perturbations in this case.
Comparing Figure 5 with Figure 4, it is clearly shown that the coefficients of order 29 give much
larger perturbations in a 29:11 resonance orbit than in an 8:3 orbital resonance.

From the results of the two simulated HEOs and their comparisons with MGS, one can find
that, by choosing a set of appropriate orbital parameters ap to make a favorable resonance, the
perturbation on the orbital velocity by Mars gravity coefficients of a certain degree/order can be
significantly enlarged, so that these gravity coefficients can be solved with better precision from the
tracking data. At the same time, the adjustment of ap in the orbital design is small and does not affect
other assigned scientific objectives.

6 SUMMARY AND DISCUSSION

The aim of this paper is to simulate and investigate the value of the HEO’s tracking data in the
recovery of the Mars gravity field. A new approach is proposed to search the orbital resonance via
choosing an appropriate semimajor axis ā. The expected resonance will significantly enlarge the
magnitude of perturbation in position and velocity produced by specific harmonic coefficients of the
Mars gravity field, eventually leading to a better determination of their values. This can be done with
a small adjustment of ā that does not significantly alter the original orbit, and can help the recovery
of some higher degree and order gravity coefficients.

One problem of the linear analytical method in Section 2 is the rate of convergence. Actually, for
an orbit with high eccentricity, the convergence is much slower than for the orbits with e < 0.1. This
is because for an orbit with e < 0.1, the value of Q in Equation (2) in the linear analytical method
can be generally taken as 1 or 2. However, for an orbit with high eccentricity, the value of Q has to
be increased, thus decreasing the computational efficiency. As in Rosborough & Lemoine (1991),
Q is taken as 40 for M9 (e = 0.62), and their RMS values for position and velocity perturbation
agree very well with the results from the numerical software (Geodyn) within a reasonable precision
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of 5%. Therefore, the linear analytical method for some high eccentricity (below the Laplace limit)
orbit simulation and analysis is still applicable, with an appropriate value of Q to ensure a sufficient
precision. Following this principle, Q is determined to be 50 by comparing the difference between
Equations (1) and (2). This issue and the details of this method are beyond the scope of this paper
and will be discussed in the next paper.

The resonance effect may also increase the observation noise, especially for a constellation of
two satellites such as GRACE. However, some existing studies that recover Earth’s gravity field have
demonstrated that the resonance effect on a single spacecraft can be employed to improve gravity
field coefficients. For example, in Klokočnı́k et al. (2003), the authors make use of the resonance
effect to improve CHAMP’s 46th order coefficient recovery with good results. Moreover, there is
no “GRACE” plan for Mars at present. Considering that the tracking data from spacecrafts in orbit
around Mars are limited, using the resonance effect for a given HEO to improve some specific
coefficients of the Mars gravity field may become a useful choice.

The White Paper on Chinese Space and National 11th Five-Year Plan declared deep space ex-
ploration to be the main arena of development for the Chinese space industry, and Mars exploration
to be a focus of the Chinese space program after lunar exploration (Wu et al. 2009). The first Chinese
spacecraft that planned to travel Mars, Yinhuo-1 (YH-1), had four scientific objectives, one of which,
by utilizing the unique nature of the YH-1 orbit (such as low inclination), was to improve the existing
Martian gravity field model from orbit tracking information. The probe unfortunately failed to enter
the designed orbit in November 2011 due to the failure of a Russian launcher. However, with contin-
uous development, Mars is becoming a major destination of future Chinese deep space exploration.
The technical heritage of the YH-1 mission and the improvement of the Chinese deep space network
has laid a solid foundation for a future Mars program. Future Chinese missions to Mars may focus
on the space environment and geology of this planet, and a spacecraft in an HEO may be adopted.
As in the case of YH-1, tracking data are usually only valuable for the determination of low degree
and order gravity coefficients. This paper however has shown that a small change of the orbit design,
via resonance, can upgrade the value of tracking data of such an HEO in Mars gravity recovery. We
hope this optimum orbit design method can serve as a reference for future Mars programs.
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