RAA 2014 Vol. 14 No. 9, 1061-1120 doi: 10.1088/1674-4527/14/9/002

hi
http://www.raa-journal.org  http://www.iop.org/jouritsraa Research in

Astronomy and
Astrophysics

INVITED REVIEWS

Probing the dark side of the Univer se with weak gravitational
lensing effects *

Li-Ping Fu' and Zu-Hui Fah

L Shanghai Key Lab for Astrophysics, Shanghai Normal UnitggrShanghai 200234, China;
fuliping@shnu.edu.cn

2 Department of Astronomy, School of Physics, Peking UnitgrBeijing 100871, China;
fanzuhui@pku.edu.cn

Received 2014 March 20; accepted 2014 May 7

Abstract  Arising from gravitational deflections of light rays by lagcale struc-
tures in the Universe, weak-lensing effects have been rézed as one of the most
important probes in cosmological studies. In this paperaview the main progress
in weak-lensing analyses, and discuss the challengesunefirivestigations aiming
to understand the dark side of the Universe with unprecedesrecisions.
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1 INTRODUCTION

The tremendous advance in astronomical observations tide ke emergence of a concordance
cosmological model, in which dark matter and dark energyactfor about23% and 72%, re-
spectively, of the total energy budget of the Universe (®mergel et al. 2003; Komatsu et al. 2011;
Planck Collaboration et al. 2013a). Understanding the diaidof the Universe has thus been one of
the most fundamental challenges in scientific researchpiidygerties of dark matter and dark energy
affect the global expansion behavior of the Universe anddfmation and evolution of large-scale
structures (LSSs). Therefore constraints on the two damkpoments can be derived by accurately
measuring both (e.g., Weinberg et al. 2013b; Bauer et aBR@ravitational in origin, weak-lensing
effects result from the light deflection by LSSs in the Unsgerin addition, similar to ordinary opti-
cal lens systems, their observational effects also seelsitiiepend on the geometrical distances be-
tween observer, lens and source (e.g., Bartelmann & Schn2@®1). Thus weak-lensing effects are
closely related to both LSSs and the expansion history ofitiieerse, and have been recognized as
one of the highly promising probes in cosmological studéeg.( LSST Science Collaboration et al.
2009; Laureijs et al. 2011; Spergel et al. 2013; Weinberd. &04 3a). Particularly, they are gravity
induced and can reveal the underlying large-scale darkemaigtribution much more directly than
other analyses, such as galaxy clustering (e.g., Andetsadin2012), X-ray (e.g., Rosati et al. 2002;
Peterson & Fabian 2006) or Sunyaev-Zeldovich effects (8&ewmy& Zeldovich 1970; Birkinshaw
1999), which are strongly affected by complicated gas misysi

x Supported by the National Natural Science Foundation ofi&hi



1062 L.P.Fu&Z. H. Fan

On the other hand, however, because they are very weak xtreneely challenging to extract
weak-lensing signals from observations (e.g., Miller et2813). Having been speculated to exist
even before the establishment of the general theory ofiviéyatnot until the 1990s were the ex-
pected coherent shape distortions of background galaaiesed by weak lensing first seen around
massive foreground clusters of galaxies (Tyson et al. 1980@ cosmic shear signals from LSSs
were detected around the year 2000 (Bacon et al. 2000; Keifsalt 2000; Van Waerbeke et al.
2000; Wittman et al. 2000). Since then, weak-lensing stiave rapidly developed, and become
an important area of research in cosmology (e.g., Fu et 88;28eymans et al. 2012; Erben et al.
2013; Hoekstra et al. 2013).

In this paper, we present an overview of the current statugeak-lensing studies and discuss
their future prospects in the era of precision cosmologg rEst of the paper is organized as follows.
We outline the theoretical basics for weak-lensing eff@ttSection 2. In Section 3, we describe
the observational procedures for measuring weak-lensiagrssignals. Cosmological applications
of weak-lensing effects are presented in Section 4, inolyditudies on the mass distribution of
individual clusters of galaxies, cosmic shear correlatioalyses, weak-lensing peak statistics and
galaxy-galaxy lensing analyses. Discussions are corttd@in®ection 5. We use the the speed of light
¢ = 1 throughout the paper.

2 BASICSOF THE WEAK GRAVITATIONAL LENSING EFFECT

In the theoretical framework of general relativity, the ammogeneous matter distribution in the
Universe induces perturbations in the spacetime metrid,therefore affects the moving path of
particles therein including those of photons (e.g., Satereet al. 1992). Such light deflections by
intervening LSSs can change the appearance of backgrounceso When light rays pass through
central regions of foreground galaxies or cluster of g@sxétrong-lensing effects can occur, gener-
ating multiple/highly distorted images of a backgroundrseuFor most of the Universe, however,
the lensing effect is weak, and only leads to a tiny shapeish and magnitude change for a back-
ground source. This is referred to as the weak-lensingteffddch can only be studied statistically
by observing a large number of background sources (e.gielBann & Schneider 2001). Here we
summarize the basic theory of the gravitational lensingatffparticularly for the weak-lensing ef-
fect. Before that, we first introduce the standard modellierdgvolution of the background and the
perturbed Universe on the basis of the theory of generdivitja

2.1 Background Universe

For the background Universe without perturbations, itcefime can be described by the following
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds* = dt* — a*(t) |dx* + f;2< (X)delﬂ ; 1)

wherea(t) is the cosmic scale factor that is related to the redshiéidyy. = 1+ z, x is the comoving
radial distance, and@’? represents the solid angle element. The funcfigiis given by

K~Y2sin(K1/?y) if K>0,
Je(x) = § x if K =0, (2)
(—K)~Y2sinh[(—K)Y2y] if K <0,

whereK = constant is related to the spatial curvature of the Universe.
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In the theory of general relativityy; and K are determined by the matter composition of the
Universe through the following Friedmann equations

. 2

a K G
<a> + 2 3 Pi s (3)
a 4G
2 T3 (pi + 3pi) (4)

2

where the dot symbol is for the derivative with respect,tandp, andp; denote the energy den-
sity and the pressure of thith component, respectively. Without considering the cimgpbetween
different components, we have from Equations (3) and (4)

d(a’pi) = —pida®. (5)

In the fluid approach, the physical properties of differeomponents in the Universe are often
described by the corresponding equation of state in the foemwp, wherew is the equation-of-
state parameter. For the matter component including tre dadk matter and the baryonic matter
after photon-baryon decoupling, we take= 0. For the radiation component, = 1/3. For the dark
energy component that drives the accelerating expansitimeo)niversew < —1/3 is required

wherew can change with time (redshift). For the cosmological camistthe equivalenty = —1.
From Equation (5), we have in general
a 1 i
pi—poeXp{—i%/ da%@}, (6)
ag

where the subscript ‘0’ denotes the present value at redshif 0. Thereforep,, o a2 for the
matter componenp, o« a~* for the radiation component, apd = constant for the cosmological
constant term.

With the Hubble parameter defined @#5(a) = a/a, the critical density of the Universe
perit(a)= 3H (a)?/(87G), and the dimensionless energy density parani&ter) = p;(a)/perit(a),
Equation (3) can be written as

o 0 (20) ().

Pi0

whereQk = 1 — Qe = 1 — >, Q;. To be consistent with the convention in literature, here we
use(; without the subscript ‘0’ for the present dimensionlesssitgrof component, andQ;(a)

for the corresponding quantity at time It is seen that a different energy composition leads to
different evolutionary behavior af(t). Therefore by accurately measuring the expansion history o
the Universe, we can possibly tell what our Universe is mddaral further probe the nature of dark
matter and dark energy.

Figure 1 showsi(t)/ao for different cosmological models witH, fixed, wherea, is the scale
factor at present. The horizontalaxis is fort/t, with ¢, being the age of the flatCDM model
with Q,, = 0.3 andQ, = 0.7. We choose = 0 at present. Thus the corresponding age of a model
can be read out by-z; x ¢ty wherez; is the x-value at = 0. For dynamical dark energy models,
here we consider two cases, one with a constant equatistete#-parameter = —0.7, and the
other withw(a) = wo 4+ we (1 — a) and(wp, w,) = (—0.9, —1.1), respectively. We can see that the
past expansion history of the model withy, w,) = (—0.9, —1.1) (black) is very similar to that of
the ACDM model (blue). Indeed, both of the models can fit the curcesmological observations
well (Planck Collaboration et al. 2013a). On the other hamel future evolutionary paths of the two
models are very different. Fdivy, w,) = (—0.9,—1.1), becaus€l — a) < 0 for the future,w(a)
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will eventually become positive and thus lead to a decataraif the Universe. It should be noted,
however, that the behaviorstat- 0 (future) are shown purely for illustrative purposes, arelftirm
of w(a) used here may not be physically valid to describe the equatictate of dark energy in
future times. Nonetheless, we see that the properties &fatargy strongly affect the evolution of
the Universe.

Now we turn to the definition of distances. In a cosmologicaitext, different measurements
give rise to different distances. By comparing the energhghit rays we receive with the energy
emitted from a source, we get the luminosity distahgespecifically defined as

L

m ) (8)

2 _

2=
where L is the luminosity emitted by the source ahdis the flux received by the observer. The
measurements dby, involve standardizable candles, such as Cepheid varitkefsom the period-
luminosity relation, spiral galaxies using the Tully-Feshielation and Type la supernovae (SNela).
On the other hand, the measurement of angular externgiarsf a physical scaleX, leads to the
angular diameter distande, defined as

Dy = —.
A N

9

In a time-evolving Universe, these two distances are nos#ime but related to each other by the
distance duality relatiod;, = (1 + z)?Dx. Both Dy, and D4 are related to the comoving radial
distancey that light rays propagate. Considering a source at redshdhd an observer at redshift
20, the light rays travel following the null geodesics with?> = 0, i.e.,dt = —af(t)dy with the
minus sign chosen correspondingyte= 0 at the observer’s location. We then have

dt da da 1 dz
dx = a  aa  a?H(a) aoHy E(z)’ (10)
where we have used the relatibr- z = ag/a andE(z) = H(z)/Hy. Thus
1 1dz
=— [ = 11
X (20, 21) wHs J.. BC) (11)

For a cosmological model consisting of matter, radiatiod dark energy, from Equation (7), we
have

z /
E(z) = \/Qm(l+z>3+970(1+z>4+QDEeXp [3/ g2+ woe()

) T |+ Ox(1+2)%.(12)

The angular diameter distanég, is then given by

aof[x(#1, 20)] (13)

Da = a(z1) fx[x (21, 20)] = 1+ o ;

where fk is called the comoving angular diameter distance and ismgiv&quation (2).

In Figure 2, we showD, for the same set of cosmological models as that shown in Eigjur
We will see later that the lensing effect depends on the anglimeter distances from the observer
to the lens, to the source and between the lens and the santéherefore sensitively depends on
the expansion history of the Universe.
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Fig.2 The angular diameter distance for different cosmologiaadiets in units o~ Mpc.

2.2 Perturbed Universe

While it is homogeneous and isotropic on very large scales,Universe is full of structures on

scales less than a few hundred Mpc. These LSSs arise fronoihiah perturbations generated in
the inflationary epoch, which have been amplified with thewgian of the Universe (e.g., Dodelson
2003). In the concordance cosmological model, the darkenattmponent plays the dominant role
to gravitationally lay the skeleton of LSSs. The baryonidteracomponent then falls into the po-
tential wells and goes through complex processes, suchamfend cooling, to eventually form

luminous objects observable to us (e.g., Mo et al. 2010).imhemogeneous matter distribution
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related to LSSs perturbs the light propagation and leadedatavitational lensing effects (e.qg.,
Schneider et al. 1992).

To describe the perturbed Universe, we adopt the confornealtdhian gauge in which the
spacetime metric can be written as (e.g., Dodelson 2003)

ds® = [1 + 2@(@] dt? — a2 [1 + 2@(@] [d;ﬁ + fﬁ(x)deﬂ] , (14)

where® and ¥ reflect the perturbations on the metric from the inhomogasevnatter distribu-
tion. The quantity® has a similar meaning as a gravitational potential in Newonheory, and
U represents perturbations to the spatial curvature of theese. In weak-lensing studies, we are
mainly interested in the late evolutionary stage of the Erge where the matter component signif-
icantly dominates over the radiation component. Thus irtlieery of general relativity neglecting
the anisotropic stress, we have= —®. For subhorizon matter perturbations, the potential fsesis

V20 (z) = 4rGa’pmd(x), (15)

whered(x) = [pm(x) — pm]/Pm With pr, being the background matter density of the Universe. It is
noted that Equation (14) and Equation (15) hold even in tmdimear regime of matter perturbations
with 6 > 1 aslong ag®| <« 1 and|¥| < 1 (e.qg., Ishibashi & Wald 2006).

For the perturbation field(x), it can be expressed in terms of its Fourier moglgs with

0 @k ik - x)o(k 16
(@)= [ Gy esplite-)a(k). (16)
The power spectrum is defined &%k) = |5(k)|?, representing the spatial characteristics of the
perturbation field at different scales. For a statisticaiynogeneous and isotropic perturbation field,
P(k) = P(|k|), itis related to the two-point correlation functigfry, r2) = &(|r1 — r2|) of the
field by
Ak ik P(|k 17

€llrs —ral) = [ gy exlt- (s = r2)| PRI @)

It is known that the statistical properties of a Gaussiamoamfield can be fully described by
its two-point correlation function (power spectrum) (e Bardeen et al. 1986). For the standard
paradigm of structure formation in the Universe, the mattieomogeneity is seeded in the inflation-
ary epoch and the primordial perturbation field can be wedkcdbed by a Gaussian random field.
The evolution of the perturbation fietddepends on cosmological models. In the early stage of the
Universey is small and its evolution follows the linearized dynamieqliations and the Gaussianity
of 0 is preserved. Therefore the power spectrum of linear depsitturbations plays an important
role in cosmological studies. It is generally written as

P(k,a) = Pi(k,a;)T?(k,a)G*(a)/G?*(a;), (18)

whereP;(k, a;) is the primordial power spectrum at very early timg and7'(k, a) is the transfer
function that describes the scale-dependent evolutioredtipbations since the epoch of horizon
crossing to the stage when the perturbations of differealescstart to evolve similarly afterwards.
The overall increase of the perturbations is then repregdny the linear growth facta#(a). For
P;, it can be written as a power law with (k) « k™. ForT'(k, a), it depends on the matter content
of the Universe and can be accurately calculated given a @ogical model (e.g., Eisenstein &
Hu 1999; Lewis et al. 2000). For the linear growth factor ia thte stage, we have, from the linear
dynamical equations (e.g., Dodelson 2003),

G (dlnH 3)dG 30, H2

2\ =0. 19
da? da a) da 2a5H2G 0 (19)
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It is seen that the behavior 6f(a) depends on the expansion history of the Universe, which is in
turn governed by the matter composition of the Universe.

Figure 3 showsZ(a) for different cosmological models by solving Equation (1@)der the
initial conditions withG(a;) = a; anddG/dal,, = 1 with a¢; = 0.01. Its model dependence is
clearly seen. We should note that the value&/athown in Figure 3 are arbitrarily normalizeddp
for different models.

For the amplitude of the power spectrum, it is often represkby the quantityg, the rms
of the extrapolated linear perturbations smoothed ovetdpéhat smoothing scale 6f~~! Mpc,
which is given by

3
7t = [ gy P Ukl a)W? (k) (20)

whereW (kRry) is the Fourier transform of the top-hat smoothing functiow éhe smoothing
scaleRty = 8 h~! Mpc. Itis seen that to fully specify the linear power spestrof perturbations,
we need to knows andog in addition to2,,, Qpg andwpg. Furthermore, different properties
of different types of matters, baryonic or cold/warm/hotldeatter, affect the transfer function
differently. Therefore we also need the information abeud,, the baryonic contefilz, neutrino
mass and so on.

Put another way, cosmological observations on LSSs andkftemnsion history of the Universe
can thus set constraints on these important cosmologicairpgers and further reveal the nature of
dark matter and dark energy as well as the physics drivingtiofi in the early Universe. Current
observations show that for a lACDM model withQ),, + Q5 = 1 andwpg = —1, we have,,h? =
0.1426 + 0.0025, Qgh? = 0.02205 + 0.00028, ns = 0.9603 4+ 0.0073 andog = 0.829 + 0.012
(Planck Collaboration et al. 2013a). Without the prior oa flatness, the curvature of the Universe
is constrained to b&x = 0.000570:90% i.e., our Universe is nearly flat to a very high precision
(Planck Collaboration et al. 2013a). Meaningful constisagm the properties of neutrinos, including
their total mass and the effective number of species, haestaden derived, demonstrating the great
power of cosmological observations that are highly completary to particle physics experiments
(e.g., Lietal. 2009a; Komatsu et al. 2011; Planck Collationaet al. 2013a). For the nature of dark
energy, the cosmological constant can fit well with currdrgarvations. However, the allowed range
for dynamical dark energy models is still large (e.g., Zha@l&ang 2010; Weinberg et al. 2013b).
Future cosmological observations will target constraivitt much improved precision in order to
better understand our Universe (e.g., LSST Science Caligibo et al. 2009; Laureijs et al. 2011;
Spergel et al. 2013). For that, weak-lensing effects areebegl to play crucial roles as one of the
most promising probes (e.g., Fu et al. 2008; Li et al. 2009Hgitkger et al. 2013; Simpson et al.
2013; Fu et al. 2014) .

In the above, we discuss linear density perturbations. fraectsire formation to occur, however,
nonlinear gravitational interactions are strong on scafesfew Mpc or less (e.g., Mo et al. 2010).
For weak-lensing effects on arcmin scales, the signalsarersantly contributed by nonlinear struc-
tures. Therefore we have to go beyond linear perturbategs, (Kilbinger et al. 2013). Fortunately,
fast developments in numerical simulations allow us todrthe nonlinear gravitational evolution of
structure formation rather accurately (e.g., Springel.€2@05; Sato et al. 2009; Hilbert et al. 2009;
Harnois-Déraps et al. 2012). With these nonlinear int&as, couplings occur between different
Fourier modes. The statistics of density perturbationsvssignificant non-Gaussianity, and the
power spectrum/two-point correlation function alone aatrreveal all their properties. Nonetheless,
the power spectrum is still a very important quantity dikgotlated to the lowest order correlation
analyses. Extensive studies have been done to undersenditlinear evolution of density pertur-
bations. Different methods calibrated with numerical dations have been proposed to calculate
the nonlinear power spectrum (e.g., Peacock & Dodds 1998h&mal. 2003; Lewis et al. 2000).

Figure 4 presents the extrapolated linear power spectruhtrennonlinear power spectrum of
density perturbations at = 0 calculated by CLASS (Blas et al. 2011) for different cosngidal
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models. It is seen that the nonlinearity considerably eodarthe small-scale power, leading to
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is set to bed, = 2.1 x 10~? and the power index is; = 0.96.

significant effects on weak-lensing signals as we will séerla

2.3 Weak Lensing Effects

We now turn to weak-lensing effects. We start from a Schvdduiis lens (i.e., a point-mass lens)
of massM (e.g., Schneider et al. 1992; Bartelmann & Schneider 2001ight ray from a distant
source reaches the observer along the diregdiovith respect to a chosen optical axis in the case
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Fig.5 A schematic configuration of a Schwarzschild lens systemaptetl from Schneider et al.
(1992).

of no gravitational lens in the path. With a lens, the ray iei¢ed when it passes by the lens, and
the deflection angle is known to lde = (4G M)¢&/|&|? (notec = 1 is used), twice that obtained by
the Newtonian theory of gravity. Het€| is the impact parameter satisfyifgy > R, = 2GM with

R being the Schwarzschild radius. The observer then seeggtiterdy from the directior®. The
configuration of the system is schematically shown in FiguyrerhereDg, D, and D); denote the
angular diameter distances from the obsedp the source’, to the lens, and between the lens
and the source, respectively. The mapping betwkand3 satisfies the following relation

DSB = %Té - Dlsd(é) P (21)

and with¢ = D)6, we have

B=6-— glsd(DIO) =0—a0), (22)

where the scaled deflection angieis defined asx = (Dys/Ds)&. The above equation is often
referred to as the lens equation.

For alens with a mass distribution ofr), if the light deflection is much smaller than the charac-
teristic scale on which the mass density changes apprgciblthin-lens description is an excellent
approximation. In such a case, the total deflection anglébeanritten as the linear summation of
the deflections from different mass elements along a strdiigd within the lens, and is given by
(e.g., Bartelmann & Schneider 2001)

S

-
a(6) =46 [ PERE)E s (23)
whereX () is the surface mass density of the lens projected alongribefisight and
£(€) = [ drap€.a). (24)

The corresponding scaled deflection angles

1 6—-06
04(0) = ; /dQG/K/(e/)m, (25)
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wherex(0) = X(D10) /X, is the dimensionless surface mass density of the lens dakelénsing
convergence, and
1 Dy
" 4nG DDy’
By inspecting Equation (25), we can see tlatan be written as the derivative of a deflection
potential withae = V), and the potential is given by

»(0) = %/dZH'ﬁ(H’)lnw —-0|. (27)

(26)

The convergence then satisfie&’2¢(0) = 2x(8).

With the lens equation and deflection angle, we can then aadhe lensing-induced image
change for a background source (e.g., Bartelmann & Schn2@f). Let/° (3) andI?(0) be the
original and the observed surface brightness of the souespgectively. Because the gravitational
light deflection does not change the surface brightnessriyttbe propagation direction of a light
ray, we havel®(0) = I°[3(0)]. For a source with a size much smaller than the characteristi
scale over which the lens properties significantly chartgelgnsing mapping can be approximately
written as3(0) = B, + A(00)(0 — 6,) with the Jacobian matrix

B PPO)\ _ (1—k—m  —%
A=%6~ <5” © 00,00, ) -2 l-k+m)’ (28)
where~y; and~- are the two shear components with
1/0%) 0% 0%
71_5(8291 _8292)’ 2= 56,90, (29)

We then see that lensing effects can change the appearaacsoofice. A circular isophote of a
source is distorted into an ellipse with the axial ratio deieed by the two eigenvalues of the
Jacobian matrixd of Equation (28). Specifically, the axial ratio is given by

o lmk=hl_1-]g]
l—r+]y]  1+]gl’

(30)

where|y| = /7% + 73, andg; = v;/(1— k) is called the reduced shear. If the sheat 0, no shape
distortions occur. On the other hand, it is noted that it ésriduced shearthat is directly related to
the lensing induced shape distortions. The lensing effeats a spherically overdense/underdense
region tend to shear the background sources tangentadiglty with respect to the center of the
region.

Besides the shape distortion, lensing effects also chamgerbss section of a light bundle
resulting in a flux change of the observed image comparecetadbe of no lensing effects. This is
represented by the magnification factogiven by

1 1
TdetA  (I-rZ- P2

I (31)
The valuelp| > 1 (< 1) indicates a brightening (dimming) effect from lensing, ancan be either
positive (positive parity) or negative (negative paritg)d., Schneider et al. 1992).

In central parts of galaxies or clusters of galaxies, lap®ffects are strong and apparent.
Multiple images or heavily distorted giant arc-like imagg$ackground sources can occur (e.g.,
Walsh et al. 1979; Soucail et al. 1987; Lynds & Petrosian 188%e et al. 2012; Inada et al. 2012;
Kneib & Natarajan 2011, and the references therein). By rately measuring the position, lumi-
nosity and shape of the images, one can effectively derimstcaints on the mass distribution for the



Weak Gravitational Lensing 1071

central part of the lens (e.g., Courteau et al. 2014; Hoalettal. 2013). For most of the Universe,
however, the lensing effects are weak with« 1 and|y| < 1. Thus the weak-lensing effect, the
main topic of this paper, is directly associated with LSSshia Universe and is potentially very
powerful in cosmological studies.

The drawback of weak-lensing studies is that it is impossibldetect the weak-lensing effect
from a single background source given that the intrinsipttities of galaxies are much larger
than the lensing-induced shape distortions and theimnisitriluminosities are not known. Statistical
analyses that come from observing a large number of backdrsources are thus necessary (e.g.,
Heymans et al. 2012). For weak-lensing studies with shamsarements of background galaxies,
the noise from random intrinsic ellipticities can be suggesl by averaging over a number of galax-
ies. The residual noise is on the level@f /\/n.03 whereo,,_ is the dispersion of the intrinsic
ellipticity of background galaxies., is their surface number density used in the weak-lensiny ana
yses, and) is the typical scale we are interested in. The tergfiZ corresponds to the number of
galaxies over which the average is calculate. &or~ 0.3 andn, ~ 10 arcmin 2, typical for the
current generation of observations, such as CFHTLenS (erlgen et al. 2013), the residual noise
is ~ 0.1/6,. To obtain a signal with signal-to-noise ratio (S/N)-of3, we need the signal smoothed
over the angular scalé, to be on the order of ~ 0.3/6y. Taking6, ~ 10, for a typical angu-
lar scale of a massive cluster at~ 0.2, the required signal is ~ 0.03. Therefore for massive
clusters of galaxies witd/ ~ 10*°M, we are able to individually study their mass distribution
through weak-lensing analyses. Increasingby acquiring deeper observations can increase the
S/N. However even wit, ~ 50 arcmin 2, it would be very difficult to study the mass distribu-
tion individually for objects with)M < 10'3M,. On the other hand, stacking signals over a large
number of foreground lenses can effectively increase thmebeu of background sources used in
weak-lensing analyses, and the noise level for the stadgedlss~ o, /\/Niensngls WhereNie,s
is the number of lenses in the stacking. This idea is undeglthie so-called galaxy-galaxy lensing
technique, in which the stacked lensing signals aroundge laumber of lens galaxies are detected
to study the average mass distribution for a sample of lelexigs (e.g., Mandelbaum et al. 2006,
2013). This allows us to probe group-sized and even galagdslark matter halos statistically,
though not individually (e.g., Li et al. 2013; Gillis et al023).

The above discussions focus on the single lens case, in \@rsaigle object, such as a cluster
of galaxies, dominates the lensing signal along the corsitline of sight. In general, however, all
the LSSs between a source and an observer contribute tortsiadeeffect. In order to accurately
calculate the lensing signal, in principle, we need to ttaedight deflections cumulatively along an
actual light path. This can be calculated from the geodexdiedight ray in the perturbed Universe
(e.g., Schneider et al. 1992; Bartelmann & Schneider 2001).

The lensing equation is then given by (e.g., Bartelmann &®ater 2001)

_p_ X /.fK(X_X/) / /
B0 =02 [ v X0 [a6.0).]. (32)

wherey is the comoving radial distance given in Equation (13, is the corresponding comov-
ing angular diameter distance given in Equation (2), énid the 3D Newtonian potential given
in Equation (14). The multiple lens-plane method has beenarically developed in which the
continuous matter distribution between the source andliserwer is discretized into multiple thin
lens-planes, and a light ray is only deflected when it reaaless-plane (e.g., Blandford & Narayan
1986; Jain et al. 2000; Hilbert et al. 2009). The total deibecis obtained by the summation of the
deflection at each lens-plane along the deflected light patthe cosmic shear regime where the
lensing deflection is very weak, the Born approximation i®acellent first-order approximation in
which the total deflection angle can be calculated along tiperurbed light path. Then the lensing
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equation can be simplified to (e.g., Bartelmann & Schnei@én?

_pn_ /fK(X X) / /
g0 =02 [ v O g0 e (33)

The corresponding Jacobian matrix is given by

0B o , fxlx —x') 92@[fk(x)0,X']
Ao = gy =02 [ G TR 59
Then the effective convergengeas
= / fK(X X) 2 / /
= [F v EEC e ] (35)
and the shear; and~; are, respectively,
_ S = x') {32@[fx(x’)0,x’] B 32@[fK(X’)0,X’]}
e [ R - S
_ , Jxk(x —X') 52‘1’[fK(X/)0aX/]}
m=2 [Cav >{ 06,00, | 37
From the 3D potentiab, we have
3H§Q

where the subscript indicates the derivatives with respect to the linear cowmtdis rather than the
angular coordinates. Thus

_ 3H§Oun / dx JrO= XD fe () 0L (X8, X
2 Jo Je(X) a(x’)
It is seen thak is the weighted projection of the density perturbaticadong the line of sight. For

a sample of source galaxies with a redshift distributiofx)dz = ps(x)dx, the effective lensing
convergence can be obtained by

2 XH / !
ﬁ:?,Hng/o dxps(x)/o iy KX fK>E ){K( MUKC(LE(X)/?’X]’ (40)

whereyy indicates they value corresponding te = co. By changing the order of the integrations,
the above equation can be written as

(39)

2Qm x ! ! ! 6 ! 07 !
= 2 [T e e RO, (1)
where the functior? (') is
T fe(x —X)
60) = [ axnn S (42

Under the Limber approximation (Limber 1954), the powercspen of x is then given by (e.g.
Bartelmann & Schneider 2001)

_9HGp [ GP(X) { I /}
PK(Z) - 4 A dX QQ(X/) Ps fK(X/)’X )

(43)
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Fig.6 The lensing convergence power spectrum calculated fronBiEhénear &olid lineg and
nonlinear (lashed linespower spectrum under the Limber approximation for diffei@smological
models. The model parameters are the same as those in Fig. 4.

whereP;s[l/ fx(x'); x'] is the power spectrum of density perturbatioat k¥ = I/ fx (x’) and at time
corresponding to the radial comoving distanéeFrom Equation (36) and Equation (37), it is easy
to see that the power spectrumof= ~; i, is the same aB,,. ThereforeP, is the crucial quantity

in cosmic shear two-point correlation analyses.

In Figure 6, we show(l + 1)P,/(2n) for different cosmological models, where the solid and
dashed lines are calculated using the linear and nonliRgaespectively. The source redshift is set
to bez, = 1. Itis seen clearly that on arcmin scales, the nonlineactffare dominant and greatly
boost weak-lensing signals.

3 OBSERVATIONAL WEAK-LENSING ANALYSES

Weak-lensing shear analyses depend crucially on accunat®metry for a large number of faint
galaxies. The development of large mosaics of CCD astrotednsemeras opened a new era in
imaging surveys. The Sloan Digital Sky SurvegDSS) is the most successful example that has
had a significant impact in astronomical studies. Its graatass paved the way for new genera-
tions of deep optical and infrared surveys with ambitiousrgific goals that were not achievable
for surveys with past Schmidt photographic plates. The Gasfdance-Hawaii Telescope Legacy
Survey (CFHTLS) done with the MegaPrime/MegaCam instrument isfitisé second-generation
wide field survey project. It is also the first set of wide fielzservations that are optimized for very
deep photometry with sub arc-second seeing imaging andyblaseline for monitoring time series.
The instruments and the surveys have been designed to datpall similar projects and to pro-
duce outstanding data sets for studies of SNela, weak gtavial lensing and small moving bodies
in the Solar System. With further technological improvetsethe third-generation of large-scale
surveys has been in operation. Some of them are specifiegignled or are ideal for weak-lensing

1 http://iwww.sdss.org/
2 http:/iww.cfht.hawaii.edu/Science/CFHLS/
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observations, such as the VST Kilo-Degree Suty@IDS) and Dark Energy SurvéyDES). The
huge amount of data expected from these large surveys ecljginly efficient and automatic data
reduction and analysis softwares.

In this section, we will briefly introduce the basics of dagduction for weak-lensing studies.
Three of the most popular softwares to achieve weak-lerstiegr measurements from observa-
tional images will be presented. We will also describe wkadsing simulations and discuss relevant
systematic uncertainties.

3.1 Data Reduction and Mask Creation

A CCD camera mounted on a telescope is a particle detectibrté associated readout electron-
ics and amplifiers. The sensitivity varies from pixel to pikecause the CCD is not illuminated
homogeneously. The raw data observed from a telescope tdammised directly for scientific stud-
ies, and necessary data reduction processes have to bedagfr most of the publicly released
data, pre-precessing steps have already been performeegrétressing procedures consist of sub-
tracting master biases and darks, and normalizing imaggsmaster flats. B\S exposure is an
image exposure in the shortest possible time with the gheitteed. It shows the electronic noise
and systematics of the camera, and has to be subtractedHeoseience exposuresaRK current

is caused by the high energy electrons related to the temyperaf the camera itself. Therefore one
of the ways to reduce the effects oARK current is to reduce the temperature of the cames®riD
current is very noisy but usually very stable. It can be adge by subtracting the expectedRx
current from pixels, which is estimated by the combinatiba series of dark exposures. The other
important step in pre-processing is to normalize imagel witaster EAT field, an exposure with
an area that is homogeneously illuminated. This is for abimg the inhomogeneous effects caused
by dust on the optical surfaces or/and the different quargffitiencies of different pixels on the
CCD itself. The common way to get aLkT field is to take an image of the sky at zenith a few
minutes after sunset and to choose an area that is free aégtadt is necessary to take several flats
to reduce the calibration noise.

Further data processing includes astrometric calibratiela-to-field photometric rescaling, im-
age recentering, image resampling and warping, and finalge stacking and a specific masking
process. For a general survey, thel&\CE images with preliminary astrometric position and pho-
tometry information are usually provided with the raw imadpy the data processing center. Here,
we briefly introduce the main issues related to data reducti® image calibration and the stacking
process.

For an astrometric calibration of the image, the physicalrdmate of each exposure has to
first be converted to the World Coordinate System (WCS). THenWCS coordinates of detected
objects are matched to an external catalog of referencetsbjehe astrometric calibration for the
whole image can thus be done using two-dimensional fittedrdiisn polynomials obtained by min-
imizing the differences between the detected objects’ Wa&Bdinates and those of the reference
catalog. The internal astrometric accuracy can achievwechd® 10% of a pixel. However, the exter-
nal accuracy is limited by the accuracy of the referencd@gt# reference catalog usually covers
the full sky containing objects with high S/N, such as brigtars with high positional accuracies.
Once the astrometric calibration is done, the next step jsetéorm the photometric calibration.
The instrumental fluxes are converted to “magnitude” in otdeallow comparisons of photomet-
ric measurements between different exposures under woioserving conditions or even between
different instruments. The zero-point corrections areedsimilarly to the astrometric calibration,
by minimizing the weighted quadratic sum of magnitude défees from overlapping detections of
the images. In principle, the accuracy and homogeneityldhmiimproved if all available data are

3 http://www.astro-wise.org/projects/KIDS/
4 http://www.darkenergysurvey.org/
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Fig.7 The explanation of image resampling: mapping of an inpugienanto a (fine) output image.

taken at the same time to do the astrometric and photomatiirations. £AMP® is astrometric and
photometric calibration software specifically designedlémge imaging surveys. It uses the input
catalogs and an external reference catalog (e.g., 2MASSSSR7, USNO) to compute accurate
astrometric and photometric calibrations. The astrometiution is stored in an output WCS image
header.

Once the calibration for each exposure is done, the imageddaog is the final step of data
reduction to get the SENCE image. For a telescope, the exposure time of a signal imagiedc
exposure) is limited by the telescope itself, usually a feinutes depending on the observational
band. To obtain a deeper image, a few to hundreds of expostities same field are needed. They
are stacked together to produce or®@eNCE image. In order to have observations in the gap re-
gions between CCDs, different exposures are taken by rsfiftie center of the camera by a few
arcminutes (called dithering). Thus, an important step iesample images, which is to map pixels
of individual exposures to a projected pixel grid. This pwtjon is done by first oversampling each
image by a factor of two as shown in Figure 7. Images are theeméered and resampled using
an interpolation kernel, e.g., the Lanczos interpolatiemkl, to preserve the noise structure, and to
minimize artifacts on the interpolated image.

Before moving to the image coadding process, one can applyeiuimage quality selection
criteria, e.g. discarding exposures with obviously baditigs, such as poor seeing, bad telescope
tracking, and telescope defocusing, or with galaxy andcstants strongly out of expectations. It is
also important to ensure homogeneity in the pointing levelvoid discarding too many exposures
in certain fields. The last step is to coadd all the resampteahes that are weighted properly to
produce the final SIENCE image. The coadding can be done by taking weighted mean oiamed
values of pixels from different exposures to ensure the tegsttion of satellite trails and cosmic
rays. During the coadding process, an addition&@I®HT-MAP image is produced, containing the
information about how often individual pixels are obserirethe resampled images. ThiSBNSHT-
MAP is often used in object detections providing informatioatthe S/N of different areas of
the image. The image resampling and coadding can be dong th&rpublic astrometric software
SWARPS,

An additional step in data reduction is to mask the regioas #ffect the accuracy of object
measurement, e.g., saturated stars and their bright lealssic rays, bad pixels, regions with low
S/N in image boundaries and CCD gaps, etc. Masks can be getérapublic automatic masking
softwares, e.g., automaskowever, it is essential to further check automatic maskisrafine them

5 http://www.astromatic.net/software/scamp
6 http://www.astromatic.net/software/swarp
7 http://marvinweb.astro.uni-bonn.de/dapoducts/ THELIWWW/automask.html
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manually, especially for regions with bright halos and lo#M $h CCD gaps and the edges of the
image.

3.2 Shear Measurement Pipeline

As described in Section 2.4, the weak-lensing effect geegrdlipse-like distortions for an observed
galaxy image. The ellipticity parameters of a galaxy can b#em in the form of the complex ellip-
ticity e = e +ies. In the weak-lensing regime, the estimate of the lensingrssignaty can ideally

be obtained by averaging over the observed image ellijgsctf a number of galaxies, ~ (e). In
reality however, it is not easy to get an unbiased estimagheér signals. The observed shapes of
objects can be severely contaminated by the point spreatidan(PSF) caused by the complicated
telescope optics, the limited size of the mirror, etc. Faugd-based observations, there are addi-
tional contaminations resulting from the turbulence oftEaratmosphere (seeing). Furthermore, the
images suffer from pixelization and inefficiency of chargansfer in the CCD itself. The contami-
nations to the measured shapes of objects consist of iso@od anisotropic parts. The effects of a
seeing disk and the intrinsic size of the PSF circularizeotheerved images leading to a reduction
in the amplitude of the inferred lensing signal. On the otf@rd, an anisotropic PSF introduces dis-
tortions to the shapes of objects, which can mimic lensiggals and therefore introduce systematic
uncertainties in lensing shear analyses.

A shear measurement pipeline generally includes the fatigwteps: object detection and sep-
aration from ®IENCE images, determination of the observed galaxy shapes, Rfokaten and
deconvolution (correction), and calculation of the inéetshear signals.

Galaxies used for weak-lensing analyses are distant baghdrgalaxies. The detection and
accurate shape determination of these faint objects ara tratial task. One of the most widely
used software packages called @RACTOR® has been demonstrated to be able to achieve high
accuracies in object detections. It can be done either avichihl exposures that have passed all the
data reduction processes and calibrations, or on a coadusgki The masks and BAGHT-MAPS
are used to discard saturated stars and bad detectionxi€sadand stars need to be distinguished
from all other detections, and galaxy-star separationtsngberformed on the basis of the size
magnitude of objects. Stars are point-like objects withemarless uniform observed sizes mainly
due to the seeing disk. All detected objects with size latfggen the observed size of stars are marked
as galaxies, whereas the smaller ones are treated as noise.

The next step is to quantify the shape parameters for stargaaxies in terms of their sizes,
the second and possibly higher moments of their light distions. Stars are intrinsically point-
like objects, therefore their observed sizes and shapethanesults of the effects of seeing and
PSF. A sample of moderately bright stars is most suitablePfeF estimations, because the flux
measurement for very bright stars can be biased, and fairgt stay be contaminated by small and
faint galaxies. The variation of the PSF across the field®fndgan be significant. The central region
of a camera has much less, smooth contaminations, whereasgde regions often have a stronger,
significantly varying PSF. Furthermore, for a wide-field eamwith arrays of CCD chips, the PSF
varies from CCD to CCD. Those variations can be describedoxppately by an interpolating
function, typically a polynomial model. The accuracy of R®¥frection is limited by the number of
stars used for the model fitting. It is important to chooseappr polynomial function to model the
spatial variations of the PSF across the instrument’s fitldeov.

Correction for contamination of the PSF is achieved by suiing quantities related to the PSF
of stars from the ones of galaxies. This is the most difficalt ;n the shear measurement pipeline.
During the past decade, a number of techniques have beelopesdo correct PSF contamination.
Here we briefly review the three most commonly used ones tea@plied in shear measurements.
The KSB+ is a deconvolution method that aims to remove the &ffadfets from observed galaxy

8 http://www.astromatic.net/software/sextractor
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images to obtain PSF-free images for lensing shear anal@sethe other hand, both the Shapelets
and thelendit adopt a forward-modeling approach that convolves the ehodages with the PSF
and then directly compares the result with the observedygaaages.

(1) KSB+
The KSB+ method (Kaiser et al. 1995; Luppino & Kaiser 1997 gkstra et al. 1998) is the
most widely used method in observations. The elliptieityf an object is defined in terms of
the weighted quadrupole momeidjs; (i, j = 1, 2) given by,

€1 )= 1 Q11— Qa2 \ | [ POW(6)1(8)06,0;
(62 )_ m< 2Q12 ) ’ Q” B j d20 W(O) 1(0) - (44)

HereI(0) is the measured surface brightness at the angular diséafroen the center of the
object (chosen to be &t= 0), and1¥ (0) is a weighting function that can be taken as Gaussian
with the scale length matched to the size, such as the Ilghiffadius, of galaxies.

KSB+ estimates galaxy ellipticities under the assumpthiat the PSF distortion can be de-
scribed by a small but highly anisotropic distortion comweal with a large circularly symmetric
seeing disk. The ellipticity of a galaxgf°" corrected for the anisotropic PSF distortion is given

by

£ = e — Pas (45)
whereq is the PSF anisotropy factor, adti™ is called the smear polarizability tensor that can
be calculated froni () of the galaxy and the applied weighting functidn(@) (Hoekstra et al.
1998). The; factor can be derived from the stars in the observed fielaesitfer = 0 for stars,
we have

e

Q= (Psm*)—l e*ObS, (46)

po T
where* denotes the quantities measured from stars. From the P@&ctarecer, we then aim
to extract gravitational lensing shear signals. We carewfit* in terms of the pre-seeing shear
polarizability tensorP”, the gravitational sheay and the intrinsic source ellipticitg®,

et =eb + P;B'yﬁ . 47

However, because only the post-seeing images are observablcannot directly obtain the
pre-seeing quantity” . Instead, we can calculate the post-seeing shear polditiz édnsor Ps"
from the observed(6) and the weighting functio’(8). Then using stars in the field as a
calibrator, Luppino & Kaiser (1997) give the expressiorftfas
S sm smx*\—1 pshx

P;B - Pa}é - Pau (P );Lé Pég ) (48)
wherePs™* and Ps"* are the stellar smear and shear polarizability tensoreatisply. Under
the assumption that the intrinsic ellipticities of galaxi@e randomly oriented and ignoring
intrinsic alignments, we havé®) = 0. Then the KSB+ shear estimatecan be derived by
combining Equations (45-48), which is given by

Ja = (PY) 5 [ — P5na] . (49)

(2) Shapelets
The Shapelet technique is a convenient approach for weaingmnalyses, which has been
introduced by different literature, e.g. Refregier & Bad@003); Massey & Refregier (2005);
Kuijken (2006); Bernstein & Jarvis (2002); Nakajima & Beteia (2007). In this method, a
complete and orthonormal set of 2D basis functions is canosd by the product of Gaussians
with Hermite or Laguerre polynomials. In principle, thedar combination of these basis func-
tions with proper weights is able to model any compact imagen irregular spiral arms. Such
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®3)

an approach is particularly efficient at modeling and deobrrng the PSF. The shear rota-
tion and magnification effects can be taken as the matricasgaon the shapelet coefficients.
Furthermore, the “shapelet” transform is able to filter dghHrequency features such as noise
in a similar way as Fourier or wavelet synthesis.

We briefly review the shapelet formalism mainly from Kuijk€ét006) as an example. The
shapelet decomposition fits an individual galaxy image dsared intrinsically circular source
contaminated by the PSF. The fitting of the observed imageiftew as the following formula

Gmodel = P - (1 + €151 +€252) - C, (50)

where P is the PSF matrixe, o are the two components of galaxy ellipticities afid, are
the first-order shear operators. It is noted that here include both the intrinsic ellipticities
of galaxies and the lensing shear signals. In other wordhisnapproach, an elliptical source
with ellipticity e; » is regarded as a circular source that is sheared twice, firfiéintrinsic
ellipticity of the source and then by the gravitational legsshear. For the assumed circular
source of an arbitrary radial brightness profile, it can bgressed by the circular shapeléts
in the form ofcoCY + ¢,C* + ..., wherec; are free coefficient parameters. The PSF matrix
P of each galaxy is obtained by interpolating the stellar P&f®©ss the field of view to the
galaxy position. The best-fitting,..41 t0 the observed image yields the estimated ellipticity
distortions. The lensing shear signals can then be furth&ired by, e.g., averaging over a
number of galaxies with proper weights (Kuijken 2006).
lendit
Lenditis a Bayesian model-fitting approach for galaxy shape mremsents developed by Miller
et al. (2007) and Kitching et al. (2008). Although its fittipgocess is slower than KSB+ and
shapelets, it is fast enough to be used for large weak-lgrairnveys. This method allows an
optimal joint measurement of multiple, dithered image esypes, taking into account imaging
distortions and the alignment of the multiple measurements

In this method, a Bayesian posterior probability distribatfor the ellipticity of a galaxy
given its observed image can be generated as (Miller et @720

P(e)L(yile)
[P (e)L(yile)de’

whereP (e) is the ellipticity prior probability distribution and. (y;|e) is the likelihood of
obtaining the'*" set of data valueg; given ellipticitye presumably measured without the effects
of PSF or noise. Ideally, the true distributione€tan be obtained from the data by considering
the summation over the data,

1 o P e Y|e // // //
(FXpte) = [ rps porerae | 1 eslend 2)

wheree(y|e) is the probability distribution foy of the data sample given an and f(e) is
the sample distribution af. Equation (52) demonstrates that the integration of théadvdity
distribution for individual galaxies gives rise to the egtaion value of the summed posterior
probability distribution for the sample. Under the condliis thak(y|e) = £ (y|e) andP (e) =

f (e), Equation (52) yields the true distribution efi.e.,

(5 Swteln)) =P (o) = sle). 3)

In other words, if the chosen prior is a good representatitimsounderlying distribution of, the
estimated posterior probability should be unbiased. Kitglet al. (2008) propose an iterative

pilely:) = (51)
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method to create the prior from a subset of the data itseéy®tow that to recover the prior
properly, the number of galaxies contained in the subsatldhoe at least on the order of a
few hundred depending on the assumed functional form foptiee. It is noted that the lensing
shear signals that we are interested in are contained inlihc@ies e. In principle, they should
be included in the prior construction. However, the lenghgar signals vary from one place to
another. Given the limited number of galaxies in weak-legsinalyses, it is difficult to perform
the prior construction locally. Therefore it is suggesteat the correct generation of the prior
should be zero-shear based and can be obtained from a lamg@enof galaxies (Miller et al.
2007; Kitching et al. 2008). Such a zero-shear prior camhice a bias in the shear estimate.
To correct for the bias, shear sensitivitfactor|0(e); /0g| should be included. Specifically, the
estimated shear can be expressed as

Zi\[(eﬁ 54
>3 00e) /0] .

To calculate the likelihood (y;|e) for a galaxy)endit fits a model surface brightness convolved
with a PSF to the galaxy image. Miller et al. (2013) model theying PSF in individual image
exposures on the pixel-based level by taking into accoumiptioperties of real surveys. The
optimum (with maximum S/N) shape measurement for each gatagstimated by fitting the
PSF-convolved two-component model with disk and bulge ®dhserved image, and with
Bayesian marginalization over nuisance model parametegalaxy position, size, brightness
and the bulge fraction. The output for each galaxy is a Baye§iosterior probability surface”
of the two ellipticity parameters, marginalized over theadmodel parameters. A weight for
each galaxy is also available considering the variancesoéliipticity likelihood surface and the
variance of the ellipticity distribution of the galaxy pdption.

g:

3.3 Simulationsfor Pipeline Calibration

In weak-lensing analyses, a good shear measurement métbold e able to accurately extract the
shape information from the observed galaxy images thatraverk to be affected by different effects,
such as pixelization, PSF-convolution and noise. Durirgast decade, a number of collaborations
have been built up to improve the accuracy and reliabilitgifferent weak-lensing measurement
methods using simulations. The Shear TEsting Pro§(&TEP | & Il, Heymans et al. 2006; Massey
et al. 2007) was set for a blind challenge. It produced a laofigme of images containing a mixture
of stars and simple galaxies. Participants were asked twljgct detection software to identify
stars and galaxies from noisy data. The simulated images srapothed and distorted by a PSF
convolution kernel. The simplified shear and PSF from STERGL vary across an image, but this
known fact was not allowed to be used by participants in tleegss of shear measurements from
simulations. Different sets of simulated images were peediby applying different combinations of
a constant PSF with different rotations and a constant igpear. STEP2 considered more realistic
and more complex galaxy morphologies and built larger satiihs to improve the measurement
precision. Different shear measurement methods have lestedtin STEP resulting in significant
progress in the development of shear measurement teclsnique

With the successful experience of the STEP program, GRarital IEnsing Accuracy Testirf§
(GREATO08 & 10, Bridle et al. 2009, 2010; Kitching et al. 2014lso a blind challenge, was further
designed to measure varying image distortions in the poeseha variable PSF, pixelization and
noise. Different from STEP, the GREATO08 Challenge providesition information for sets of non-
overlapping galaxies in order to focus on the issue of iifigrshear from a given PSF with different

9 http://iwww.roe.ac.uk/ heymans/step/cosistieartest.html
10 http://www.greatchallenges.info/
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noise levels. Both galaxy and star images are produced. GREAxtended the challenge by spa-
tially varying both the shear and the PSF across astrondinizeges. The lensing shear signals
caused by LSSs are not constant across the sky. Their syatiaiion reflects the non-uniform mat-

ter distribution in the Universe. On the other hand, theatayh of PSF arises from effects from the
atmosphere and telescope optics. From the GREAT10 Challéngas found that the best shear
measurement methods can achieve an accuracy with aveegs loin the level of sub percent. The
results also showed that for most of the methods, the acgstamngly depends on the S/N level. In

addition, there is also a weak dependence of the accuradedgpe and size of galaxies.

The above challenges demonstrate that ldrefit method performs better than KSB+ and
Shapelets, especially for data with low S/N. Its overallumacy can reach a level of 1% for shear
estimates calculated by a weighted average over indivishegbe measurements from different ex-
posures.

3.4 Systematic Uncertainties

With the increase of survey areas and the improvement of éngaglities, statistical uncertainties
of shear measurements have been significantly reduced. ésult,rit has become more and more
crucial that systematic errors be understood and even ifjednSystematic errors can come from
any step in the process from data reduction to shear measateAn inappropriate data reduction
process, such as astrometric and photometric calibratégmojection, resampling and coadding of
exposures; masking cosmic rays, tracks left by satellg&s, can introduce errors. Problems in
the process of shear measurement, e.g., inaccurate PSHimgaated correction, can also generate
severe systematic effects. As discussed in Sections 3.3.2ndystematics from the data reduction
and shear measurement themselves can be reduced by ingreasunderstandings of the observed
images and further improving the reduction pipeline, mégeaecking the auto masks and properly
modeling a PSF (e.g., Rowe 2010). For example, by assumatgatiPSF varies in a relatively
systematic way from exposure to exposure, it is possiblesgziibe the PSF with a high number
density of stars and to decompose the observed PSF pattéorikeir principal components (Jarvis
& Jain 2004).

While observational data processing is critical, physe&fcts can also contaminate weak-
lensing analyses. Arising from environmental tidal efée¢he intrinsic alignment of close pairs of
galaxies, denoted as Il, is one of the important physicdesyatics. For a deep weak-lensing survey,
the contaminations of Il to cosmic-shear 2-point correlasignals are on the level of a few percents
(Pen et al. 2000; Brown et al. 2002). Such contaminationseasignificantly reduced by choosing
galaxy pairs from two different redshift bins, using thedirthation of photometric redshifts, in two-
point correlation analyses.

Hirata & Seljak (2004) point out another type of alignmertteTlshape of a galaxy is correlated
with its local surrounding density field. On the other harhis density field can generate lensing
shear effects on background galaxies. Therefore thertssexisackground galaxy-foreground galaxy
shear-shape alignment, denoted as GlI. If a foreground ghlas an intrinsic shape that is linearly
correlated with its local tidal field, the GI alignment cabtites negatively to the cosmic-shear two-
point correlations, and has to be properly taken into actadtre correlation of galaxy shapes and
their local density field can be measured by the cross cdioelaf galaxy ellipticities and their
number densities assuming a bias factor between the galaxper distribution and the underlying
density perturbation field (Hirata et al. 2007; Joachimile@11). The Gl contamination increases
significantly if a tomographic cosmic shear analysis is igbIDifferent methods to minimize the
impacts of Gl on weak-lensing analyses have been proposeda aetailed introduction can be
found in Heymans et al. (2013).

Uncertainties of photometric redshift (photdpestimation are another source of systematic er-
rors. Because lensing signals strongly depend on the dissaio lens, to source, and between lens



Weak Gravitational Lensing 1081

and source, the accuracy of phat@an considerably affect the uncertainties of cosmologiter-
ences from weak-lensing studies. Modern surveys are dagigith multiple-band observations for
estimating photo= for individual galaxies. Different codes, e.g., Hyperz [Bmella et al. 2000),
BPZ (Benitez 2000), and Le PHARE have been developed. Hildebrandt et al. (2012) use BPZ to
estimate phota-for galaxies in CFHTLenS. They discuss different ways ofriaying the photoz
estimation. For instance, the photometric zero-pointse@librated using spectroscopy redshift in-
formation in the fields. They also modify the prior to avoie gystematic overestimation of photo-
at low redshift. The homogenization of the PSF betweenmiffebands improves the photaaccu-
racy, particularly for faint galaxies that are small andrtflex measurements are affected more by
PSF effects. The effects of photodncertainties on weak-lensing cosmological studies haen b
investigated extensively (e.g., Ma et al. 2006). We will @dpack to this in Section 5.

4 COSMOLOGICAL APPLICATIONS OF WEAK-LENSING EFFECTS
4.1 Cluster Studies

Clusters of galaxies are the largest virialized objectha Wniverse. Their total mass is typically
~ 10* — 105 M, and the baryon-to-dark matter mass ratie-i$5%, approximately the same as
the cosmological ratio. Besides having a large number @bges, the baryonic matter in a cluster is
dominantly in the form of diffuse hot gas with a typical temgieire of~ 107 — 10® K. Clusters of
galaxies play a very important role in the hierarchy of L§3®m a theoretical point of view, their
formation and evolution are sensitive to underlying cosigmal models. Observationally, they can
be probed by multiple means, optical for member galaxiesayK{e.g., Rosati et al. 2002) and
Sunyaev-Zeldovich effects (e.g., Carlstrom et al. 2002hfi gas, and gravitational lensing effects
for their dark matter distribution (e.g. Bartelmann & Scialee 2001). Therefore clusters of galaxies
are regarded as critical objects in cosmological studies.

Gravitational lensing effects have played important ratesluster studies, especially in con-
straining the mass distribution of their dark matter haldsre we mainly focus on weak-lensing
effects, which are particularly useful in understandirgdlierall dark matter distribution of clusters
out to their virial radii. A more complete review, includitgpics related to strong lensing, can be
found in Kneib & Natarajan (2011).

For massive clusters of galaxies, weak-lensing analysdadividual ones are observationally
possible by accurately measuring the shapes of a large nmuofits®urce galaxies behind them.
Because both the shear and the convergence depend on timg Ipatential, in principle the con-
vergence fields, directly linked to the 2D projected mass distribution afsters, is reconstructable
from the shear componenfsestimated from the measured shapes of source galaxiesfi€ube
from the definition ofx and~ in terms of the lensing potential, it is shown that in the keuspace,
we have (Kaiser & Squires 1993, KS)

_ Rk

- 2k1ksy
K/(k) - kQ Vl(k) + 2

2 '72(k) ) (55)

wherek? = k} + k3. This corresponds to the real space relation, subject talzitraay constant
(namely the mass-sheet degeneracy),

w(0) = — > /dQO'%{D(O - 0')7*(0’)} : (56)

™

where the kerneD(z) = (2% — 23 + 2ix122)/|2|*, andR is for the real part (Bartelmann 1995).

11 www.lam.oamp.fr/arnouts/LIPHARE.htm
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In reality, however, the shear information can only be eated discretely from source galaxies.
The measured complex ellipticigy(le] = (1 —b/a)/(1+ b/a)) of a galaxy is related to the lensing
effect by

b0 forlg| <1,
€= (57)

1+gel
e;f;‘* for |g| > 1,

wheree, is the intrinsic ellipticity of the galaxy ang = ~/(1 — k) is the reduced shear at the
position of the galaxy. Different frone in the left part of Equation (44), here the complexs
defined as (e.g., Seitz & Schneider 1997)

. Q11— Qa2 + 2iQ12
Qi1+ Q22 +2/Q11Q22 — Q3

where@);; are the weighted quadrupole moments given in the right gagoation (44). The in-
trinsic e; can be much larger than the lensing signals we are interé@stethd they can induce a
large noise in the reconstructed convergence field. Propaimbents to suppress the noise are thus
crucially important in the convergence reconstructiorrtffermore, it is shown that in the case of
no intrinsic alignments for source galaxies, the averaygives rise to an unbiased estimatg gf

(in non-critical regions), rather thary) (Seitz & Schneider 1997). Therefore an additional compli-
cation occurs in the convergence reconstruction partilguilia cluster regions given the nonlinear
relation betweeryg and~. Limited observing field and masking out bad data can leadtificzl
boundary effects in the reconstruction. Local reconsionanethods have been proposed to reduce
the boundary effects, which involve the use of the deriestiof the shears (e.g., Bartelmann 1995;
Seitz & Schneider 1996). With developments in instrumémtathe current state-of-the-art wide
field imaging facilities can have a field of view closeltex 1 deg®. Given that the angular radius of

a typical cluster at ~ 0.2 is ~ 10’, the boundary effects due to the limited field of view haverbee
significantly reduced.

On the other hand, noise is always a concern. To avoid thegobf overfitting in the con-
vergence reconstruction, certain regularization procesifor noise suppression are necessary (e.g.,
Kaiser & Squires 1993; Bartelmann 1995; Bartelmann et #6)90ne straightforward approach is
to first smooth the observedwith a suitable smoothing scale to get the avergjex g. From that,
the smoothed convergence can be reconstructed either tgngpnlinear KS method (Kaiser &
Squires 1993; Squires & Kaiser 1996; Seitz & Schneider 189t)e maximum likelihood method
by x? fitting to the smoothed reduced shear field to derive the hgngbtential (e.g., Bartelmann
et al. 1996). In this approach, the residual noise dependseoamoothing function and the scale,
and can be approximately described by a Gaussian randondfieldo the central limit theorem
(e.g., van Waerbeke 2000; Fan 2007). Another approach,dhanteopy-regularized maximum like-
lihood reconstruction, introduces an entropy terrimiff), the logarithm of the likelihood function
(e.g., Wallington et al. 1994, 1996; Squires & Kaiser 1996dR et al. 1998; Seitz et al. 1998;
Starck et al. 2006; Jee et al. 2007; Jullo et al. 2014). Thiopy term plays a role that disfavors
strong small-scale structures presumably from noise. ¥\ittable choices of the regularization en-
tropy, the noise can be effectively suppressed. On the didwed, the left-over noise can be highly
non-Gaussian resulting in some complications in analysetatstical error (e.g., Jiao et al. 2011;
Jullo et al. 2014).

Non-parametric lensing reconstruction of the mass digtidn for clusters of galaxies is im-
portant for revealing complicated structures therein. lEmsing study of the Bullet Cluster is an
excellent example, which shows a clear separation betweetotal mass density distribution and
the gas distribution, providing supporting evidence feréixistence of dark matter (e.g., Clowe et al.
2006; Paraficz et al. 2012).

(58)
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Fig.8 Left mass distribution of Abell 222/223 system reconstructechfweak-lensing shear mea-
surements, reproduced from figure 1 in Dietrich et al. (201@th permission from the authors and
by permission of Nature Publishing Groupight mass distribution of the Coma cluster from weak-
lensing shear measurements, reproduced from fig. 3 in Okale(2014) with permission from N.
Okabe and T. Futamase.

Figure 8 presents two other examples. The left panel shosventiss distribution in the Abell
222/223 system from weak-lensing analyses of Dietrich.€Pall 2b), where the filamentary struc-
tures between the two clusters are clearly seen at the SAN 4f. The right panel shows the re-
cent weak-lensing studies of the nearby Coma cluster wika&uSuprime-Cam from Okabe et al.
(2014). The high quality observational data reveal abunsiapstructures in Coma.

On the other hand, for quantitative constraints on the messshaition of clusters of galaxies,
some simplifications are usually applied. For a spheri@lBraged mass distribution with its center
atf = 0, itis shown that (e.g., Bartelmann & Schneider 2001)

(1)(0) = R(< 0) — K(0), (59)
where() (9) is the azimuthally averaged tangential shear componéntaidr (< 0) andr(0) are
the average: within ¢ and at, respectively. The corresponding parameter-fratatistics has been

proposed to measure the 1D mass distribution of dark madteshwhich is given by (Fahlman et al.
1994)

C(0,0m) =FR(<0)—FO<0 <0bn)
2 O
_ W/e dln ¢ (1)(0). (60)

It gives the mass distribution withié subject to a boundary term(f < 6’ < 6,,), and can be
obtained directly fromy, within the annulus of < 6’ < 6,,,. A further improved statistics, namely
the (.-statistics, is defined b/, (< 0) = 70?3 ,Cc(0, Ginn, Gout ), Where. (0, Ginn, Oout) is given
by (e.g., Clowe et al. 2000)

Cc(ea einna eout) - ’_i(< 9) - R(Ginn < 9/ < eout)

-0 -0

inn 2 out

/ / / /

= 2/9 dIn &' (v)(0") + T2 T 7 / dln 0" (y)(0"), (61)

Oinn
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whereéb;,, andd,, are the inner and outer radii of the background annulusesly. It is seen
that M, (< ) presents the lower bound of the projected mass wiifsnbject to a boundary term
702K (O < 0 < Oout), Wherek (0, < 0 < Oout) is independent of. Applying such statistics
in real observations, however, it should be noted againttiga@verage of the tangential component
of the observed gives an estimate of the reduced shedg,). In cluster regions, the difference be-
tweeng, and-, is not negligible, and iterative procedures are neededdowatt for this nonlinearity
(e.g., Clowe et al. 2000).

To further quantify the density profile of dark matter halpsrametric models are often adopted
to fit either toM, (< #) or more directly to the reduced shear profjle(e.g., Okabe et al. 2010;
Oguri et al. 2010). The derived parameters are then compatedosmological predictions aiming
to reveal the underlying mechanism for the formation andwian of dark matter halos, including
the properties of dark matter particles as well as the asysipal processes affecting their formation
and evolution (e.g., Umetsu & Broadhurst 2008; Broadhursi.e2008; Okabe et al. 2010, 2013;
Oguri et al. 2010, 2012; Kneib & Natarajan 2011; Hoekstrd.€2@l3; Sereno & Covone 2013).

In the cold dark matter scenario, numerical simulationgaéan approximate universality for
the density profile of dark matter halos (e.g., Navarro el@96, 1997; Moore et al. 1999; Jing
2000; Gao et al. 2008; Zhao et al. 2009; Navarro et al. 2010;&al. 2012; Ludlow et al. 2013).
Different fitting models have been proposed to describe puafiles (e.g., Navarro et al. 1996, 1997;
Hernquist 1990; Einasto 1965; Retana-Montenegro et aRR@mong others, the Navarro-Frenk-
White density profile (NFW) is a frequently used one given tayétro et al. (1996, 1997)

Ps

plr) = r/rs(1+71/rs)2’ (62)
whereps andrg are the characteristic density and scale of a halo. Givemts of the hald/a,
the halo radius is defined by/a = (47/3)Apeicr With A being the average density of dark
matter halos within-o with respect to the critical density of the Universg;;. For A, the spherical
collapse model gives rise tA,;, for virialized halos corresponding to the virial radiug, (e.g.,
Henry 2000). The valué& = 200 has also been adopted often to defidg), andrygg. With A, the
concentration parameter is given by = ra /rs with largerca for a more centrally concentrated
density distribution. Studies show that with certain sattthere is a relation betweer and M
closely reflecting the mass assembly history of dark matirsh(e.g., Navarro et al. 1997; Bullock
et al. 2001; Duffy et al. 2008; Zhao et al. 2009; Prada et al228hattacharya et al. 2013; De Boni
et al. 2013).

Figure 9 shows the stacked weak-lensing analyses)aflusters from Okabe et al. (2013).
The upper left panel shows the profile @) = X..(g:), where the symbols with error bars are
for the observational results and the lines are for the bestddel results. The lower left panel
shows the corresponding result by rotating the source gedpy45°, indicting possible systematic
effects. The right panel presents the derivegh, M2o) by fitting the data to the NFW profile,
where different lines indicate different simulation reésult is seen that the NFW profile provides an
excellent fit to the stacked weak-lensing signals. Notirgdifferences of the results from different
simulations, the fitted parameteisgo, Maoo) are in line with the simulation predictions. On the
other hand, there is a tendency that the derived concemirptirameter is somewhat higher than
that from simulations.

Besides the 1D profile, current weak-lensing observatieggtto be able to probe the shape of
the mass distribution, which also carries important cosgichl information. Figure 10 presents the
results from Oguri et al. (2012), who stud@¥ clusters selected from the Sloan Giant Arcs Survey
(SGAS). The mass distribution of the clusters is analyzeddmbining the weak-lensing obser-
vations with the strong-lensing giant arcs. The left pahels the weak-lensing convergence and
shear maps by stacking tl#® clusters. The position angle of each cluster derived frammngt
lensing modeling is aligned before stacking. The elongadiothe mass distribution is clearly seen
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Fig.9 Upper left the projected density profile from stacked weak-lensingjyees of50 clusters.
Different lines are the best fit results of different modedsradicated thereirL.ower left the corre-
sponding result with a5° rotation of the source galaxy ellipticities showing theegttal systematic
effects.Right The derived c200, M200) from fitting the stacked tangential reduced shear data to the
NFW profile. Reproduced from fig. 3 in Okabe et al. (2013) wignrpission from the authors and
by permission of the AAS.
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Fig.10 Left The 2D weak-lensing convergence and shear maps obtaioedsitacking analyses
of 25 clusters, where the position angle of each cluster obtdired strong-lensing modeling is
aligned before stacking. Reproduced from the left panel@f il in Oguri et al. (2012)Right
Mean ellipticities of mass distribution obtained from thiacked shear signals in three mass bins,
reproduced from the bottom panel of fig. 14 in Oguri et al. @0The shaded range indicates
the fitting result from the full cluster sample. The blue dahine is the semi-analytic prediction of
Oguri etal. (2012). Printed with permission from the ausremd by permission of Oxford University
Press on behalf of The Royal Astronomical Society.

in the convergence map. The right panel shows the meanig@tis of the mass distribution con-
strained from the stacked shear signals in three differassmins. The shaded region indicates the
results from stacking all th25 clusters, and the blue dashed line is the semi-analytiealigtion of
Oguri et al. (2012) taking into account the triaxiality ofrdanatter halos (Jing & Suto 2002) and
the strong-lensing selection bias from the arc cross sedBoven the error ranges, the results are in
broad agreement with the model prediction based on colkHaatter simulations.
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Fig.11 Thec — M relation reproduced from fig. 5 in Oguri et al. (2012). The sgchbols are the
results from Oguri et al. (2012) obtained by combining thekvkensing analyses and the strong-
lensing giant arcs. The blue squares are for A1689, A370024@&nd RXJ1347 from Umetsu et al.
(2011) and A383 from Zitrin et al. (2011). The shaded regimtidates the theoretical predictions
taking into account the strong-lensing selection bias (Qej@l. 2012). The solid and dotted lines are
for the best fit and o range of the fitting results to the red symbols. Printed wéimgission from the
authors and by permission of Oxford University Press on hefidhe Royal Astronomical Society.

Furthermore, with a relatively large cluster sample spagaisizable mass range, it is becoming
possible to observationally constrain the concentratiass ¢ — M) relation for dark matter halos
(e.g., Okabe et al. 2010; Oguri et al. 2012; Sereno & Covord&2Auger et al. 2013).

Figure 11 shows the — M relation from Oguri et al. (2012). The typical redshift fdreir
strong-lensing-selected samplezis~ 0.45. Assuming a power law — M relation withe,;, =
A(Myir/My)* and performing a¢? fitting with

2
X2 = E{ {10g(0vir,ob5) — log(cvir,fit) /(Us2t + Uizn)} )

they obtaind = 7.7+ 0.6 anda = —0.59 + 0.12 at M, = 5 x 10'* b= M. Hereoy is the
measurement error iai obs for individual clusters, ands, is the intrinsic scatter of.;, taken

to beo;, = 0.12 (Oguri et al. 2012). The valu&i, st = A(Myir,obs/Mp)~*. The derived slope
parametet is significantly steeper than thatef~ —0.1 predicted by simulations for general halos
(e.g., Duffy et al. 2008), and that af ~ —0.2 considering the strong-lensing selection bias (Oguri
et al. 2012). The amplitude factet is also somewhat larger than theoretical predictions. I&mi
steepc— M relations have also been reported by other weak-lensiliestje.g., Okabe et al. 2010;
Sereno & Covone 2013).

Having shown the fruitful achievements of weak-lensinglgts on massive clusters, we note
that in order to make detailed comparisons with cosmoldgigedictions and draw physical con-
clusions, different effects have to be considered caneflihe important aspects related to accurate
shape measurements for galaxies have been discussed ionSgcthe distances of the source
galaxies, or their redshift information, affect the estienaf X, and therefore the physical interpre-
tation of the observed lensing signals. For weak-lensingtel studies, the separation of the cluster
member galaxies from the source galaxy catalog is also itapbto avoid the dilution effect on
lensing signals by the unlensed member galaxies. Colorrirdton is crucial in identifying mem-
ber galaxies for clusters. Analyzing the spatial conceiotnaf galaxies around clusters can also be
helpful to suppress the contamination from member galaXike availability of photometric red-
shift for individual galaxies, such as the CFHTLenS datagan(Hildebrandt et al. 2012), can be
greatly helpful for determining the distance informatiordo reduce the contaminations by cluster
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member galaxies. Detailed discussions on these issuesedauihd in, e.g., Hoekstra et al. (2013)
and Kneib & Natarajan (2011).

Besides, different physical effects, such as the projedaftects of correlated and un-correlated
LSSs, and the complex mass distribution of clusters therasgtan lead to complications in weak-
lensing analyses (Hoekstra 2003; Dodelson 2004; Corleas 2009; Hoekstra et al. 2011; Oguri
& Hamana 2011). Finding centers of clusters is also an issuge, (Oguri et al. 2010; Israel et al.
2010, 2012; Zitrin et al. 2012; Mann & Ebeling 2012; GeorgaleR012). Extensive theoretical and
simulation studies have been done to explore these effegs Corless & King 2008; Becker &
Kravtsov 2011; Bahé et al. 2012; Giocoli et al. 2012; Datrét al. 2012a; Du & Fan 2014).

Aiming to understand the apparently steep M relation obtained from a number of weak-
lensing observations, Du & Fan (2014) perform systematidies based on the dark matter halo
catalog extracted from thiillennium Simulation(Springel et al. 2005). We generate mock weak-
lensing data for each individual halo considering différanise levels characterized by, =
o.,//g- By assuming a spherical NFW profile and fitting to the redueedjential shear data
gt, (¢, M) is derived for each halo. Because of the existence of ndisd¢t M) determined from
weak-lensing analyses can deviate from the true ones. Magpertantly, due to the known degen-
eracy betweeric, M) in terms ofg; of a halo, a larger determined generally corresponds to a
smaller determinedand vice versa. In other words, the scatter&0fif) determined by weak lens-
ing for a halo are strongly correlated. Therefore when degithec — M relation from a sample
of halos studied by weak lensing, an apparently steepdiaeldan that for the underlying halos is
generally expected if the covariancec©&nd M is not taken into account properly. The larger the
noise, the steeper the— M relation derived by weak lensing. Thus in order to correeffiract the
¢ — M relation from weak-lensing analyses, it is necessary te thk scatters and covariance of
(¢, M) into consideration rather than to simply fit the observggd to ca; = A(Mops/Mp)* in x>
analyses.

Similar to studies for the scaling relation of X-ray clustéaking into account the covariance
between the observed luminosity and temperature (e.qneltat al. 2006; Nord et al. 2008), Du
& Fan (2014) propose a Bayesian approach to derive thell relation from weak-lensing analy-
ses. Assuming(cobs, Mobs|cT, M) to be the probability distribution of the weak-lensing sted
(cobs, Mobs) for a halo with the true concentration and méss, M), and taking into account the
intrinsic dispersion of the concentration parameter fdosavith a given masg(cr|Mr), we have

P(Cobs, Mobs|1\/[T) = /P(Cobm Mobs|cT7 MT)p(CT|MT) dCT ) (63)

and
 Jan,, P(Cobss Mops| Mr)n(Mr) dMr

o) SvMo s) = E3) ) 64
P(Cobs, Mobs) T n(Mr) dir (64)

wheren(My) is the halo mass function antl};, is the lower limit for mass in the considered
sample. Then the probability distribution fay,s given M5 can be written as

p(cobsa A[obs)

p(]\/[obs) (65)

p(cobs|Mobs) -

wherep(Mops) = fp(cobs, Moys) deons. We can then theoretically predict the expected median
value ofc,ps given Mg,s by

1
/ p(cobs|Mobs) dcobs - 5 . (66)
cis (Mobs)
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Note thates: (Mops) depends on the underlying- M relation for halos through the average ) in
p(er|Mr). Therefore for a large sample of observed weak-lensindetsisthec — M relation can
be constrained by minimizing the? given by

2 [1Og C(r)qb)s (luébs) 1Og Cfit (luébs)]Q
= E 67
X i O'Z-Q ) ( )

wherecZ} (M) is the median value af., for clusters in the mass bin centered\d, ., ando;
is the corresponding measurement errorcf§r (M?,..)-
In Du & Fan (2014), we approximaig cobs, Mobs|cT, M) by a 2D Gaussian distribution in

log space given by

1

Do/ I rE P )
MOCc -

p(cob57 Mobs|CT7 MT) -
where
2 2
T = {aﬁi(log Cobs — log CT) + crf (1og Mops — log MT)
—2TUMO'C(10g Cobs — log cT) (log Myps — log MT)} /2(1 — 7‘2)012\{03 . (69)

The parametes);, o. and the correlation coefficient depend onMr and the noise level. For
p(er| M), it can be written as

1 exp {_ (log e — (log CT})T | (70)
\/ﬂain 2Ui2n
whereo;, is the intrinsic dispersion dbg cr. For (log cr), it is assumed to satisfy the- M relation
(loger) = log A + alog(Mr/M,) with M, being a chosen pivot mass. It is thid, ) that we
want to constrain from cluster analyses with weak lensing.

In Figure 12, we show the results from simulation studiesw®-an (2014). The upper panels
are for the results with a simple fitting assuming = A(Mobs/M,)® with M, = 10** h=1 M.
The lower panels show the results witfy given by Equation (66). It is seen clearly that for the
simple fitting that does not account for the correlation testae;,s and M,,,s, the derivedd anda
depend strongly on the noise lewg]. The highew,, is, the steeper the slope parametés. In other
words, suche — M relation is significantly biased with respect to the undedy: — M relation of
dark matter halos. On the other hand, with the Bayesian nddtiiong into account the scatters and
the covariance of,,s and M, the derived4 anda agree with the true — M relation for halos
very well (lower panels), demonstrating the great potétdgigaroperly constrain the — M relation
with future large weak-lensing surveys.

Since the first detection of weak-lensing signals aroundsivaslusters in the 1990s (Tyson
et al. 1990), cluster studies that use weak lensing havenaddaremendously. With future weak-
lensing surveys, we can study a large number of cluster$ Mét thorough understanding of differ-
ent observational and physical effects, it is highly prangghat we can probe the mass distribution
of clusters in detail to reveal the underlying cosmologictdrmation related to their formation and
evolution. Furthermore, the accurate weak-lensing measent in mass can allow us to calibrate
the observable-mass relations for other observation$, ascX-ray (e.g., Leauthaud et al. 2010;
Mehrtens et al. 2012; Bohringer et al. 2013; Willis et al13Pand the Sunyaev-Zeldovich effect
(e.g, Reichardt et al. 2013; Hasselfield et al. 2013; PlaralaBoration et al. 2013b). This in turn
can significantly improve the cosmological constraintefrduster statistics.

pler|Mr) =
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Fig.12 Thec — M relation constrained from simulation studies, reproduiteth figs. 7 and 11
in Du & Fan (2014). The left panels show the fitted normal@agparameter vs. the noise level
on = 0., //Tg, and the right panels are for the power indexThe upper panels are for the results
with a simple fitting assumings: = A(Mons/M;)®, and the lower panels show the results from
the Bayesian analyses with; given by Eq. (66). Different colored symbols are for the Hessu
from different NFW fittings for individual halos. Printed thii permission from the authors and by
permission of the AAS.

4.2 Cosmic Shear Correlations
4.2.1 Theoretical considerations

Cosmic shear is the weak-lensing effect caused by LSSs idithesrse. Its signals are very weak,
on the order of a percent at angular scales of a few arcminlitssimpossible to detect cosmic
shear from individual galaxies. Instead, cosmic shearadégcan be extracted by measuring shear
correlations from large samples of galaxies.

As shown previously, weak-lensing shear is a spin-2 field @dbe described in a complex
form~ = 1 + i7». The second-order shear correlation function can be defised

&(0) = (7(61)-7"(62)). (71)

wheref) = |0, — 05| is the separation between a pair of galaxies locatéd and6,, respectively.
The average is taken over all the galaxy pairs with the séiparaf 6.

To analyze the second-order shear correlations for pagalakies, it is convenient to define the
shear of a galaxy in its pair frame with respect to the linenamting the two galaxies. In this frame,
the shear of a galaxy is written gs= +; + i with the tangential component = —Re(ye2%)
and cross component, = —Im(~ye~2?) (e.g., Bartelmann & Schneider 2001). Herés the polar
angle of the line connecting the two galaxies. We then hagectiirelation functiong,; and¢
given by, respectively,

§u(0) = (1(02)7(62)) (72)
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and
Exx(0) = (7% (61)7x(82)) . (73)
From&g, andéy «, we can further define
§+ (9) = gtt(e) T &xx (9) . (74)

In the weak-lensing regime where the lensing potential terdeined by the convergence
under the Born approximation, only the E-mode of the lensingar is expected, and the B-mode
should be identically zero (e.g., Crittenden et al. 200Rgr€fore it is desirable to decompose the
correlation functions into E-mode and B-mode correlatigkikthe lensing information should be
contained in the E-mode correlation, and the B-mode oneldloamtain only noise. The E/B-mode
decomposition provides an important means to test for tlistemce of systematic errors. The E-
mode and B-mode correlation functions are given by (e.gttediden et al. 2002; Schneider et al.
2002b; Pen et al. 2002)

() = OO (75)

and
&) = OO0 (76)

with
) —c0+1 | Gew)-2 [" e @), 77

As shown in Section 2.3, theoretically, the shear powertsper; which is identical to the con-
vergence power spectruf, (1), is of great importance. In the ideal case without B-modeamii
nations, it is the Fourier transform of the two-point shean{ergence) correlation function (2PCFs)
given by

(01 0) = €:0) = [~ SRR, (79
0
Foré_,itis
&)= [ FHOP0). (79)

HereJ, and.J, are Bessel functions.

From Equation (43), itis seen thE (1) can be written as a projection of the 3D power spectrum
of dark matter perturbationd; along the line of sight. This projection is approximatedmagwegral
over the comoving radial distancgdrom the observer out to the limiting distangg of the survey
by using Limber’s equation. The convergence power spectitapends on the geometrical factor
fx(x) and the linear growth facta®(z) which is contained in the power spectrum of dark matter
perturbationsP;, following a simple relationPs o G?(z) on large scales. Botlfic(x) andG(z)
are sensitive to cosmological parameters, including tlopgnties of dark energy. The nonlinear
power spectrunPs cannot be easily expressed by a simple theoretical fornfdacalibrated by
simulations, different methods have been developed talz&Ps (e.g., Peacock & Dodds 1996;
Smith et al. 2003; Lawrence et al. 2010; Heitmann et al. 2014)

The decomposition of the E/B-mode can also be achieved blyzng the variance of the
aperture mass defined by Schneider (1996) and Schneide(£988)

Miy(60.6) = [ 6" n(6")U (16" - 00].6) (80)



Weak Gravitational Lensing 1091
whereU is a compensated filter satisfying
0
/ o’ o'u(e’,0) =0ford <9. (81)
0

From the physical relation betweenand~, Equation (80) is equivalent to filtering the tangential
shear fieldy;, with respect td, using a filter), given by Schneider et al. (1998)

Map(80,8) = / @26"1.(0")Q (10" ~ 00].6) (82)
and
9/
Q',0) = 932/ d9" 0"U (9", 0) — U(#',6) for 6’ <. (83)
0

Therefore in the cosmic shear regime with« 1 andy < 1, M, can be estimated directly from
the tangential component of the observed ellipticitiesairse galaxies. The variance bf,, can
be written in terms of the covergence power spectrum

(022} 0) = [ S P0Te0), (84)

wherel is the Fourier transform of the filtéf. Similarly, we can definé/,, by
M (00.0) = [ #6"1.(6)Q(10" ~ 00l 0). (85)

It is shown that there is no E-mode contributionify, (Crittenden et al. 2002). Therefo(&/2 )(9)
can be used to check possible systematics in lensing measote

While the two-point shear correlation/power spectrum wses carry important cosmological
information, they cannot reveal the non-Gaussian natur&8E arising from nonlinear gravitational
interactions. The third-order cosmic shear correlatiom$ the corresponding bispectrum are the
lowest-order measure of the non-Gaussianity of LSSs (Begnardeau et al. 1997; van Waerbeke
et al. 1999; Van Waerbeke et al. 2001).

The bispectrunB,, of the convergence is defined by (e.g. Schneider et al. 2005)

(R(0)(E2)(Es) ) = (2m)20p(0 + b + 1) B, Do, bs) (86)
andB(l1,12,13) can be written as

By (1,12,13) = Bi(l1,12) + Bi(l2,13) + Bk (l3,11), (87)

wheredp is the 2D Dirac delta function. Thus the bispectrum is norezmly in the case that the
three wave vectord, I, l3) form a closed triangle. Under the Limber approximation,réslation
betweenB,, and the 3D bispectru®; of matter density perturbations is similar to that of the pow
spectrum, and is given by (e.g., Sato & Nishimichi 2013)

- 27H06913n XH ’ GB(X/) |: l1 l2 l3
Bulbbo,l) = =4 /o N 00 2| ety Ted)” Flx

whereB; [ll/fK(X’),IQ/fK(X’), Is/ fx(X); X’} is the 3D bispectrum witlk; = I;/ fk at the cos-
mic time corresponding tg’, andG is given in Equation (42).

,);x’ ,  (88)
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In the quasi-linear perturbation regimgs; can be computed in terms of the power spec-
trum (Fry 1984). On highly nonlinear scales, however, it ishallenging task to predidBs ac-
curately. Different models have been proposed (e.g., Smacm & Couchman 2001; Pan et al.
2007; Valageas et al. 2012). The hyper-extended pertorbétieory (Scoccimarro & Couchman
2001, HEPT) interpolate®s between the strongly nonlinear regime and the quasi-linegime
where the second-order perturbation theory is a good appetion. HEPT on very small scales
falls back on the stable clustering hypothesis, where etirg} is assumed to have reached virial
equilibrium (Peebles 1980). The original HEPT bispectrgrbased on the nonlinear power spec-
trum fitting formula from Peacock & Dodds (1996). Sato & Nislichi (2013) recently show that
HEPT can provide a much better fit to the convergence bigpmotvith the revisedhal of i t ver-
sion of Takahashi et al. (2012). These revised fitting fumgialso match the convergence power
spectrum more closely.

To probe the bispectrum, the skewness of the aperture madseka introduced by, e.g., Jarvis
et al. (2004) and Pen et al. (2003). Its generalization wre®the correlation of the aperture mass for
three different smoothing scales, which optimally prolfeshispectrum for general triangles. The
definition is given by Schneider et al. (2005),

(Mg,) (01,02,03) = (Map(01)Map(62) Map (63))

(
dze d2e
:/2§ ey (bt

Z U(0;11]) U (0;€2]) U0k |1 + £2]) (89)
e

whereSs is the symmetric permutation group @f23), andU denotes the Fourier transform of the
aperture filtetU.

There are several advantages of using aperture momergsdnetn-point correlation func-
tions. Most importantly, aperture measures are only seadi the E-mode of the shear field. They
filter out long-wavelength modes where an E-/B-mode sejoaré not possible given a finite sur-
vey volume (Schneider et al. 2010). They are therefore lesseptible to systematics in the data.
Furthermore, a theoretical prediction from the convergdrispectrumB,, can be obtained much
easier and faster for the aperture three-point statidtias for the three-point correlation function
(Schneider et al. 2005). It is therefore more efficient to theeaperture moments to constrain cos-
mological parameters where a Monte-Carlo sampling armlysiecessary.

4.2.2 The statistics of cosmic shear

From an observational point of view, the most direct studweék lensing effects is in real space, by
using the shear signals derived from measurements of gellgiicity. It is possible to reconstruct
the convergence field from the measured shear field. Suchwem@mnce reconstruction has been
performed recently using CFHTLenS data, and moments ofdheszgence up to order 5 have been
measured (Van Waerbeke et al. 2013).

More generally, the two-point shear correlation functignsand{_ can be estimated in an
unbiased way by averaging over pairs of galaxies (Schneidal. 2002a). It does not require the
treatment of masks and smoothing of the shear field, and éndiy

~ i WiWj|Et 191' Et ’1.9]‘ Ex 191 Ex 19j
Eu(0) - im0 210, ex (021 05),

Heree, ande are denoted as the tangential and cross components of edsgalaxy ellipticities,
respectively, and the sum is performed over all galaxy p@jrswith angular distanceéd; — ¥,|

(90)
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within the chosen bin arounél The weightw represents the shear uncertainty of each galaxy in the
measurements. Witk , the second-order aperture E-madé?,) and B-mode(M/3) can further
be calculated by Crittenden et al. (2002) and Schneider £@02b),

(M2, 0) = 5 3705 80: [T (99 €. (00) £ T-(0) € (97)] (91)

where the functiong'y (x) are
T+:/ dt Jo(at) U (t)
0
and

T = /0 dt Ju(xt) U2(2).

The three-point correlation functions (3PCFs) are catedlan triangles. They have eight com-
ponents and can be expressed by four complexral component§Schneider & Lombardi 2003;
Zaldarriaga & Scoccimarro 2003; Takada & Jain 2003). An aséd estimator for the zero-th com-
ponentis (Schneider & Lombardi 2003)

. . P —6tv
Zijk W W) W € €5 E €

O (s,¢) = S o
ijk Wi W;j

; (92)

wherez is the complex ellipticity of galaxies, ar{d, t, a) give the chosen configuration of triangles
with s andt being the two sides and being the angle between them. The other three components
are estimated as

. . * —2i
Zijk W; Wj WEES Ej € €

(s, t) = 93
(s2) Zijk W; Wi Wk ©39

. . s —2i
f(Q)(s B = Zijk W; Wj WkE; €] € € 94)

7 Zijk Wi Wj Wi
* —2i
. W Wi WRE; E5 EL €

I‘(B)(s,t) _ Zz]k J Yk J <k (95)

Zijk Wi Wj Wi

The third-order aperture E-mode (EEE), B-mode (BBB), amdtlixed modes of EEB and EBB
can be expressed as different combinationga®), (M2M*), (M M*M) and (M*M?) where
M = M., + iM,, and those, in turn, can be obtained through the integraisfd\i/) with chosen
filter functions. We refer readers to Jarvis et al. (2004) Soldneider et al. (2005) for details. The
expectation values of the mixed components EEB and EBB areawm only if the E- and B- modes
are correlated. For a parity-symmetric shear field, onlyEB& component is non-zero (Schneider
2003). However in practice, noise sample variance causegation of parity for a given observed
region, and all three B-mode related components can be ean-z

4.2.3 Cosmological applications

The 2PCFs of cosmic shears have been observationally neelsimce the year 2000. These first

detections encouraged early studies with different suwe{eyg., Refregier 2003), including RCS (53

ded, Hoekstra et al. 2002), VIRMOS (8.5 dgg/an Waerbeke et al. 2005), CTIO (70 dedarvis

et al. 2006), GaBoDs (13 d&gHetterscheidt et al. 2007) and CFHTLS Deep (4%&pmboloni

et al. 2006). Recently, Schrabback et al. (2010) perfornmedpcehensive second-order analyses
of cosmic shear signals by LSSs with COSMOS data (2Z)Xéthey showed that the shear signal
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scales with redshift as expected from the theory of genelativity in the concordancACDM
cosmology, including the full cross-correlation signaétvieen different redshift bins. Under the
flatness assumption for the Universe, they obtqiff2,,, /0.3)°-5! = 0.754-0.08 (68.3% conf.) from
lensing alone. They find a negative deceleration paramgtdrthe 94.3% confidence level using the
tomographic lensing analysis without the assumption afilas and using priors from the HST Key
Project forH, andQ,h? from constraints on Big Bang nucleosynthesis. This praviddependent
evidence for the accelerated expansion of the Universe.

Semboloni et al. (2011) present a first detection of the tbider moments of the aperture mass
statistics using the same COSMOS data. Their results aredeped in the left panel of Figure 13.
It is seen that the results are in very good agreement witlptédictions of the WMAP7 best-fit

cosmological model. The combined likelihood analysis|df,)(#) and (M2,)(0) improves the

cosmological constraints e (2., /0.3)%°° = 0.6970(7 (reproduced in the right panel of Fig. 13).

CFHTLenS covers 154 dégky in five optical bands. It gives rise to accurate photoinesd-
shifts and shape measurements for 4.2 million galaxiesdsiwedshifts of 0.2 and 1.3. Kilbinger
et al. (2013) present the analyses of cosmic shear signdl$SBg using CFHTLenS. They com-
pute the 2D cosmic-shear correlation function over angatdates ranging betwedn8’ and 350’.
The results are reproduced in the left panel of Figure 14.aFtat ACDM model, they obtain the
corresponding constraints (£2,,,/0.27)%-¢ = 0.79 £ 0.03. With the combinations of CFHTLenS
with WMAP7, BOSS and an HST distance-ladder priorfés they findQ2,,, = 0.283 + 0.010 and
os = 0.813+0.014. The reproduced results are shown in the right panel of Eigjdr Benjamin et al.
(2013) measure the shear correlation functions on angeddesin the range 1 — 40 arcmin with
the same CFHTLenS data, in two broad redshift bins,< z, < 0.85 and0.85 < z, < 1.3. The
auto and cross correlations of the two bins are reproducttkiteft panel of Figure 15. They show
good agreements with the theoretical predictions of WMARAt. a flat ACDM model, they find
og = 0.771 £ 0.041 with a fixed matter densit2,, = 0.27. In combination with WMAP7, BOSS
and a prior orfly from HST, they obtaif2,, = 0.2762+0.0074andog = 0.802+0.013 (reproduced
in the right panel of Fig. 15). Fu et al. (2014) measure secand third-order weak-lensing aper-
ture mass statistics from CFHTLenS and combine them witmaomicrowave background (CMB)
anisotropy for cosmological constraints. The results amvs in Figure 16. The third moment is
measured with a significance 8¢ (left panel of Fig. 16). Compared to only using second-order
correlations, including the third-order statistics imyes the constraint oBg = og(£2,,/0.27)* by
10%. The allowed ranges fél,,, andogs are substantially reduced. Adding second- and third-order
CFHTLenS lensing measurements to Planck CMB temperatusetaopy tightens the Planck-only
constraints ofi,,, andog by 26% for flatACDM (middle panel of Fig. 16). For a model without the
flatness prior, the joint CFHTLenS-Planck resulfis = 0.28 £ 0.02 with 68% confidence, which
shows an improvement of 43% compared to Planck alone (riggmelof Fig. 16).

4.3 Peak Statistics

As discussed in Section 4.1, clusters of galaxies are ssongres for generating weak-lensing sig-
nals, and they appear as high peaks in weak-lensing mapseféleobservations of weak lensing
can not only be used to study the mass distribution of knownsters, but also provide a unique
way to detect clusters blindly (e.g., Tyson 1992; Kruse &18ter 1999). The feasibility of clus-
ter detections with weak lensing has been demonstratedffgratit observational analyses (e.qg.,
Miyazaki et al. 2002; Wittman et al. 2006; Gavazzi & Souc@i0Z; Miyazaki et al. 2007; Schirmer
et al. 2007; Geller et al. 2010; Shan et al. 2012; Hamana 20&R; Van Waerbeke et al. 2013; Shan
et al. 2013). Figure 17 shows the mass distribution thatdsnstructed with weak-lensing analyses
from Shan et al. (2012) with CFHTLS (left) and Van Waerbekal f2013) with CFHTLenS (right).
Different symbols are explained in the caption. Certairegpondence between the weak-lensing
peaks and the clusters identified optically or in X-ray caséen clearly.
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Fig. 13 Left The three-point aperture statistics measured from COSMé&pBoduced from the right
panel of fig. 4 in Semboloni et al. (2011). The black diamonésfar (M2,) (EEE) and the red tri-
angles are fo(M,, M2 ) (EBB). Error bars are for statistical errors. The solid lisghe WMAP7
model predictionRight The probability distribution for the parametefs, and os, reproduced
from the right panel of fig. 7 in Semboloni et al. (2011). Thestoaints ¢olored region} are ob-
tained from the joint measurements(af/2,)(9) and(M3,)(0) as compared to that separately from
<M§p>(0) (inner lineg and(M;fp)(O) (outer liney, respectively. The soliddashedl lines represent
the 68.3% (95.5%) level of confidence. Printed with permis$iom the authors and by permission
of Oxford University Press on behalf of The Royal Astronoahi§ociety.
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Fig. 14 Left Aperture-mass dispersion ¢f/Z2,) (E-mode,black filled squaresand (M2) (B-
mode,red open squargsfrom CFHTLenS, reproduced from the upper panel of fig. 8 itbikger

et al. (2013). The signal is compared to the theoreticaliptied for a WMAP7-cosmologydashed
line) and the simulation result from Clone lines-of-sight memmal (dotted ling. The error bars
are the Clone field-to-field rm®Right For the flatACDM model, the marginalized parameter
constraints(m, os) (68.3%, 95.5%, 99.7%) from CFHTLen8lge contours WMAP7 (green,
CFHTLenS+WMAP7 (ed) and CFHTLenS+WMAP7+BOSS+R08I&cK are shown, reproduced
from the upper panel of fig. 10 in Kilbinger et al. (2013), witbrmission from the authors and by
permission of Oxford University Press on behalf of The R&ystronomical Society.

Being closely associated with mass concentrations, notdbsters of galaxies, weak-lensing
peak statistics are anticipated to carry important cosgicét information (e.g., Kruse & Schneider
1999; Hamana et al. 2004; Kratochvil et al. 2010; Marian eR@l 3). Particularly, they are more
sensitive to massive structures, and thus the non-Gautssadures of the LSSs in the Universe
(e.g., Marian et al. 2011). Therefore they are highly comrmgetary to the cosmic shear two-point
correlation analyses. To demonstrate the cosmologicarigmce of weak-lensing peak statistics,
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Fig.15 Left Auto and cross correlatiors, (filled circleg andé_ (filled square} of two redshift
bins measured from CFHTLenS, reproduced from figure 6 in&winj et al. (2013). Error bars are
the square-root of the diagonal elements of the covariarateéximeasured from Clone mock cata-
logs. Theoretical predictions for the WMAP7 cosmology aespnted as lineRight The marginal-
ized parameter constraints (68.3% conf. levelY@#,, o) for a flatACDM cosmology: 2D lensing
(blue), 2-bin tomographydreer) from CFHTLenS, 2D lensing combined with WMAP7, BOSS and
Hy prior of R11 placK, and 2-bin tomography with all combinationsirtk). Reproduced from fig-
ure 8 in Benjamin et al. (2013), with permission from the awshand by permission of Oxford
University Press on behalf of The Royal Astronomical Sgciet
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Fig.16 Left The third-order aperture-mass EEE components as a funofismoothing scalé,
measured from CFHTLenS data. The prediction from WMAP9 @ashas a red solid line and the
third moment measured from the Clone is the black dash-dlotieve.Middle: Marginalized poste-
rior density contours (68.3%, 95.5%) from CFHTLenS (joietend-order COSEBIs and third-order
diagonal aperture-mass; magenta lines), WMAB@d), Planck greer), CFHTLenS+ WMAP9
(black and CFHTLenSt Planck (orange). The flatCDM cosmology is assumed hefeight The

corresponding results in the case without the flatness. fRieproduced from the upper panel of
figs. 2 and 11 in Fu et al. (2014), with permission from the arghand by permission of Oxford
University Press on behalf of The Royal Astronomical Sgciet
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Fig. 17 The weak-lensing reconstructed mass distribution of the TdFS W1+2+3 pointing repro-
duced from fig. 17 in Shan et al. (2012ff), and of the CFHTLenS W1 field reproduced from fig. 8
in Van Waerbeke et al. (2013)ight). The color maps (with white contours in the right panel)taee
weak-lensing reconstructed convergence maps shown in/thdrsthe left panel, the triangles are
for optically detected clusters in the K2 catalog (Thanjaetial. 2009), the cross symbols are for the
X-ray detected clusters (Adami et al. 2011), and the plussap@res symbols are for convergence
peaks with S/N- 3.5 in maps with Gaussian smoothing scales= 1’ anddc = 2’, respectively
(Shan et al. 2012). In the right panel, the Gaussian smapstale i¥c = /2 x 8.9 ~ 12.6' for
the convergence map. The white circles show the predictakispieom the galaxy distribution with
their size indicating the height of the peaks (Van Waerb¢let. 2013). Note that here the Gaussian
smoothing function is taken to have the foii(0) = (1/760%) exp(—62/60%). Printed with per-
mission from the authors, and by permission of the AA&t) and of Oxford University Press on
behalf of The Royal Astronomical Societsight).

we consider the most simple and ideal case assuming a ameetoerrespondence between a weak-
lensing convergence peak and a dark matter halo. Then thegtesmdance can be theoretically
calculated from the mass function of dark matter halos ko account the lensing efficiency
(e.g., Kruse & Schneider 2000; Bartelmann et al. 2001). Epalty, we have (Hamana et al. 2004)

N(v > wy) = /dzﬂ /dM Nhalo(M, 2)Hi[v(M, 2) — v , (96)
dQddz

wherer stands for the S/N of weak-lensing peaR&(r > 14y,) is the surface number density of
peaks withv > 1y, dV anddf) are the volume element and the solid angle element of thecsay
respectively, anahy, ., is the mass function of dark matter halos. The tédiinis a Heaviside step
function with H;(z) = 1 for z > 0 and Hy(z) = 0 otherwise, representing the selection function
for halos based on their peak weak-lensing signals.

Here the SIN i3y = K /oo with K the peak value of the lensing convergence andhe rms
of the noise. As discussed previously, the intrinsic atlipt plus the uncertainty in shape measure-
ment for a source galaxy is much larger than its weak-lensigigal, thus bringing large noise to
the reconstructed convergence map affecting severeletiee@bility of true peaks. Therefore noise
suppression procedures, such as smoothing (e.g., Hamain2@94; Van Waerbeke et al. 2013) and
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entropy regularization (e.g., Starck et al. 2006), are s®s®y andr is the rms of the left-over noise.
For the peak signak” of a halo with mas3$/ and at redshift, it depends on the halo density profile,
the redshift information of the lens and the source galatkiesugh the angular diameter distances,
and the noise suppression procedures applied to the cenegThereford (M, z) contains im-
portant cosmological information (e.g., Bartelmann et28l01; Hamana et al. 2004) and reflects
the sensitivity of weak-lensing cluster detection. For sberce redshift; ~ 1, the weak-lensing
detections are sensitive to clusters at 0.2 (Hamana et al. 2004). For the halo mass functign,,

it is directly related to the formation and evolution of danktter halos and thus sensitive to cosmo-
logical models. Given Gaussian linear density perturloatidynamical models for halo formation,
such as the spherical and ellipsoidal collapse models (@egbles 1980; Bond & Myers 1996), al-
low us to link the nonlinear formation of dark matter halodit@ar density perturbations above a
collapse threshold. Then the halo mass function can bedtiealty predicted based on properties of
linear density perturbations, including the power speuntaend the linear growth factor (e.g., Press
& Schechter 1974; Bond et al. 1991; Sheth et al. 2001). Whiése theoretical models capture the
essence of the halo formation, their accuracies are lintitfedimplified assumptions. Because of
its important roles in cosmological studies, accurate riind®f the halo mass function is strongly
desired (e.g., Wu & Huterer 2013). With numerical simulasipdifferent fitting models have been
proposed to improve the halo mass function (e.g., Sheth &n&or1999; Jenkins et al. 2001; Warren
et al. 2006; Tinker et al. 2008; Bhattacharya et al. 2011 sdfaet al. 2013; Knebe et al. 2013).

From Equation (96), we see that the cosmological dependzfrtbe weak-lensing peak abun-
dance is reflected in the halo mass function, the lensin@bigi), =) and the volume elemeni’.
In other words, the weak-lensing peak abundance depenldsbatbe structure formation and on the
global expansion history of the Universe. This lays the thgcal motivation for probing cosmology
with weak-lensing peak statistics. On the other hand, hewdire model shown in Equation (96) is
a highly idealized one, and many effects can significantijyénce weak-lensing peaks. The non-
spherical mass distribution of dark matter halos introdum@mplications in calculating the peak
convergence signak for a halo with given(}, z) (e.g., Tang & Fan 2005; Corless et al. 2009;
Hamana et al. 2012). The correlated structures near a hdlo@mcorrelated ones along its line of
sight can affect the peak sign&l (e.g., Hoekstra 2003; Dodelson 2004; Marian et al. 201 0kistve
et al. 2011; Oguri & Hamana 2011; Yang et al. 2011). For red#filow peaks, a large fraction of
these do not have dominant halos responsible for theirdgrsgnals. Rather, the projection effects
of LSSs along lines of sight contribute coherently to thesaks (e.g., Maturi et al. 2010; Yang
et al. 2011). Furthermore, the weak-lensing peak analysedvie, in one way or another, the re-
construction of the convergence field from the measuredeshapsource galaxies. The existence
of noise in the reconstructed convergence field becausérofsit ellipticities of source galaxies is
therefore inevitable even after the noise suppressiomntexas. The noise can lead to false peaks
from chance alignments of source galaxies, and thus caiyereduce the efficiency of cluster
detection (e.g., White et al. 2002; Wittman et al. 2006; Gav& Soucail 2007; Schirmer et al.
2007; Geller et al. 2010). A more subtle effect of noise id thaan also affect the signals of the
peaks associated with true dark matter halos, generatingnty scatters but also systematic bias
(e.g., Fan et al. 2010; Yang et al. 2011). The spatial clusgemd the intrinsic alignment of source
galaxies can also affect the cosmological interpretatafnseak-lensing peak statistics (e.g., Fan
2007; Schmidt & Rozo 2011). Different observational effeshould also carefully be taken into
account (e.g., VanderPlas et al. 2012; Van Waerbeke et &8;20u et al. 2014).

Extensive analyses have been performed to explore diffeffatts on weak-lensing peak statis-
tics. In terms of cluster detections, various filtering tetgées are developed to optimize weak-lensing
signals of clusters (e.g., Schirmer et al. 2004; Hennawi &r§el 2005; Maturi et al. 2005; Starck
et al. 2006; Marian et al. 2012). The aperture mass statisfig, introduced in Equation (80) can
be calculated from the tangential component of the obsegilgdicities of source galaxies using a
filter @ (Eq. 83). This has been extended to the so called shear-faeskiss where the analyses are
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done on the basis of the filtered tangential shears defined as

N, (8) = / 026',(0)Q(0' - 0))

with a general filte. By choosing an appropriate functioh e.g., with a similar profile of the halo
tangential shear, the S/N 81, can be maximized for detecting clusters efficiently (e.ghriider

et al. 1998; Schirmer et al. 2007). An optimal filter can algofund by minimizing the effects
both from the noise arising from intrinsic ellipticitieséfrom the projection of LSSs (e.g., Maturi
et al. 2005). By incorporating the redshift information ofisce galaxies, the weak-lensing cluster
detection can be further improved by applying a tomograpiatched filter (Hennawi & Spergel
2005). For a survey with the source galaxy number demgity: 30 arcmin 2 and the typical source
redshiftz, ~ 1, the S/Nv ~ 4 corresponds to clusters with maks ~ 104 M, at redshiftz ~ 0.2
with a possible extension to smaller mass and higher rad$éifending on the filter optimization
(e.g., White et al. 2002; Hamana et al. 2004; Hennawi & Sp&@@5). At this threshold, the effi-
ciency of cluster detection is typically 60% with certain variations from different filtering methods
(e.g., White et al. 2002; Hennawi & Spergel 2005; Jiao et@L1). This has been demonstrated ob-
servationally by analyzing the correspondences betweeakdemnsing peaks and clusters identified
from optical/X-ray observations (e.g., Gavazzi & Souc&02; Miyazaki et al. 2007; Geller et al.
2010; Shan et al. 2012; Kurtz et al. 2012). The efficiencyaases with the increase in the detection
threshold but at the expense of detection completeness.

On the other hand, for probing cosmology with weak-lensiegkpstatistics, it is not necessary
to individually find explicit correspondences between ppaatd the underlying clusters (e.g., Marian
et al. 2009). Furthermore, peaks from projection effectis@fbs also carry important cosmological
information (e.g., Maturi et al. 2010; Dietrich & Hartlap PO, Yang et al. 2011). Therefore, for
cosmological studies, weak-lensing peaks themselveseaiatistically analyzed directly without
the need to find one-to-one links between peaks and speciitecs. Extensive investigations have
been done to understand the cosmological dependence oflaesikg peak statistics and its com-
plementary role in cosmological studies (e.g., Marian e2@09; Kratochvil et al. 2010; Dietrich
& Hartlap 2010; Fan et al. 2010; Yang et al. 2011; Marian e@all1, 2013; Liu et al. 2014). In
Dietrich & Hartlap (2010), they carry out ray tracing simtigas for a total of158 cosmological
models with differen{(,,, o) in the flat ACDM framework, and analyze the dependence of the
peak abundances on the two parameters.

Figure 18 shows the expected constrainté@n, o) from aperture mass peak abundances from
Dietrich & Hartlap (2010), where the survey area is takeretodt deg?, and the number density and
the rms of intrinsic ellipticities of source galaxies arétseben, = 25 arcmin 2 ando.. = 0.38,
respectively. The green region shows theand2o confidence ranges froistatistics that considers
the peak S/N¥) corresponding to different number fraction of peaks witk> 3.25 (see fig. 2 of
Dietrich & Hartlap (2010)). The blue regions are for the esponding constraints frod statistics
that counts peaks in different redshift bins determinedographically assuming the peaks are from
individual halos (Dietrich & Hartlap 2010). The joiihtr, 20 and3c constraints of the two are shown
by the regions delimited by the black contour lines. Fheymbol indicates the fiducial model. It is
seen that the peak statistics can give rise to constrairdssmological parameters comparable to the
two-point cosmic shear correlation analyses. Includirmgrétdshift information can further improve
the constraints. With the advantage of its sensitivity ta-@aussian information, the feasibility of
using weak-lensing peak statistics to probe the primortbalGaussianity has also been analyzed
(Marian et al. 2011). It is shown that future Euclid-like weys can constraiffiy;, to Afyr ~ 10
(Marian et al. 2011). Beyond the abundance, further infoiongrom the peak correlation and the
peak profile can provide additional values to cosmologitalies (Marian et al. 2013).

While it is clear that weak-lensing peak statistics can b@rgortant probe complementary to
cosmic shear correlation analyses, their applicationgfivihg cosmological parameter constraints
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Fig.18 Expected constraints off2m,0s) derived from aperture mass peak abundances for a
CFHTLS-like 180 deg? survey reproduced from fig. 4 in Dietrich & Hartlap (2010).€Tgreen and
blue regions showo and2o confidence ranges froii and M statistics, respectively. The regions
delimited by the black contours are the joirt, 20 and3c constraints from the two peak statistics.
Printed with permission from the authors and by permissfddxdord University Press on behalf of
The Royal Astronomical Society.

rely on accurate predictions of relevant peak statisticglifterent cosmological models. From large
simulations, it is possible to generate a numerical libfargifferent model predictions with densely
sampled cosmological parameters. However, because ditipe humber of cosmological parame-
ters and the necessity to include different physical aneidasgional effects, e.g., baryonic effects
(e.g., Yang et al. 2013a) and mask effects (e.qg., Liu et dl4pGuch an approach can be computa-
tionally expensive. In addition, while simulations cangiise to results that combine all the effects,
theoretical understandings of different effects on pealyeses are crucially important. Therefore, it
is highly desirable to develop models for weak-lensing petalkistics, either through fitting to sim-
ulation results with important physical quantities or paegers explicitly written out in the fitting
formula, or from theoretical considerations of the origfw@ak-lensing peaks. The model shown
in Equation (96) is an example of the latter. Unfortunatilys too simplified to be used in real
cosmological studies. By analyzing simulation resultsyiglaet al. (2009, 2010) find that with a
proper choice of a hierarchy of matched filters recursivppiad to the projected mass density field
from the highest mass to the lower ones, the resulting 2D pesds function follows very well the
scaling relation of the 3D mass function with respect toedtéht cosmological models. Therefore
the cosmological dependence of the 2D peak mass functiopassibly be modeled by

X fiducial
Nt

. fiducial
no= ST

X nng/n

)

wherenX is the predicted 2D peak mass function for the cosmologicalehX , nfiducial is the fitted
2D peak mass function for the fiducial model derived from datians, and:&. andnfducial are
the corresponding 3D Sheth-Tormen mass functions (Matiah 2010). In Hamana et al. (2004,
2012), they derive, from simulation results, a fitting fotenéor the abundance of weak-lensing
convergence peaks that modifies Equation (96) by takingantmunt the bias and scatter of the
peak height induced by the noise from intrinsic ellipte#tiof source galaxies, the non-spherical
mass distribution of halos and the projection effect fron8ES

In Fan et al. (2010), we develop a model for weak-lensing @dakdances including the noise
effects modeled as a Gaussian random field. We considerégitons and regions away from halos
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separately. In a particular halo region, the smoothed agevese field can be modeled as
Kn=K+N,

whereK is for the smoothed signal from the halo aNdis the Gaussian random field from noise.
Assuming a knowr¥, e.g., following the NFW halo profile, the peak abundancéheffteld Ky,
which is also a Gaussian random field, can be calculateddtiealty. Compared to the pure noise
case, the peak abundance is modified by the halo’s masddisin. For the highest peak corre-
sponding to the halo, its height is altered by the existefic®ize N generating both scatters and a
systematic bias toward higher values. The bias dependseattetimsity profile of the halo. This, in a
certain sense, provides a theoretical explanation for ttiegfiresult of Hamana et al. (2004, 2012).
By employing the halo mass function, we can then calcula&@#ak abundance in halo regions. For
regions outside halos, we simply calculate the peak abwsdfrom N. The total peak abundance
is the sum of the two parts (Fan et al. 2010). It is noted thaunmodeling, the peaks in a halo
region are counted individually. Therefore when findingksefiom weak-lensing maps, we do not
combine peaks that are close together to form a single peakras of the analyses do (Hamana
etal. 2012).

In Figure 19, we show the derivatives of the peak abundaniterespect targ (left panel) and
Qy, (right panel). Here we consider, = 30 arcmin 2 ande.. = 0.4, and a Gaussian smoothing
with g = 1’. We only include the noise from intrinsic ellipticities aferce galaxies in the theoret-
ical calculation. The blue symbols and the error bars arateeage values and corresponding
variations computed frorfi4 sets of simulated maps 6fx 3 deg? with differentos andQ,,. The
shaded regions are the variations from one set of maps to another. It is seen thétinvihe error
ranges, our theoretical predictions (red lines) agree thighsimulation results very well. The green
lines using the simple model of Equation (96) without acdmgnfor the noise effects overpredict
the cosmological information in peak abundances for nagtilow peaks withv < 5.

Figure 20 shows the peak number distributions and the egexdsmological constraints for
a3 x 3deg? survey. From the left panel, we see that without includire effects of noise (black
histograms), the number of peaks are systematically ustier@ed. On the other hand, our model
predictions (red histograms) are in good agreement witkithalation results (blue histograms). The
right panel shows the derived constraints(6h,, os) from a survey of8 x 3 deg? with the ‘data’
constructed from the simulations for the fiducial model am& theoretical predictions calculated
from the model of Fan et al. (2010). In the fitting analyses take into account the covariance of
the number of peaks between different bins. It is seen tledidist fit values shown by the red symbol
are consistent with the fiducial ones (blue symbol) withdlitiias noting the degeneracy of the two
parameters indicated approximately by the dotted lines Tieimonstrates the applicability of our
model. Details of the analyses can be found in Liu et al. (2014

We note that the current model of Fan et al. (2010) concegtspeaks and considers the dom-
inant shape noise from intrinsic ellipticities of sourcdag#es. The projection effects from LSSs
contribute extra ‘noise’ affecting signals from individiialos. They can also generate peaks them-
selves. These peaks are relatively low and not dominatednigyeshalos (e.g., Yang et al. 2011).
Different from the shape noise, the projection effects theles contain important cosmological in-
formation. In Maturi et al. (2010), they propose a theogdtinodel for weak-lensing peak statistics
caused by the projection effects of LSSs and the shape nasee galaxies by assuming that they
can be described by a Gaussian random field. By comparingsimithlations, it is shown that the
model can predict well the peak counts for peaks with 5, and underestimate the high peaks. This
is understandable because high peaks are dominantly frgiesialos that are highly non-Gaussian.
Our model from Fan et al. (2010) combines the contributiomfindividual halos and the Gaussian
random field from shape noise. It should be readily extendéudude the projection effects in the
Gaussian random field. Then all the calculations are bagite same with the only change being
the inclusion of the power spectrum from the projection@feln this approach, we can in principle
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Fig. 19 Derivatives of the peak abundances with respeegtfieft) and2., (right) reproduced from
fig. 6in Liu et al. (2014). The blue symbols with error barsthieeaverage results and the&ir errors
calculated fron64 sets of simulated maps with differeft,, andos, and the shaded regions show
the 1o variations from map to maB(x 3 deg® each). The red lines are the theoretical predictions
from our model of Fan et al. (2010), and the green dashed &negrom the model of Eq. (96).
Printed with permission from the authors and by permissich@AAS.

area = 9 deg®

Average peak counts per map
b o e e
R
H
H

N

o

L L L L L >
45 5 55 6 6.5 7 75 8 8.5 9 9.5 . . . . .
SNR v Q,,

Fig.20 Number distribution of peakse(ft) and the expected cosmological constraint§Qn,, os)
from a survey of3 x 3deg? (right), reproduced from fig. 7 in Liu et al. (2014). In the left panel
the results from simulations by averaging ov@8 maps for the fiducial model are shown by blue
histograms. The error bars indicate the variations from map to map. The red histograms are for
the predictions of Fan et al. (2010), and the black histograne for the results from Eq. (96). The
right panel shows the corresponding constraints deriveoh fihe peak number distribution. The
theoretical predictions are calculated from the model of &zal. (2010), and the data are from the
simulations for the fiducial model (blue histograms in thié panel). The(Qwm, os) of the fiducial
model are shown by the blue “*” symbol. The best fit values drenn by the red “+” symbol.
Printed with permission from the authors and by permissidh®AAS.
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model the peaks over a large range of S/N, from low to high. i@mpertant issue to be investigated
carefully is the determination of the mass scale above wéiradie halos are responsible dominantly
for the corresponding peak signals. The power spectrunridesgthe large-scale projection effects
should then exclude the contributions from those massilesha

Observationally, current weak-lensing peak analysestalrérsited by relatively large statisti-
cal errors because of limited survey areas (e.g., Shan20h2; Hamana et al. 2012). However, its
feasibility for cosmological studies has begun to emerge ekample, by analyzing tht deg? of
the CFHTLS W1 field, Shan et al. (2012) deteci 000 peaks with S/N/ > 3. Future weak-lensing
surveys covering- 5000—20 000 deg® survey areas will be able to give rise to, on the order of,
~ 100 000 peaks for cosmological analyses. With much reduced staigtrrors, precision cosmo-
logical studies ask for thorough understandings of difiesystematic effects. The accurate mod-
eling of peak statistics either theoretically or from siatidn libraries is critical. It is worth noting
that with a theoretical model explicitly including the dépgrofile of dark matter halos, such as the
model of Fan et al. (2010), future weak-lensing peak analjigen large surveys can in principle
allow us to constrain the halo density profile simultanepugth other cosmological parameters.
This, on the one hand, can return to us more physical infoomatbout the formation and evolu-
tion of halos, and on the other hand, can also reduce the fadtbias in cosmological parameter
constraints arising from the incorrect pre-assumptioruatiee density profile of dark matter halos.

4.4 Galaxy-galaxy Lensing

Galaxy-galaxy (g-g) lensing is named for analyzing weaisieg signals of background galaxies
around a selected sample of foreground lens galaxies kgirglda-Escude 1996; Squires & Kaiser
1996; Guzik & Seljak 2001). By stacking the signals over thefiround galaxies in the sample,
g-g lensing analyses can statistically probe the masshiistsn down to galactic scales, though not
individually (e.g., Tyson et al. 1984; Brainerd et al. 1986yner & Milgrom 1987; Schneider & Rix
1997; Hudson et al. 1998; Hoekstra et al. 2003; Mandelbauah @006, 2008; Pastor Mira et al.
2011; Li et al. 2013; Gillis et al. 2013; Hudson et al. 2013inBoulle et al. 2013). Furthermore,
g-g lensing provides us a unique way to study the correldteween the properties of galaxies and
those of their dark matter halos, and therefore to test therthof galaxy formation (e.g., Hoekstra
et al. 2002; Fan 2003; Mandelbaum et al. 2005; Li et al. 208@yes et al. 2012; Miyatake et al.
2013; Velander et al. 2014). In cosmological studies, gagileg measurements can also be helpful
in breaking the degeneracy between the bias factor of trexgalistribution with respect to that of
the dark matter and the amplitude of dark matter densityupeations involved in galaxy clustering
analyses. Therefore the combination of g-g lensing andxgalustering analyses can give rise to
better cosmological constraints than that using galaxstehing alone (e.g., Seljak et al. 2005; Yoo
et al. 2006; Baldauf et al. 2010; Mandelbaum et al. 2013; vam Blosch et al. 2013; More et al.
2013; Cacciato et al. 2013).

For g-g lensing, it analyzes shear signals around foregttams galaxies. The mean tangential
shear(v;)(R) along the boundary of a circular aperture of radiiaround a lens galaxy is linked to
the mean convergeneég€< R) inside the aperture by (e.g., Miralda-Escude 1996; Sqdirkaiser
1996)
1dr(< R)
() (R) = 2 dn R

wherer(R) is the means at R. For a single lens galaxy, its weak-lensing signals are lhatet
tectable from background galaxies noting their much langiinsic ellipticities. We thus need to
stack the signals over a sample of foreground lens galaklgs.effectively increases the number
density of source galaxies o, Vi.ns and, consequently, enhances the S/INVAY e, times com-
pared to that from a single lens galaxy, whég, s is the number of lens galaxies to be stacked and
ng is the surface number density of background galaxies. Therestatistically, g-g lensing probes

= k(< R) — R(R), 97)
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the matter-galaxy cross correlation with the contributicom uncorrelated structures along lines
of sight being averaged out. Specifically, on average, inaang coordinates we can writeR)
around foreground galaxies at a known redshifvith background galaxies at as (e.g., Guzik &
Seljak 2001)

f(B) = [ 50 [14 Goan)]dx (98)

Ter (X Xs)

whereg, am is the 3D matter-galaxy cross correlation= r(R, x1, x) andR are the 3D comoving
distance and the 2D projected comoving distance to the lalasyg respectively, ang, x andy;
are the radial comoving distances to the lens galaxy, to thteemthat contributes to the lensing
signal and to the background source galaxies, respectiVeé quantity}., is the lensing critical
density in comoving coordinates with

Sor = a0 fic(6:)/ [47G () ficxs = X)]

andp,, is the comoving matter density of the Universe. TEI{# reflects the lensing efficiency for
the matter distribution at. Given the typical correlation scale &f 4.,, the dominant contribution
to the lensing signals is from the matter distribution clpsgound lens galaxies. Thus at given
Y can be moved out of the integration in Equation (98). We trerelapproximately

i(:1r<'7/‘c>(*R) = i(< R) - E(R) = AX(R), (99)

where

S(R) = / pn [ 1+ Egam(r)] dx (100)

Thus g-g lensing leads to an estimate of the excess surfezedeasity (ESDAY(R). Note that the
inclusion of the constant terinin the square bracket in Equation (98) is for relating % (R) /..,
and it is canceled out iIAX(R).

For observations with known redshift information for indival source and lens galaxies, we
can calculate’,, for each source-lens pair, and the average quaf¥ityy: (R)) over all the pairs
gives rise to a measure of ESD averaged over the lens sampiee kcase of known redshifts for
lens galaxies but not for individual source galaxies, we genthe effectivex?. and the average
v (R)* at eachz; by averaging ovee, with the source redshift distribution @f(zs). Then the
mean ESD over the lens sample can be obtained by averaging(R)* over the lens galaxies. If
the individual redshifts for lens galaxies are also unknawd their redshift distribution is wide, the
direct measure ofy,)(0) leads toz(< 0) — &(0) whered = R(x1)/ fx(x1) is the projected angular
distance to the lens galaxy, and (e.g., Guzik & Seljak 2001)

R(0) = 6w2(%)29m /OXH dx prons () LX)

a(x)
X / k dk Pg7dm(k,x)%a(;;)9] (101)
and
(v)(0) = R(< 0) —R(0)
e (Ho\ ' W)
= or* () [ dxmant 208
X / k dk Pg7dm(k,x)%&(;;)ﬂ (102)
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whereP, am (k, X) is the matter-galaxy cross-power spectrpm,s(x) is for the lens distribution,

XH

W(x) = fx(x) /

X

ps(x') [fK(x' —x)/fx(X)|dx’,

and.J; and.J, are the Bessel functions.

Figure 21 presents the ESDY. from g-g lensing analyses of Mandelbaum et al. (2006) with
SDSS (left) and Velander et al. (2014) with CFHTLenS (right)e lens galaxies are divided into
different luminosity bins. In each bin, the lensing signaleund early-type (red in the left panels
and dark purple in the right panels) and late-type (blue énldfft and green in the right) galaxies are
analyzed separately. Both measurements clearly showhbd@$D increases with the luminosity,
and statistically, late-type galaxies reside in halosheassive than those hosting early-type galaxies.
The lines in each panel are the fitting results using the halbalh{Mandelbaum et al. 2006; Velander
et al. 2014). Note that the considered scale covers the famge~ 10 kpc to~ 10 Mpc, i.e., from
galactic scales to cluster scales and even beyond. Thudebdbke halos directly hosting the lens
galaxies, the ESD shown in Figure 21 also reflects the envient of the lens galaxies. For galaxies
in a given luminosity bin, some are central galaxies in @isstand some are satellite galaxies.
The halo mass distributions of the central and the satejidaxies are different. Therefore in the
theoretical modeling of g-g lensing, they should be coneiddlifferently (e.g., Seljak et al. 2005;
Mandelbaum et al. 2005, 2006; van Uitert et al. 2011; Cacaatal. 2014; Velander et al. 2014).
The halo model fitting shown in Figure 21 takes into accouatdlfferences of the two classes of
lens galaxies (Mandelbaum et al. 2006; Velander et al. 2¢-Bt)the CFHTLenS analyses, because
the measurements extend to large scales, the two-halo seeradso included in the modeling. In
addition, the baryonic matter contribution from the meatiat mass of lens galaxies is also putin
by modeling it as a point source (Velander et al. 2014). By legipg the halo model, g-g lensing
observations can then set constraints on the relevant pégesnsuch as the luminosity-mass relation
for central galaxies, the fractional contribution of shtielgalaxies for a given luminosity bin, etc.

Figure 22 shows the constraints on the luminosity-mast @efl stellar mass-halo mass (right)
relations derived from different g-g observations (Velandt al. 2014). Given the somewhat dif-
ferent classifications of different types of lens galaxied theoretical modeling, the results from
different observations are in broad agreement with eachroBwor the satellite fraction, it is found
that for early-type/red galaxies, it is about 0.5 for lenkgis with luminosityL, ~ 10'°L, and
decreases for brighter lens galaxies. On the other handatmitype/blue galaxies, the fraction is
low for all the luminosity bins, indicating that they are rtiggsolated galaxies (Mandelbaum et al.
2006; Velander et al. 2014).

While the g-g lensing alone can provide valuable informatinore can be learned by combining
with galaxy clustering analyses. In Li et al. (2009b), we thse group catalog constructed from
SDSS DR4 by Yang et al. (2007) to model the g-g lensing sign&lth the group catalog, the
information about central and satellite galaxies is knoand therefore we do not need to involve
the free parameter(s) for satellite fractions in differeims. With the ranking method, the mass of
parent halos for groups and the mass of subhalos for satgdiaxies at the time of their accretion
into parent halos can be assigned (Yang et al. 2007; Giotali. 008; Li et al. 2009b). Taking
into account the tidal disruption of subhalos afterwardhamerging process, we can then model
the g-g lensing signals assuming known density profiles &wept and subhalos, respectively. We
note that for different cosmological models, the mass assent can be different, and thus different
lensing signals can be expected. In comparison with obsenad results, g-g lensing analyses in
combination with galaxy clustering information can thuscemstraints on cosmological parameters.

We show the cosmology dependence of the lensing signalslfr@tal. (2009b) in Figure 23.
The symbols with error bars are the results of Mandelbaunt. §2@06) using SDSS. The solid
and dotted lines are the predictions of WMAP3 (Spergel e2@D7) and WMAPL1 (Spergel et al.
2003) cosmological models, respectively. The differerafebe results from the two cosmological
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Fig.21 Galaxy-galaxy lensing measurements from SDSS reproduoed fig. 2 in Mandelbaum
et al. (2006) keft) and from CFHTLenS reproduced from fig. 5 in Velander et ab1@) (ight),
respectively. Different panels show the results of ESD énislgalaxies in different luminosity bins
as specified therein. In the lefiight) panels, the reddark purple and blue greer) symbols with
error bars are the observational results for early andtigge{ens galaxies, respectively. The corre-
sponding lines are for the fitting results of the halo modehtBd with permission from the authors
and by permission of Oxford University Press on behalf of Rogal Astronomical Society.
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Fig.22 Constraints on the luminosity-masieff) and stellar mass-halo massght) relation for
central galaxies derived from galaxy-galaxy lensing asedy reproduced from fig. 12 in Velander
et al. (2014). The results from Velander et al. (2014) usiR¢iTLenS, van Uitert et al. (2011) using
RCS2 and Mandelbaum et al. (2006) using SDSS are shown faurtiinosity-mass relation in the
left panels. In the right panels, an additional result froeauthaud et al. (2012) using COSMOS
is also shown. Note that the COSMOS result is the same in therugnd lower right panels with
no distinctions between red and blue lens galaxies. Primitdpermission from the authors and by
permission of Oxford University Press on behalf of The Réysttonomical Society.
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Fig. 23 Galaxy-galaxy lensing results reproduced from fig. 8 in Lale{2009b). The symbols with

error bars are the observational results of Mandelbaum. €2@06) for different luminosity bins

using SDSS. The solid lines are the theoretical resultsigieztifrom Li et al. (2009b) based on
the group catalog of Yang et al. (2007) using cosmologicedpaters consistent with those from
WMAP3. The dotted lines are the theoretical results for thdAP1 cosmological model. Printed
with permission from the authors and by permission of Oxfdrdversity Press on behalf of The
Royal Astronomical Society.

models are clearly seen. The observational results agtes bdth the WMAP3 cosmology for high
luminosity bins. For low luminosity bins, WMAP1 seems to fietobservations better. It is noted
that the most up-to-date observations slve: 0.83 for flat ACDM, in between that from WMAP1
with g =~ 0.9 and that from WMAP3 withrg ~ 0.75 (e.g., Planck Collaboration et al. 2013a).
With galaxy group catalogs, we can also measure the g-gigesiects around selected satellite
galaxies and therefore to directly probe the propertieseir tsubhalos (e.g., Li et al. 2013). The
application of such analyses to the CFHT/MegaCam Strip88®2ey has resulted in the first clear
detection of g-g lensing signals around satellite galaftiest al. 2014). The left plot of Figure 24
shows the measured g-g lensing signals around satelléigalin parent halos with assigned mass
inthe rangel0'® A= My, < M <5 x 10" h™! M. The location, of the satellites to the center
of their parent halos is shown in each panel. In the left gaakthis plot, the black solid lines are
the fiducial model predictions, and the green and red lineghar predictions taking into account the
center offsets using two different models. The solid blawe&d in the right panels of this plot are the
results from the best fit model to the data. The right plot shtive derived constraints on the host
halo massV/, the distance, and subhalo mas&/,,;, using data shown in the upper panels of the
left plot (Li et al. 2014). It is seen that current data caeadly give rise to reasonable constraints on
these quantities. Future LSST-like surveys can detectaalidnsing signals with much higher S/N
and therefore can potentially constrain the propertiesibhalos much better (Li et al. 2014).
Recently, by combining the g-g lensing and the two-poinbeatrelation function of galaxies
from SDSS DR7, Mandelbaum et al. (2013) demonstrate théiégsand the added value of using
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Fig. 24 Galaxy-galaxy lensing signals around satellite galaxieasared from the CFHT/MegaCam
Stripe-82 Surveyléft) and the constraints derived from the data shown in the upgletr panel of
the left plot fight), reproduced from figure 1 and figure 4, respectively, in Lakt(2014), with
permission from the authors and by permission of Oxford sty Press on behalf of The Royal
Astronomical Society.

Fig.25 (os, m) constraints for fla\CDM, reproduced from fig. 14 in Mandelbaum et al. (2013).
The black contours are from the joint analyses of galaxggalensing and the galaxy autocorre-
lation using SDSS DRY7. The red contours are from WMAP7. Thedfitontours are the combined
results of the two. Printed with permission from the auttzrd by permission of Oxford University
Press on behalf of The Royal Astronomical Society.

g-g lensing analyses in constraining cosmological pararaeBy suitably eliminating small scale
0-g lensing and galaxy autocorrelation signals, compboatfrom the detailed galaxy distribution
within dark matter halos and the effects of baryonic physas be controlled. Then by assuming
that the galaxy distribution is solely determined by theteratistribution, the galaxy number density
field can be written as the Taylor expansion of the matteritdefisld. Therefore the g-g lensing
signals that are related 18,&,m and the autocorrelation function of galaxigs can be calculated
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in terms of the linear bias factor and quadratic bias faetod, the nonlinear matter power spectrum
times the matter density of the Universe (Baldauf et al. 2048ndelbaum et al. 2013). The joint
observational analyses of the g-g lensing and the galaxgatrelation can thus constrain the galaxy
bias and the matter power spectrum separately to breakdbgéneracy which exists in the galaxy
autocorrelation. This in turn leads to better constraimsh® cosmological parameters. Figure 25
shows the constraining result fors, 2., ) in flat ACDM from Mandelbaum et al. (2013), where the
black contours are from the joint analyses of g-g lensingthedyalaxy autocorrelation using SDSS
DRY7, the red contours are from WMAP7 data, and the filled aanstare the combined result of the
two. The different directions of the black and red contowemdnstrate the great value of including
the g-g lensing data in the analyses. Similar studies hage dene by Cacciato et al. (2013) who
include the small scale information in the analyses by usirggconditional luminosity function
(CLF) to populate galaxies in dark matter halos (van den Bes@l. 2013; More et al. 2013). They
show that in principle, the cosmological parameters antiéth@-galaxy connection through the CLF
can be constrained simultaneously.

Beyond the two-point g-g lensing analyses, higher ordedistucarry additional cosmologi-
cal information. Using CFHTLenS data, Simon et al. (2018kr#ly report the first measurements
of galaxy-galaxy-galaxy lensing signals ﬁVgQMaP) and(NgMaQP) with high significance, where
<N§.Map) is related to lensing signals around lens galaxy pairs (d‘t@MfP> represents excess
shear correlations around lens galaxies. Such studiesearsdd to probe the bispectrum of the
matter-galaxy connection for further understanding thienfttion and evolution of different types of
galaxies (Simon et al. 2013).

5 DISCUSSION

For large-scale cosmic shear studies, current Stage Il ‘ezesing observations have reached
150 degd with ng ~ 15 arcmin 2 (e.g., Erben et al. 2013). Careful data analyses have deratets
the cosmological applicability of the weak-lensing efféey., Heymans et al. 2012; Kilbinger et al.
2013). For g-g lensing analyses, shallow but wide survayd) as SDSS, have also yielded fruitful
results (Mandelbaum et al. 2013). For individual clustadgs, analyses have been done for about
100 clusters resulting in constraints on the mass and densifji@of associated dark matter halos,
and providing mass calibrations for other observables) ascX-ray, SZ and optical richness (Okabe
et al. 2013). Stage Il projects represented by the Dark g8n8urvey (The Dark Energy Survey
Collaboration 2005) and the Hyper Suprime Cam survey (HSSidbeReview 2009) are beginning
to be functional. The scale of such surveys will reach a fesusiand square degrees with depth
similar to if not deeper than that of CFHTLenS. Thereforedhta expected from these surveys will
be aboutl.5 order of magnitude more than the available data sets to @hieh will considerably
increase our knowledge about the dark matter distributiotné Universe, from galactic scales to
superclusters of galaxies. This in turn will advance ourarathnding about the physical properties of
dark matter, and the formation and evolution of galaxiesymeably formed inside dark matter halos
(e.g, van den Bosch et al. 2013; Kang et al. 2013). The dedwsethological parameter constraints
together with other cosmological probes can be tighteneahing~ 1% level of precision for
og and improving the Figure of Merit ofwy, w,) for dark energy by a factor af — 5 depending
on the control of systematics (e.g., Weinberg et al. 20t 3l@echt et al. 2006). Stage IV weak-
lensing observations, expected to be in operation arouafte@r 2020, include notably the ground-
based Large Synoptic Survey Telescope (LSST) (LSST Sci€odaboration et al. 2009; LSST
Dark Energy Science Collaboration 2012), and the spacedans®f Euclid (Laureijs et al. 2011;
Amendolaetal. 2013; Amiaux et al. 2012) and WFIRST (Speztiel. 2013). With six optical filters,
LSST will cover a survey area o 20 000 ded’. The surface number density of source galaxies
usable for weak-lensing analyses is expected to be clogé t040 arcmin 2. Euclid will have a
very broad band filter in optical for weak-lensing shape raemwents, and three near infrared filters



1110 L.P.Fu&Z. H. Fan

Y, J, H for photometric redshift estimates. The planned surveg &e- 15000 ded, andng ~

20 arcmin 2. Thus we expect that both LSST and Euclid can obtain imagesftw billion galaxies
for weak-lensing analyses. Mainly operating in infrareddis® WFIRST weak-lensing observations
target~ 2000 deg with ng ~ 70 arcmin 2, reaching higher redshift than that of LSST and Euclid.
Thus WFIRST will be greatly important in probing the growthlL&sSs, and therefore the law of
gravity. The Stage IV surveys aim at ambitious goals to sthdynature of dark energy, gravity and
dark matter. Taking the equation of state of dark energy asxample, we show in Figure 26 the
current constraints ofwy, w, ) from Xia et al. (2013) using the most up-to-date observatidata. It

is seen that the cosmological constant with, w,) = (-1, 0) is consistent with the data at the level
of 1o — 20. The allowed range for dynamical dark energy is still rataege. In other words, current
data cannot clearly reveal if the dark energy is in the form odsmological constant or is dynamical
in nature. Stage 1V observations are designed to reachkedéconstraints fo\w, ~ 0.01 and
Aw, ~ 0.1. Then the best fit dynamical model obtained by the currerd dah be distinguished
well from the cosmological constant at a high significaneelleand thus the fundamental question
regarding the nature of dark energy can be expected to becaedecisively.

However, the full realization of their statistical power fature large surveys crucially depends
on our understandings about different systematic efféais.weak-lensing studies, the principal
systematics from the observational side are the errordaxgahape measurements and those in the
estimations of photometric redshifts, critical for tomaghic analyses (e.g., Weinberg et al. 2013b).
The weak-lensing induced shape distortion is typicallytemdrder ofl % in cosmic shear regimes
and can be larger in cluster regions. But even for clustarded signals, they are still much smaller
than the intrinsic ellipticities of galaxies with, ~ 0.2—0.4. Furthermore, as discussed in Section 3,
the observed images experience the influences of teles@iios and atmospheric disturbances for
ground based observations. Such PSF effects must be d¢praefudeled in order to obtain accurate
weak-lensing signals for high precision cosmological &sid

Extensive studies have been done to discuss the toleraret®fe¢he systematic errors in shape
measurements, focusing on cosmic shear two-point coioel§power spectrum) analyses (e.g.,
Amara & Réfrégier 2008; Chang et al. 2013; Massey et al3201

Figure 27 shows the bias on the dark energy equation-ad-g@tameterv induced by the
additive (left) and multiplicative (right) errors in shapgeasurements (Massey et al. 2013). Here
the baseline Stage IV survey 1% 000 deg® with ng = 30 arcmin 2 and a median redshift of.
The source galaxies are split int0 redshift bins in the tomographic weak-lensing power speatr
analyses. The effects of the errors on shear measurementeriden in the form ofy = (1 +
m)y + ¢ where4 and~ are the measured and the true shear signals, respectiaelyp @and ¢
represent the multiplicative and additive errors, regpelst Correspondingly, the measured cross-
power spectrum between redshift binggtandzg is written as

C(l,za, 2B) = [1 + M(1, za, ZB)}C(Z, za,28) + A(l, za, 2B) -

The quantitiesA and M in the plots are defined, respectively, by

A= [ a/2m) /lmax A1, 24, 28)[d 1] /N

Zbins min

lmax
M = [2(1/%)/ |Jv1(l,2A,zB)|12d1nl}/NM,
Zbins min
with

Na =Ny = [ - (1/27) /l Pdinl]

Lins
Zbins min
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Fig. 27 Bias onw, the equation-of-state parameter of dark energy, indugebeadditive feft) and
multiplicative (ight) errors for shape measurements, reproduced from fig. 3 isd&feast al. (2013).
Each black point shows the result for a random realizatigysfematics with a unique dependence
on angular scale and redshift. The dotted lines show thdtsesith constant shear measurement
systematics. The solid lines show limiting values inclgd®%% and99% of random realizations.
Printed with permission from the authors and by permissfddxdord University Press on behalf of
The Royal Astronomical Society.

(Massey et al. 2013). It is seen that in order to control tlas ko be less tham31o with o being the
statistical error, we requird < 3.5 x 102 if M = 0andM < 8.0 x 102 if A = 0. Considering
the coexistence ol and M, the requirements fad and M should be tighter by a factor of two or
so (Massey et al. 2013).

The accuracy of the galaxy shape measurements depends BSFEh@odeling, corrections for
other non-convolutive errors, and image processing algos. Tremendous efforts have been made
to evaluate the performances of different shape measutensthods. A number of challenging pro-
grams have been conducted based on simulated data withsigecomplications that resemble real
observations, including the STEP (Heymans et al. 2006; Bassal. 2007), GREAT08 Challenge
(Bridle et al. 2009, 2010), GREAT10 Challenge (Kitching et2®11, 2012, 2013) and the current
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ongoing GREAT3 Challenge (Mandelbaum et al. 2014). Stusjieific to different surveys have
also been carried out (e.g., Chang et al. 2013). The genemnalusion from these investigations is
that the accuracies achieved by the best shape measurdgmiithans currently available are not
fully sufficient for the realization of the statistical ponfer Stage IV surveys, although they are not
pessimistically far from the requirements (e.g., Kitch@@l. 2012; Chang et al. 2013; Massey et al.
2013). Further careful studies are intensively ongoingl, iais believed that by the time or even
before the Stage IV projects are in place, systematic eimaisape measurements can be controlled
well and they should not be major obstacles for high precisieak-lensing cosmological studies
(e.g., Massey et al. 2013; Mandelbaum et al. 2014, and refesgtherein).

Because lensing effects are sensitive to positions of brackgl galaxies, another important
source of errors for precision weak-lensing studies comues fincertainties in the redshift informa-
tion for faint source galaxies. In particular, tomographiEak-lensing analyses by dividing source
galaxies into multiple redshift bins can significantly bbiie amount of cosmological information
compared to 2D analyses, and have become one of the key partak-lensing studies for fu-
ture surveys (e.g., Hu 1999; Schrabback et al. 2010; Benjamnal. 2013). For that, we need to
measure the redshift for every single source galaxy. Oioigiaccurate spectroscopic redshifts for
individual galaxies is infeasible even for the current gatien of weak-lensing surveys involving
a few million source galaxies, needless to say for futurg&td and Stage IV surveys targeting
hundreds of millions to a few billion galaxies with mean reiftsclose toz ~ 1 or higher. Therefore
photometric redshift (phote) determinations from multi-filter photometry become a rssegy part
of weak-lensing surveys. Photomeasurements rely on the characteristic SED features akgal
ies. Their precisions depend on the observed waveleng#ragg, filter sets, photometric accuracy,
our understanding about the physical properties of gadakieghe sample and so on (e.g., Abdalla
et al. 2008; llbert et al. 2009; Hildebrandt et al. 2012).f&ént algorithms have been developed
for photo= determination, either based on template fitting or on setsaafing data with known
spectroscopic redshifts (e.g., Hildebrandt et al. 201Qjala et al. 2011; Dahlen et al. 2013). The
specific choice of the templates and training data can alsodunce errors to the determination
of photo+ if they are not representative for the considered galaxypsesr(e.g., Abrahamse et al.
2011).

Because the errors in photodeterminations are inevitable, their impacts on weakH®&nsos-
mological studies are then among the issues in the field teabfanost concern. The systematic
bias of photos z, with respect to the true redshiff, .., the scatter ofz, — zspec), @and the fraction
of outliers with largez, — zspec|, OF more completely, the distribution ¢f;,, — zspec), depend on
measurements of photo-f we precisely know the bias and the outlier fraction, tkhaw in principle
be included in the modeling and thus be potentially coridetalhe scatters contribute to statisti-
cal errors in cosmological parameter constraints, and strahns increase relatively mildly with the
increase of scatters in photote.g., Ma et al. 2006; Zhan 2006; Newman et al. 2013). More ser
ously, the uncertainties in the bias, the scatter and tHeptraction, namely errors on errors, can
significantly degrade constraints on the cosmologicalrpatars. Studies show that in order to limit
the degradation of constraints on the dark energy parasetdre less thaih.5, these uncertainties
need to be known to a precision better than0—3 (e.g., Ma et al. 2006; Ma & Bernstein 2008; Sun
et al. 2009; Bernstein & Huterer 2010; Hearin et al. 2010)s Taquires high-quality calibrations of
photo=. Direct calibrations using spectroscopically determirestbhifts demand an order td® for
spectroscopic redshifts spanning the redshift range ofdhsidered photometric sample (e.g., Ma
& Bernstein 2008; Hearin et al. 2010). The sample variandbe@Epectroscopic data can introduce
additional effects on calibration of photoand needs to be carefully taken into account when design-
ing spectroscopic follow-up surveys (e.g., Cunha et al220hvolving cross-correlation techniques
through galaxy clustering can provide self-calibratioosghotoz and thus mitigate the stringent
requirements for spectroscopic redshift measuremeigts Zhan 2006; Newman 2008; Zhang et al.
2010; Newman et al. 2013; Rhodes et al. 2013, and referehessin).
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Apart from observational uncertainties, different askrggical effects can also impact weak-
lensing cosmological studies. Accurate understandingnaodeling of the nonlinear evolution of
LSSs and baryonic effects are highly desired for extendirgahalyses to small scales where weak-
lensing effects are significant (e.g., Zhan & Knox 2004; et Takada 2005; Jing et al. 2006;
Kitching & Taylor 2011; Takahashi et al. 2012; Hearin et &112; Yang et al. 2013a; Zentner et al.
2013; Semboloni et al. 2013). The intrinsic alignments dagias, arising from either the physical
connection of close pairs of galaxies or the lensing effettsreground halos on background galax-
ies, can considerably contaminate the cosmic shear ctiorelanalyses (e.g., Hirata et al. 2007;
Joachimi et al. 2013; Heymans et al. 2013). On the other hthede effects themselves carry im-
portant information about the astrophysical processegea®lto galaxy formation. With a proper
understanding and modeling for their characteristic betigaythe intrinsic alignments of galaxies
can potentially be separated from weak-lensing effects tlhns their systematic effects on cosmo-
logical parameter determinations can be significantly ceduMoreover, such an approach can also
provide constraints on the intrinsic alignments, and tfegesprobe the galaxy formation simultane-
ously from weak-lensing observations, though at a costmwiesehat losing statistical accuracy (e.g.,
King & Schneider 2003; Fan 2007; van den Bosch et al. 2013;eMbral. 2013; Heymans et al.
2013).

It should be emphasized that the impacts of observatiorzgtoophysical effects can be different
for different weak-lensing analyses. Most of the above meaet requirements, e.g., the accuracy of
shape measurement and of phet@re derived from two-point correlation/power spectrundsts.
Other statistical quantities, such as higher-order catiis, g-g lensing and peak abundance, may
require different systematic controls. To fully realize thower of future large weak-lensing sur-
veys, careful investigations of systematic effects fofedént weak-lensing studies are needed. Joint
analyses of multiple statistical quantities related to kvieasing should be helpful to diagnose the
possible existence of systematic effects, and furtherdoage their impacts on cosmological studies
(e.g., Weinberg et al. 2013b).

In this paper, we focus our discussions on weak-lensingrsigaals obtained by accurately
measuring shapes of faint galaxies. However, they are eairity observables related to weak lens-
ing. Weak-lensing magnification can affect the observeel $iax and therefore the number density
of background objects (e.g., Bartelmann & Schneider 206ang & Pen 2005; van Waerbeke 2010;
Bauer et al. 2011; Mao et al. 2012; Morrison et al. 2012; Foad.2014; Yang et al. 2013b). Higher
order weak-lensing effects, such as flexion, can reveal aetagled structures about the distribution
of dark matter (e.g., Goldberg & Bacon 2005; Bartelmann.€2@&l3; Er & Bartelmann 2013; Rowe
et al. 2013). Compared with other cosmological probes, tligpbtential of weak-lensing cosmo-
logical studies is far from being achieved by current obsgons. Future large surveys will bring
weak-lensing analyses to the central stage of cosmolosgfigeles. The complete matrix involving
different weak-lensing observables and statistical a®adywill be in place, which is expected to
greatly improve our understanding about the dark side obthigerse.
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