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Abstract Arising from gravitational deflections of light rays by large-scale struc-
tures in the Universe, weak-lensing effects have been recognized as one of the most
important probes in cosmological studies. In this paper, wereview the main progress
in weak-lensing analyses, and discuss the challenges in future investigations aiming
to understand the dark side of the Universe with unprecedented precisions.
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1 INTRODUCTION

The tremendous advance in astronomical observations has led to the emergence of a concordance
cosmological model, in which dark matter and dark energy account for about23% and72%, re-
spectively, of the total energy budget of the Universe (e.g.Spergel et al. 2003; Komatsu et al. 2011;
Planck Collaboration et al. 2013a). Understanding the darkside of the Universe has thus been one of
the most fundamental challenges in scientific research. Theproperties of dark matter and dark energy
affect the global expansion behavior of the Universe and theformation and evolution of large-scale
structures (LSSs). Therefore constraints on the two dark components can be derived by accurately
measuring both (e.g., Weinberg et al. 2013b; Bauer et al. 2013). Gravitational in origin, weak-lensing
effects result from the light deflection by LSSs in the Universe. In addition, similar to ordinary opti-
cal lens systems, their observational effects also sensitively depend on the geometrical distances be-
tween observer, lens and source (e.g., Bartelmann & Schneider 2001). Thus weak-lensing effects are
closely related to both LSSs and the expansion history of theUniverse, and have been recognized as
one of the highly promising probes in cosmological studies (e.g., LSST Science Collaboration et al.
2009; Laureijs et al. 2011; Spergel et al. 2013; Weinberg et al. 2013a). Particularly, they are gravity
induced and can reveal the underlying large-scale dark matter distribution much more directly than
other analyses, such as galaxy clustering (e.g., Anderson et al. 2012), X-ray (e.g., Rosati et al. 2002;
Peterson & Fabian 2006) or Sunyaev-Zeldovich effects (Sunyaev & Zeldovich 1970; Birkinshaw
1999), which are strongly affected by complicated gas physics.
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On the other hand, however, because they are very weak, it is extremely challenging to extract
weak-lensing signals from observations (e.g., Miller et al. 2013). Having been speculated to exist
even before the establishment of the general theory of relativity, not until the 1990s were the ex-
pected coherent shape distortions of background galaxies caused by weak lensing first seen around
massive foreground clusters of galaxies (Tyson et al. 1990). The cosmic shear signals from LSSs
were detected around the year 2000 (Bacon et al. 2000; Kaiseret al. 2000; Van Waerbeke et al.
2000; Wittman et al. 2000). Since then, weak-lensing studies have rapidly developed, and become
an important area of research in cosmology (e.g., Fu et al. 2008; Heymans et al. 2012; Erben et al.
2013; Hoekstra et al. 2013).

In this paper, we present an overview of the current status ofweak-lensing studies and discuss
their future prospects in the era of precision cosmology. The rest of the paper is organized as follows.
We outline the theoretical basics for weak-lensing effectsin Section 2. In Section 3, we describe
the observational procedures for measuring weak-lensing shear signals. Cosmological applications
of weak-lensing effects are presented in Section 4, including studies on the mass distribution of
individual clusters of galaxies, cosmic shear correlationanalyses, weak-lensing peak statistics and
galaxy-galaxy lensing analyses. Discussions are contained in Section 5. We use the the speed of light
c = 1 throughout the paper.

2 BASICS OF THE WEAK GRAVITATIONAL LENSING EFFECT

In the theoretical framework of general relativity, the inhomogeneous matter distribution in the
Universe induces perturbations in the spacetime metric, and therefore affects the moving path of
particles therein including those of photons (e.g., Schneider et al. 1992). Such light deflections by
intervening LSSs can change the appearance of background sources. When light rays pass through
central regions of foreground galaxies or cluster of galaxies, strong-lensing effects can occur, gener-
ating multiple/highly distorted images of a background source. For most of the Universe, however,
the lensing effect is weak, and only leads to a tiny shape distortion and magnitude change for a back-
ground source. This is referred to as the weak-lensing effect, which can only be studied statistically
by observing a large number of background sources (e.g., Bartelmann & Schneider 2001). Here we
summarize the basic theory of the gravitational lensing effect, particularly for the weak-lensing ef-
fect. Before that, we first introduce the standard model for the evolution of the background and the
perturbed Universe on the basis of the theory of general relativity.

2.1 Background Universe

For the background Universe without perturbations, its spacetime can be described by the following
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = dt2 − a2(t)
[

dχ2 + f2
K(χ)dθ′2

]

, (1)

wherea(t) is the cosmic scale factor that is related to the redshift bya0/a = 1+z,χ is the comoving
radial distance, anddθ′2 represents the solid angle element. The functionfK is given by

fK(χ) =











K−1/2 sin(K1/2χ) if K > 0 ,

χ if K = 0 ,

(−K)−1/2 sinh[(−K)1/2χ] if K < 0 ,

(2)

whereK = constant is related to the spatial curvature of the Universe.
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In the theory of general relativity,a andK are determined by the matter composition of the
Universe through the following Friedmann equations

(

ȧ

a

)2

+
K

a2
=

8πG

3

∑

i

ρi , (3)

ä

a
= −4πG

3

∑

i

(ρi + 3pi) , (4)

where the dot symbol is for the derivative with respect tot, andρi andpi denote the energy den-
sity and the pressure of theith component, respectively. Without considering the coupling between
different components, we have from Equations (3) and (4)

d(a3ρi) = −pida
3. (5)

In the fluid approach, the physical properties of different components in the Universe are often
described by the corresponding equation of state in the formp = wρ, wherew is the equation-of-
state parameter. For the matter component including the cold dark matter and the baryonic matter
after photon-baryon decoupling, we takew = 0. For the radiation component,w = 1/3. For the dark
energy component that drives the accelerating expansion ofthe Universe,w < −1/3 is required
wherew can change with time (redshift). For the cosmological constant, the equivalentw = −1.
From Equation (5), we have in general

ρi = ρ0 exp

{

− 3

∫ a

a0

da
1 + wi(a)

a

}

, (6)

where the subscript ‘0’ denotes the present value at redshift z = 0. Thereforeρm ∝ a−3 for the
matter component,ργ ∝ a−4 for the radiation component, andρΛ = constant for the cosmological
constant term.

With the Hubble parameter defined asH(a) = ȧ/a, the critical density of the Universe
ρcrit(a)= 3H(a)2/(8πG), and the dimensionless energy density parameterΩi(a) = ρi(a)/ρcrit(a),
Equation (3) can be written as

H(a)2 = H2
0

[

∑

i

Ωi

(

ρi(a)

ρi0

)

+ ΩK

(

a2
0

a2

)]

, (7)

whereΩK = 1 − Ωtot = 1 − ∑

i Ωi. To be consistent with the convention in literature, here we
useΩi without the subscript ‘0’ for the present dimensionless density of componenti, andΩi(a)
for the corresponding quantity at timea. It is seen that a different energy composition leads to
different evolutionary behavior ofa(t). Therefore by accurately measuring the expansion history of
the Universe, we can possibly tell what our Universe is made of, and further probe the nature of dark
matter and dark energy.

Figure 1 showsa(t)/a0 for different cosmological models withH0 fixed, wherea0 is the scale
factor at present. The horizontalx-axis is fort/t0 with t0 being the age of the flatΛCDM model
with Ωm = 0.3 andΩΛ = 0.7. We chooset = 0 at present. Thus the corresponding age of a model
can be read out by−xi × t0 wherexi is the x-value ata = 0. For dynamical dark energy models,
here we consider two cases, one with a constant equation-of-state parameterw = −0.7, and the
other withw(a) = w0 +wa(1− a) and(w0, wa) = (−0.9,−1.1), respectively. We can see that the
past expansion history of the model with(w0, wa) = (−0.9,−1.1) (black) is very similar to that of
theΛCDM model (blue). Indeed, both of the models can fit the current cosmological observations
well (Planck Collaboration et al. 2013a). On the other hand,the future evolutionary paths of the two
models are very different. For(w0, wa) = (−0.9,−1.1), because(1 − a) < 0 for the future,w(a)
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will eventually become positive and thus lead to a deceleration of the Universe. It should be noted,
however, that the behaviors att > 0 (future) are shown purely for illustrative purposes, and the form
of w(a) used here may not be physically valid to describe the equation of state of dark energy in
future times. Nonetheless, we see that the properties of dark energy strongly affect the evolution of
the Universe.

Now we turn to the definition of distances. In a cosmological context, different measurements
give rise to different distances. By comparing the energy oflight rays we receive with the energy
emitted from a source, we get the luminosity distanceDL specifically defined as

D2
L =

L

4πF
, (8)

whereL is the luminosity emitted by the source andF is the flux received by the observer. The
measurements ofDL involve standardizable candles, such as Cepheid variable stars from the period-
luminosity relation, spiral galaxies using the Tully-Fisher relation and Type Ia supernovae (SNeIa).
On the other hand, the measurement of angular extensionδA of a physical scaleXA leads to the
angular diameter distanceDA defined as

DA =
XA

δA
. (9)

In a time-evolving Universe, these two distances are not thesame but related to each other by the
distance duality relationDL = (1 + z)2DA. BothDL andDA are related to the comoving radial
distanceχ that light rays propagate. Considering a source at redshiftz1 and an observer at redshift
z0, the light rays travel following the null geodesics withds2 = 0, i.e., dt = −a(t)dχ with the
minus sign chosen corresponding toχ = 0 at the observer’s location. We then have

dχ = −dt
a

= −da
aȧ

= − da

a2H(a)
=

1

a0H0

dz

E(z)
, (10)

where we have used the relation1 + z = a0/a andE(z) = H(z)/H0. Thus

χ(z0, z1) =
1

a0H0

∫ z1

z0

dz

E(z)
. (11)

For a cosmological model consisting of matter, radiation and dark energy, from Equation (7), we
have

E(z) =

√

Ωm(1 + z)3 + Ωγ0(1 + z)4 + ΩDE exp
[

3

∫ z

0

dz′
1 + wDE(z′)

1 + z′
]

+ ΩK(1 + z)2 . (12)

The angular diameter distanceDA is then given by

DA = a(z1)fK[χ(z1, z0)] =
a0fK[χ(z1, z0)]

1 + z1
, (13)

wherefK is called the comoving angular diameter distance and is given in Equation (2).
In Figure 2, we showDA for the same set of cosmological models as that shown in Figure 1.

We will see later that the lensing effect depends on the angular diameter distances from the observer
to the lens, to the source and between the lens and the source,and therefore sensitively depends on
the expansion history of the Universe.
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Fig. 1 The scale factora/a0 for different cosmological models. The horizontalx-axis ist/t0 where
t0 is the present age of the flatΛCDM model withΩm = 0.3 andΩΛ = 0.7. We chooset = 0 for
the present time.
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Fig. 2 The angular diameter distance for different cosmological models in units ofh−1 Mpc.

2.2 Perturbed Universe

While it is homogeneous and isotropic on very large scales, the Universe is full of structures on
scales less than a few hundred Mpc. These LSSs arise from primordial perturbations generated in
the inflationary epoch, which have been amplified with the evolution of the Universe (e.g., Dodelson
2003). In the concordance cosmological model, the dark matter component plays the dominant role
to gravitationally lay the skeleton of LSSs. The baryonic matter component then falls into the po-
tential wells and goes through complex processes, such as heating and cooling, to eventually form
luminous objects observable to us (e.g., Mo et al. 2010). Theinhomogeneous matter distribution
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related to LSSs perturbs the light propagation and leads to the gravitational lensing effects (e.g.,
Schneider et al. 1992).

To describe the perturbed Universe, we adopt the conformal Newtonian gauge in which the
spacetime metric can be written as (e.g., Dodelson 2003)

ds2 =
[

1 + 2Φ(x)
]

dt2 − a2
[

1 + 2Ψ(x)
][

dχ2 + f2
K(χ)dθ′2

]

, (14)

whereΦ andΨ reflect the perturbations on the metric from the inhomogeneous matter distribu-
tion. The quantityΦ has a similar meaning as a gravitational potential in Newtonian theory, and
Ψ represents perturbations to the spatial curvature of the Universe. In weak-lensing studies, we are
mainly interested in the late evolutionary stage of the Universe where the matter component signif-
icantly dominates over the radiation component. Thus in thetheory of general relativity neglecting
the anisotropic stress, we haveΨ = −Φ. For subhorizon matter perturbations, the potential satisfies

∇2Φ(x) = 4πGa2ρ̄mδ(x) , (15)

whereδ(x) = [ρm(x)− ρ̄m]/ρ̄m with ρ̄m being the background matter density of the Universe. It is
noted that Equation (14) and Equation (15) hold even in the nonlinear regime of matter perturbations
with δ ≫ 1 as long as|Φ| ≪ 1 and|Ψ| ≪ 1 (e.g., Ishibashi & Wald 2006).

For the perturbation fieldδ(x), it can be expressed in terms of its Fourier modesδ(k) with

δ(x) =

∫

d3k

(2π)3
exp(ik · x)δ(k) . (16)

The power spectrum is defined asP (k) = |δ(k)|2, representing the spatial characteristics of the
perturbation field at different scales. For a statisticallyhomogeneous and isotropic perturbation field,
P (k) = P (|k|), it is related to the two-point correlation functionξ(r1, r2) = ξ(|r1 − r2|) of the
field by

ξ(|r1 − r2|) =

∫

d3k

(2π)3
exp[ik · (r1 − r2)]P (|k|) . (17)

It is known that the statistical properties of a Gaussian random field can be fully described by
its two-point correlation function (power spectrum) (e.g., Bardeen et al. 1986). For the standard
paradigm of structure formation in the Universe, the matterinhomogeneity is seeded in the inflation-
ary epoch and the primordial perturbation field can be well described by a Gaussian random field.
The evolution of the perturbation fieldδ depends on cosmological models. In the early stage of the
Universe,δ is small and its evolution follows the linearized dynamicalequations and the Gaussianity
of δ is preserved. Therefore the power spectrum of linear density perturbations plays an important
role in cosmological studies. It is generally written as

P (k, a) = Pi(k, ai)T
2(k, a)G2(a)/G2(ai) , (18)

wherePi(k, ai) is the primordial power spectrum at very early timeai, andT (k, a) is the transfer
function that describes the scale-dependent evolution of perturbations since the epoch of horizon
crossing to the stage when the perturbations of different scales start to evolve similarly afterwards.
The overall increase of the perturbations is then represented by the linear growth factorG(a). For
Pi, it can be written as a power law withPi(k) ∝ kns . ForT (k, a), it depends on the matter content
of the Universe and can be accurately calculated given a cosmological model (e.g., Eisenstein &
Hu 1999; Lewis et al. 2000). For the linear growth factor in the late stage, we have, from the linear
dynamical equations (e.g., Dodelson 2003),

d2G

da2
+

(

d lnH

da
+

3

a

)

dG

da
− 3ΩmH

2
0

2a5H2
G = 0 . (19)
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It is seen that the behavior ofG(a) depends on the expansion history of the Universe, which is in
turn governed by the matter composition of the Universe.

Figure 3 showsG(a) for different cosmological models by solving Equation (19)under the
initial conditions withG(ai) = ai anddG/da|ai

= 1 with ai = 0.01. Its model dependence is
clearly seen. We should note that the values ofG shown in Figure 3 are arbitrarily normalized toai

for different models.
For the amplitude of the power spectrum, it is often represented by the quantityσ8, the rms

of the extrapolated linear perturbations smoothed over thetop-hat smoothing scale of8 h−1 Mpc,
which is given by

σ2
8 =

∫

d3k

(2π)3
P (|k|, a0)W

2(kRTH), (20)

whereW (kRTH) is the Fourier transform of the top-hat smoothing function and the smoothing
scaleRTH = 8 h−1 Mpc. It is seen that to fully specify the linear power spectrum of perturbations,
we need to knowns andσ8 in addition toΩm, ΩDE andwDE. Furthermore, different properties
of different types of matters, baryonic or cold/warm/hot dark matter, affect the transfer function
differently. Therefore we also need the information about,e.g., the baryonic contentΩB, neutrino
mass and so on.

Put another way, cosmological observations on LSSs and the expansion history of the Universe
can thus set constraints on these important cosmological parameters and further reveal the nature of
dark matter and dark energy as well as the physics driving inflation in the early Universe. Current
observations show that for a flatΛCDM model withΩm+ΩΛ = 1 andwDE = −1, we haveΩmh

2 =
0.1426 ± 0.0025, ΩBh

2 = 0.02205 ± 0.00028, ns = 0.9603 ± 0.0073 andσ8 = 0.829 ± 0.012
(Planck Collaboration et al. 2013a). Without the prior on the flatness, the curvature of the Universe
is constrained to beΩK = 0.0005+0.0065

−0.0066, i.e., our Universe is nearly flat to a very high precision
(Planck Collaboration et al. 2013a). Meaningful constraints on the properties of neutrinos, including
their total mass and the effective number of species, have also been derived, demonstrating the great
power of cosmological observations that are highly complementary to particle physics experiments
(e.g., Li et al. 2009a; Komatsu et al. 2011; Planck Collaboration et al. 2013a). For the nature of dark
energy, the cosmological constant can fit well with current observations. However, the allowed range
for dynamical dark energy models is still large (e.g., Zhao &Zhang 2010; Weinberg et al. 2013b).
Future cosmological observations will target constraintswith much improved precision in order to
better understand our Universe (e.g., LSST Science Collaboration et al. 2009; Laureijs et al. 2011;
Spergel et al. 2013). For that, weak-lensing effects are expected to play crucial roles as one of the
most promising probes (e.g., Fu et al. 2008; Li et al. 2009a; Kilbinger et al. 2013; Simpson et al.
2013; Fu et al. 2014) .

In the above, we discuss linear density perturbations. For structure formation to occur, however,
nonlinear gravitational interactions are strong on scalesof a few Mpc or less (e.g., Mo et al. 2010).
For weak-lensing effects on arcmin scales, the signals are dominantly contributed by nonlinear struc-
tures. Therefore we have to go beyond linear perturbations (e.g., Kilbinger et al. 2013). Fortunately,
fast developments in numerical simulations allow us to trace the nonlinear gravitational evolution of
structure formation rather accurately (e.g., Springel et al. 2005; Sato et al. 2009; Hilbert et al. 2009;
Harnois-Déraps et al. 2012). With these nonlinear interactions, couplings occur between different
Fourier modes. The statistics of density perturbations show significant non-Gaussianity, and the
power spectrum/two-point correlation function alone cannot reveal all their properties. Nonetheless,
the power spectrum is still a very important quantity directly related to the lowest order correlation
analyses. Extensive studies have been done to understand the nonlinear evolution of density pertur-
bations. Different methods calibrated with numerical simulations have been proposed to calculate
the nonlinear power spectrum (e.g., Peacock & Dodds 1996; Smith et al. 2003; Lewis et al. 2000).

Figure 4 presents the extrapolated linear power spectrum and the nonlinear power spectrum of
density perturbations atz = 0 calculated by CLASS (Blas et al. 2011) for different cosmological
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10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

k [(h/Mpc)]

P
δ
(k

)
[(
h
−

1
M

p
c)

3
]

 

 
Ωm = 0.3,ΩΛ = 0.7
Ωm = 1.0,ΩΛ = 0.0
Ωm = 0.3,ΩΛ = 0.0
Ωm = 0.3,ΩDE = 0.7, w0 = −0.7
Ωm = 0.3,ΩDE = 0.7, w0 = −0.9, wa = −1.1
linear
non-linear

Fig. 4 The linear (solid lines) and nonlinear (dashed lines) power spectrum for different cosmologi-
cal models calculated from the CLASS package (Blas et al. 2011) (see alsohttp://class-code.net). For
all the models, the power amplitude of the primordial curvature perturbations atk0 = 0.002 Mpc−1

is set to beAs = 2.1 × 10−9 and the power index isns = 0.96.

models. It is seen that the nonlinearity considerably enhances the small-scale power, leading to
significant effects on weak-lensing signals as we will see later.

2.3 Weak Lensing Effects

We now turn to weak-lensing effects. We start from a Schwarzschild lens (i.e., a point-mass lens)
of massM (e.g., Schneider et al. 1992; Bartelmann & Schneider 2001).A light ray from a distant
source reaches the observer along the directionβ with respect to a chosen optical axis in the case
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Fig. 5 A schematic configuration of a Schwarzschild lens system. Adapted from Schneider et al.
(1992).

of no gravitational lens in the path. With a lens, the ray is deflected when it passes by the lens, and
the deflection angle is known to bẽα = (4GM)ξ/|ξ|2 (notec = 1 is used), twice that obtained by
the Newtonian theory of gravity. Here|ξ| is the impact parameter satisfying|ξ| ≫ Rs = 2GM with
Rs being the Schwarzschild radius. The observer then sees the light ray from the directionθ. The
configuration of the system is schematically shown in Figure5, whereDs, Dl andDls denote the
angular diameter distances from the observerO to the sourceS, to the lens, and between the lens
and the source, respectively. The mapping betweenθ andβ satisfies the following relation

Dsβ =
Ds

Dl
ξ −Dlsα̃(ξ) , (21)

and withξ = Dlθ, we have

β = θ − Dls

Ds
α̃(Dlθ) = θ − α(θ) , (22)

where the scaled deflection angleα is defined asα = (Dls/Ds)α̃. The above equation is often
referred to as the lens equation.

For a lens with a mass distribution ofρ(r), if the light deflection is much smaller than the charac-
teristic scale on which the mass density changes appreciably, the thin-lens description is an excellent
approximation. In such a case, the total deflection angle canbe written as the linear summation of
the deflections from different mass elements along a straight line within the lens, and is given by
(e.g., Bartelmann & Schneider 2001)

α̃(ξ) = 4G

∫

d2ξ′Σ(ξ′)
ξ − ξ′

|ξ − ξ′|2 , (23)

whereΣ(ξ) is the surface mass density of the lens projected along the line of sight and

Σ(ξ) =

∫

dx3ρ(ξ, x3) . (24)

The corresponding scaled deflection angleα is

α(θ) =
1

π

∫

d2θ′κ(θ′)
θ − θ′

|θ − θ′|2 , (25)
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whereκ(θ) = Σ(Dlθ)/Σcr is the dimensionless surface mass density of the lens calledthe lensing
convergence, and

Σcr =
1

4πG

Ds

DlDls
. (26)

By inspecting Equation (25), we can see thatα can be written as the derivative of a deflection
potential withα = ∇ψ, and the potential is given by

ψ(θ) =
1

π

∫

d2θ′κ(θ′) ln |θ − θ′| . (27)

The convergenceκ then satisfies∇2ψ(θ) = 2κ(θ).
With the lens equation and deflection angle, we can then analyze the lensing-induced image

change for a background source (e.g., Bartelmann & Schneider 2001). LetIS(β) andIO(θ) be the
original and the observed surface brightness of the source,respectively. Because the gravitational
light deflection does not change the surface brightness but only the propagation direction of a light
ray, we haveIO(θ) = IS [β(θ)]. For a source with a size much smaller than the characteristic
scale over which the lens properties significantly change, the lensing mapping can be approximately
written asβ(θ) = β0 +A(θ0)(θ − θ0) with the Jacobian matrix

A =
∂β

∂θ
=

(

δij −
∂2ψ(θ)

∂θi∂θj

)

=

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

, (28)

whereγ1 andγ2 are the two shear components with

γ1 =
1

2

(

∂2ψ

∂2θ1
− ∂2ψ

∂2θ2

)

, γ2 =
∂2ψ

∂θ1∂θ2
. (29)

We then see that lensing effects can change the appearance ofa source. A circular isophote of a
source is distorted into an ellipse with the axial ratio determined by the two eigenvalues of the
Jacobian matrixA of Equation (28). Specifically, the axial ratio is given by

r =
1 − κ− |γ|
1 − κ+ |γ| =

1 − |g|
1 + |g| , (30)

where|γ| =
√

γ2
1 + γ2

2 , andgi = γi/(1−κ) is called the reduced shear. If the shearγ = 0, no shape
distortions occur. On the other hand, it is noted that it is the reduced shearg that is directly related to
the lensing induced shape distortions. The lensing effectsfrom a spherically overdense/underdense
region tend to shear the background sources tangentially/radially with respect to the center of the
region.

Besides the shape distortion, lensing effects also change the cross section of a light bundle
resulting in a flux change of the observed image compared to the case of no lensing effects. This is
represented by the magnification factorµ given by

µ =
1

detA
=

1

(1 − κ)2 − |γ|2 . (31)

The value|µ| > 1 (< 1) indicates a brightening (dimming) effect from lensing, andµ can be either
positive (positive parity) or negative (negative parity) (e.g., Schneider et al. 1992).

In central parts of galaxies or clusters of galaxies, lensing effects are strong and apparent.
Multiple images or heavily distorted giant arc-like imagesof background sources can occur (e.g.,
Walsh et al. 1979; Soucail et al. 1987; Lynds & Petrosian 1989; More et al. 2012; Inada et al. 2012;
Kneib & Natarajan 2011, and the references therein). By accurately measuring the position, lumi-
nosity and shape of the images, one can effectively derive constraints on the mass distribution for the
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central part of the lens (e.g., Courteau et al. 2014; Hoekstra et al. 2013). For most of the Universe,
however, the lensing effects are weak withκ ≪ 1 and|γ| ≪ 1. Thus the weak-lensing effect, the
main topic of this paper, is directly associated with LSSs inthe Universe and is potentially very
powerful in cosmological studies.

The drawback of weak-lensing studies is that it is impossible to detect the weak-lensing effect
from a single background source given that the intrinsic ellipticities of galaxies are much larger
than the lensing-induced shape distortions and their intrinsic luminosities are not known. Statistical
analyses that come from observing a large number of background sources are thus necessary (e.g.,
Heymans et al. 2012). For weak-lensing studies with shape measurements of background galaxies,
the noise from random intrinsic ellipticities can be suppressed by averaging over a number of galax-
ies. The residual noise is on the level ofσǫs/

√

ngθ20 whereσǫs is the dispersion of the intrinsic
ellipticity of background galaxies,ng is their surface number density used in the weak-lensing anal-
yses, andθ0 is the typical scale we are interested in. The termngθ

2
0 corresponds to the number of

galaxies over which the average is calculate. Forσǫs ∼ 0.3 andng ∼ 10 arcmin−2, typical for the
current generation of observations, such as CFHTLenS (e.g., Erben et al. 2013), the residual noise
is∼ 0.1/θ0. To obtain a signal with signal-to-noise ratio (S/N) of∼ 3, we need the signal smoothed
over the angular scaleθ0 to be on the order ofγ ∼ 0.3/θ0. Takingθ0 ∼ 10′, for a typical angu-
lar scale of a massive cluster atz ∼ 0.2, the required signal isγ ∼ 0.03. Therefore for massive
clusters of galaxies withM ∼ 1015M⊙, we are able to individually study their mass distribution
through weak-lensing analyses. Increasingng by acquiring deeper observations can increase the
S/N. However even withng ∼ 50 arcmin−2, it would be very difficult to study the mass distribu-
tion individually for objects withM < 1013M⊙. On the other hand, stacking signals over a large
number of foreground lenses can effectively increase the number of background sources used in
weak-lensing analyses, and the noise level for the stacked signal is∼ σǫs/

√

Nlensngθ20 whereNlens

is the number of lenses in the stacking. This idea is underlying the so-called galaxy-galaxy lensing
technique, in which the stacked lensing signals around a large number of lens galaxies are detected
to study the average mass distribution for a sample of lens galaxies (e.g., Mandelbaum et al. 2006,
2013). This allows us to probe group-sized and even galaxy-sized dark matter halos statistically,
though not individually (e.g., Li et al. 2013; Gillis et al. 2013).

The above discussions focus on the single lens case, in whicha single object, such as a cluster
of galaxies, dominates the lensing signal along the considered line of sight. In general, however, all
the LSSs between a source and an observer contribute to the lensing effect. In order to accurately
calculate the lensing signal, in principle, we need to tracethe light deflections cumulatively along an
actual light path. This can be calculated from the geodesicsof a light ray in the perturbed Universe
(e.g., Schneider et al. 1992; Bartelmann & Schneider 2001).

The lensing equation is then given by (e.g., Bartelmann & Schneider 2001)

β(θ, χ) = θ − 2

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ)fK(χ′)
∇βΦ

[

β(θ, χ′), χ′
]

, (32)

whereχ is the comoving radial distance given in Equation (1),fK is the corresponding comov-
ing angular diameter distance given in Equation (2), andΦ is the 3D Newtonian potential given
in Equation (14). The multiple lens-plane method has been numerically developed in which the
continuous matter distribution between the source and the observer is discretized into multiple thin
lens-planes, and a light ray is only deflected when it reachesa lens-plane (e.g., Blandford & Narayan
1986; Jain et al. 2000; Hilbert et al. 2009). The total deflection is obtained by the summation of the
deflection at each lens-plane along the deflected light path.In the cosmic shear regime where the
lensing deflection is very weak, the Born approximation is anexcellent first-order approximation in
which the total deflection angle can be calculated along the unperturbed light path. Then the lensing
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equation can be simplified to (e.g., Bartelmann & Schneider 2001)

β(θ, χ) = θ − 2

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ)fK(χ′)
∇θΦ

[

fK(χ′)θ, χ′
]

. (33)

The corresponding Jacobian matrix is given by

Aij =
∂βi

∂θj
= δij − 2

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ)fK(χ′)

∂2Φ[fK(χ′)θ, χ′]

∂θi∂θj
. (34)

Then the effective convergenceκ is

κ =

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ)fK(χ′)
∇2

θΦ
[

fK(χ′)θ, χ′
]

, (35)

and the shearγ1 andγ2 are, respectively,

γ1 =

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ)fK(χ′)

{

∂2Φ[fK(χ′)θ, χ′]

∂θ21
− ∂2Φ[fK(χ′)θ, χ′]

∂θ22

}

, (36)

γ2 = 2

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ)fK(χ′)

{

∂2Φ[fK(χ′)θ, χ′]

∂θ1∂θ2

}

. (37)

From the 3D potentialΦ, we have

∇2
xΦ =

3H2
0Ωm

2a
δ(x) , (38)

where the subscriptx indicates the derivatives with respect to the linear coordinates rather than the
angular coordinates. Thus

κ =
3H2

0Ωm

2

∫ χ

0

dχ′ fK(χ− χ′)fK(χ′)

fK(χ)

δ[fK(χ′)θ, χ′]

a(χ′)
. (39)

It is seen thatκ is the weighted projection of the density perturbationδ along the line of sight. For
a sample of source galaxies with a redshift distributionps(z)dz = ps(χ)dχ, the effective lensing
convergence can be obtained by

κ =
3H2

0Ωm

2

∫ χH

0

dχ ps(χ)

∫ χ

0

dχ′ fK(χ− χ′)fK(χ′)

fK(χ)

δ[fK(χ′)θ, χ′]

a(χ′)
, (40)

whereχH indicates theχ value corresponding toz = ∞. By changing the order of the integrations,
the above equation can be written as

κ =
3H2

0Ωm

2

∫ χH

0

dχ′Ḡ(χ′)fK(χ′)
δ[fK(χ′)θ, χ′]

a(χ′)
, (41)

where the function̄G(χ′) is

Ḡ(χ′) =

∫ χH

χ′

dχ ps(χ)
fK(χ− χ′)

fK(χ)
. (42)

Under the Limber approximation (Limber 1954), the power spectrum of κ is then given by (e.g.
Bartelmann & Schneider 2001)

Pκ(l) =
9H4

0Ω2
m

4

∫ χH

0

dχ′ Ḡ
2(χ′)

a2(χ′)
Pδ

[

l

fK(χ′)
;χ′

]

, (43)
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Fig. 6 The lensing convergence power spectrum calculated from the3D linear (solid lines) and
nonlinear (dashed lines) power spectrum under the Limber approximation for different cosmological
models. The model parameters are the same as those in Fig. 4.

wherePδ[l/fK(χ′);χ′] is the power spectrum of density perturbationδ atk = l/fK(χ′) and at time
corresponding to the radial comoving distanceχ′. From Equation (36) and Equation (37), it is easy
to see that the power spectrum ofγ = γ1+iγ2 is the same asPκ. ThereforePκ is the crucial quantity
in cosmic shear two-point correlation analyses.

In Figure 6, we showl(l + 1)Pκ/(2π) for different cosmological models, where the solid and
dashed lines are calculated using the linear and nonlinearPδ, respectively. The source redshift is set
to bezs = 1. It is seen clearly that on arcmin scales, the nonlinear effects are dominant and greatly
boost weak-lensing signals.

3 OBSERVATIONAL WEAK-LENSING ANALYSES

Weak-lensing shear analyses depend crucially on accurate photometry for a large number of faint
galaxies. The development of large mosaics of CCD astronomical cameras opened a new era in
imaging surveys. The Sloan Digital Sky Survey1 (SDSS) is the most successful example that has
had a significant impact in astronomical studies. Its great success paved the way for new genera-
tions of deep optical and infrared surveys with ambitious scientific goals that were not achievable
for surveys with past Schmidt photographic plates. The Canada-France-Hawaii Telescope Legacy
Survey2 (CFHTLS) done with the MegaPrime/MegaCam instrument is thefirst second-generation
wide field survey project. It is also the first set of wide field observations that are optimized for very
deep photometry with sub arc-second seeing imaging and a long baseline for monitoring time series.
The instruments and the surveys have been designed to out-perform all similar projects and to pro-
duce outstanding data sets for studies of SNeIa, weak gravitational lensing and small moving bodies
in the Solar System. With further technological improvements, the third-generation of large-scale
surveys has been in operation. Some of them are specifically designed or are ideal for weak-lensing

1 http://www.sdss.org/
2 http://www.cfht.hawaii.edu/Science/CFHLS/



1074 L. P. Fu & Z. H. Fan

observations, such as the VST Kilo-Degree Survey3 (KIDS) and Dark Energy Survey4 (DES). The
huge amount of data expected from these large surveys require highly efficient and automatic data
reduction and analysis softwares.

In this section, we will briefly introduce the basics of data reduction for weak-lensing studies.
Three of the most popular softwares to achieve weak-lensingshear measurements from observa-
tional images will be presented. We will also describe weak-lensing simulations and discuss relevant
systematic uncertainties.

3.1 Data Reduction and Mask Creation

A CCD camera mounted on a telescope is a particle detector, with the associated readout electron-
ics and amplifiers. The sensitivity varies from pixel to pixel because the CCD is not illuminated
homogeneously. The raw data observed from a telescope cannot be used directly for scientific stud-
ies, and necessary data reduction processes have to be applied. For most of the publicly released
data, pre-precessing steps have already been performed. Pre-processing procedures consist of sub-
tracting master biases and darks, and normalizing images with master flats. BIAS exposure is an
image exposure in the shortest possible time with the shutter closed. It shows the electronic noise
and systematics of the camera, and has to be subtracted from the science exposures. DARK current
is caused by the high energy electrons related to the temperature of the camera itself. Therefore one
of the ways to reduce the effects of DARK current is to reduce the temperature of the camera. DARK

current is very noisy but usually very stable. It can be corrected by subtracting the expected DARK

current from pixels, which is estimated by the combination of a series of dark exposures. The other
important step in pre-processing is to normalize images with a master FLAT field, an exposure with
an area that is homogeneously illuminated. This is for correcting the inhomogeneous effects caused
by dust on the optical surfaces or/and the different quantumefficiencies of different pixels on the
CCD itself. The common way to get a FLAT field is to take an image of the sky at zenith a few
minutes after sunset and to choose an area that is free of gradients. It is necessary to take several flats
to reduce the calibration noise.

Further data processing includes astrometric calibration, field-to-field photometric rescaling, im-
age recentering, image resampling and warping, and finally image stacking and a specific masking
process. For a general survey, the SCIENCE images with preliminary astrometric position and pho-
tometry information are usually provided with the raw images by the data processing center. Here,
we briefly introduce the main issues related to data reduction: the image calibration and the stacking
process.

For an astrometric calibration of the image, the physical coordinate of each exposure has to
first be converted to the World Coordinate System (WCS). Then, the WCS coordinates of detected
objects are matched to an external catalog of reference objects. The astrometric calibration for the
whole image can thus be done using two-dimensional fitted distortion polynomials obtained by min-
imizing the differences between the detected objects’ WCS coordinates and those of the reference
catalog. The internal astrometric accuracy can achieve a level of 10% of a pixel. However, the exter-
nal accuracy is limited by the accuracy of the reference catalog. A reference catalog usually covers
the full sky containing objects with high S/N, such as brightstars with high positional accuracies.
Once the astrometric calibration is done, the next step is toperform the photometric calibration.
The instrumental fluxes are converted to “magnitude” in order to allow comparisons of photomet-
ric measurements between different exposures under various observing conditions or even between
different instruments. The zero-point corrections are done similarly to the astrometric calibration,
by minimizing the weighted quadratic sum of magnitude differences from overlapping detections of
the images. In principle, the accuracy and homogeneity should be improved if all available data are

3 http://www.astro-wise.org/projects/KIDS/
4 http://www.darkenergysurvey.org/
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Fig. 7 The explanation of image resampling: mapping of an input image onto a (fine) output image.

taken at the same time to do the astrometric and photometric calibrations. SCAMP5 is astrometric and
photometric calibration software specifically designed for large imaging surveys. It uses the input
catalogs and an external reference catalog (e.g., 2MASS, SDSS-R7, USNO) to compute accurate
astrometric and photometric calibrations. The astrometric solution is stored in an output WCS image
header.

Once the calibration for each exposure is done, the image coadding is the final step of data
reduction to get the SCIENCE image. For a telescope, the exposure time of a signal image (called
exposure) is limited by the telescope itself, usually a few minutes depending on the observational
band. To obtain a deeper image, a few to hundreds of exposuresof the same field are needed. They
are stacked together to produce one SCIENCE image. In order to have observations in the gap re-
gions between CCDs, different exposures are taken by shifting the center of the camera by a few
arcminutes (called dithering). Thus, an important step is to resample images, which is to map pixels
of individual exposures to a projected pixel grid. This projection is done by first oversampling each
image by a factor of two as shown in Figure 7. Images are then re-centered and resampled using
an interpolation kernel, e.g., the Lanczos interpolation kernel, to preserve the noise structure, and to
minimize artifacts on the interpolated image.

Before moving to the image coadding process, one can apply further image quality selection
criteria, e.g. discarding exposures with obviously bad qualities, such as poor seeing, bad telescope
tracking, and telescope defocusing, or with galaxy and starcounts strongly out of expectations. It is
also important to ensure homogeneity in the pointing level to avoid discarding too many exposures
in certain fields. The last step is to coadd all the resampled images that are weighted properly to
produce the final SCIENCE image. The coadding can be done by taking weighted mean or median
values of pixels from different exposures to ensure the bestrejection of satellite trails and cosmic
rays. During the coadding process, an additional WEIGHT-MAP image is produced, containing the
information about how often individual pixels are observedin the resampled images. This WEIGHT-
MAP is often used in object detections providing information about the S/N of different areas of
the image. The image resampling and coadding can be done using the public astrometric software
SWARP6.

An additional step in data reduction is to mask the regions that affect the accuracy of object
measurement, e.g., saturated stars and their bright halos,cosmic rays, bad pixels, regions with low
S/N in image boundaries and CCD gaps, etc. Masks can be generated by public automatic masking
softwares, e.g., automask7. However, it is essential to further check automatic masks and refine them

5 http://www.astromatic.net/software/scamp
6 http://www.astromatic.net/software/swarp
7 http://marvinweb.astro.uni-bonn.de/dataproducts/THELIWWW/automask.html
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manually, especially for regions with bright halos and low S/N in CCD gaps and the edges of the
image.

3.2 Shear Measurement Pipeline

As described in Section 2.4, the weak-lensing effect generates ellipse-like distortions for an observed
galaxy image. The ellipticity parameters of a galaxy can be written in the form of the complex ellip-
ticity e = e1 + ie2. In the weak-lensing regime, the estimate of the lensing shear signalγ can ideally
be obtained by averaging over the observed image ellipticities of a number of galaxies,γ ≈ 〈e〉. In
reality however, it is not easy to get an unbiased estimate ofshear signals. The observed shapes of
objects can be severely contaminated by the point spread function (PSF) caused by the complicated
telescope optics, the limited size of the mirror, etc. For ground-based observations, there are addi-
tional contaminations resulting from the turbulence of Earth’s atmosphere (seeing). Furthermore, the
images suffer from pixelization and inefficiency of charge transfer in the CCD itself. The contami-
nations to the measured shapes of objects consist of isotropic and anisotropic parts. The effects of a
seeing disk and the intrinsic size of the PSF circularize theobserved images leading to a reduction
in the amplitude of the inferred lensing signal. On the otherhand, an anisotropic PSF introduces dis-
tortions to the shapes of objects, which can mimic lensing signals and therefore introduce systematic
uncertainties in lensing shear analyses.

A shear measurement pipeline generally includes the following steps: object detection and sep-
aration from SCIENCE images, determination of the observed galaxy shapes, PSF estimation and
deconvolution (correction), and calculation of the inferred shear signals.

Galaxies used for weak-lensing analyses are distant background galaxies. The detection and
accurate shape determination of these faint objects are nota trivial task. One of the most widely
used software packages called SEXTRACTOR8 has been demonstrated to be able to achieve high
accuracies in object detections. It can be done either on individual exposures that have passed all the
data reduction processes and calibrations, or on a coadded image. The masks and WEIGHT-MAPS

are used to discard saturated stars and bad detections. Galaxies and stars need to be distinguished
from all other detections, and galaxy-star separation is often performed on the basis of the sizevs.
magnitude of objects. Stars are point-like objects with more or less uniform observed sizes mainly
due to the seeing disk. All detected objects with size largerthan the observed size of stars are marked
as galaxies, whereas the smaller ones are treated as noise.

The next step is to quantify the shape parameters for stars and galaxies in terms of their sizes,
the second and possibly higher moments of their light distributions. Stars are intrinsically point-
like objects, therefore their observed sizes and shapes arethe results of the effects of seeing and
PSF. A sample of moderately bright stars is most suitable forPSF estimations, because the flux
measurement for very bright stars can be biased, and faint stars may be contaminated by small and
faint galaxies. The variation of the PSF across the field of view can be significant. The central region
of a camera has much less, smooth contaminations, whereas the edge regions often have a stronger,
significantly varying PSF. Furthermore, for a wide-field camera with arrays of CCD chips, the PSF
varies from CCD to CCD. Those variations can be described approximately by an interpolating
function, typically a polynomial model. The accuracy of PSFcorrection is limited by the number of
stars used for the model fitting. It is important to choose a proper polynomial function to model the
spatial variations of the PSF across the instrument’s field of view.

Correction for contamination of the PSF is achieved by subtracting quantities related to the PSF
of stars from the ones of galaxies. This is the most difficult part in the shear measurement pipeline.
During the past decade, a number of techniques have been developed to correct PSF contamination.
Here we briefly review the three most commonly used ones that are applied in shear measurements.
The KSB+ is a deconvolution method that aims to remove the PSFeffects from observed galaxy

8 http://www.astromatic.net/software/sextractor
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images to obtain PSF-free images for lensing shear analyses. On the other hand, both the Shapelets
and thelensfit adopt a forward-modeling approach that convolves the model images with the PSF
and then directly compares the result with the observed galaxy images.

(1) KSB+
The KSB+ method (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998) is the
most widely used method in observations. The ellipticitye of an object is defined in terms of
the weighted quadrupole momentsQij (i, j = 1, 2) given by,

(

e1
e2

)

=
1

Q11 +Q22

(

Q11 −Q22

2Q12

)

; Qij =

∫

d2θW (θ) I(θ) θiθj
∫

d2θW (θ) I(θ)
. (44)

HereI(θ) is the measured surface brightness at the angular distanceθ from the center of the
object (chosen to be atθ = 0), andW (θ) is a weighting function that can be taken as Gaussian
with the scale length matched to the size, such as the half-light radius, of galaxies.

KSB+ estimates galaxy ellipticities under the assumption that the PSF distortion can be de-
scribed by a small but highly anisotropic distortion convolved with a large circularly symmetric
seeing disk. The ellipticity of a galaxyecor corrected for the anisotropic PSF distortion is given
by

ecorα = eobs
α − P sm

αβ qβ , (45)

whereq is the PSF anisotropy factor, andP sm is called the smear polarizability tensor that can
be calculated fromI(θ) of the galaxy and the applied weighting functionW (θ) (Hoekstra et al.
1998). Theq factor can be derived from the stars in the observed field. Sincee∗cor = 0 for stars,
we have

qµ = (P sm∗)
−1
µα e∗obs

α , (46)

where∗ denotes the quantities measured from stars. From the PSF-correctedecor, we then aim
to extract gravitational lensing shear signals. We can writeecor in terms of the pre-seeing shear
polarizability tensorP γ , the gravitational shearγ and the intrinsic source ellipticityes,

ecorα = esα + P γ
αβγβ . (47)

However, because only the post-seeing images are observable, we cannot directly obtain the
pre-seeing quantityP γ . Instead, we can calculate the post-seeing shear polarizability tensorP sh

from the observedI(θ) and the weighting functionW (θ). Then using stars in the field as a
calibrator, Luppino & Kaiser (1997) give the expression ofP γ as

P γ
αβ = P sh

αβ − P sm
αµ (P sm∗)−1

µδ P
sh∗
δβ , (48)

whereP sm∗ andP sh∗ are the stellar smear and shear polarizability tensors respectively. Under
the assumption that the intrinsic ellipticities of galaxies are randomly oriented and ignoring
intrinsic alignments, we have〈es〉 = 0. Then the KSB+ shear estimatêγ can be derived by
combining Equations (45-48), which is given by

γ̂α = (P γ)
−1
αβ

[

eobs
β − P sm

βµ qµ
]

. (49)

(2) Shapelets
The Shapelet technique is a convenient approach for weak lensing analyses, which has been
introduced by different literature, e.g. Refregier & Bacon(2003); Massey & Refregier (2005);
Kuijken (2006); Bernstein & Jarvis (2002); Nakajima & Bernstein (2007). In this method, a
complete and orthonormal set of 2D basis functions is constructed by the product of Gaussians
with Hermite or Laguerre polynomials. In principle, the linear combination of these basis func-
tions with proper weights is able to model any compact image,even irregular spiral arms. Such
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an approach is particularly efficient at modeling and deconvolving the PSF. The shear rota-
tion and magnification effects can be taken as the matrices acting on the shapelet coefficients.
Furthermore, the “shapelet” transform is able to filter out high frequency features such as noise
in a similar way as Fourier or wavelet synthesis.

We briefly review the shapelet formalism mainly from Kuijken(2006) as an example. The
shapelet decomposition fits an individual galaxy image as a sheared intrinsically circular source
contaminated by the PSF. The fitting of the observed image is written as the following formula

Gmodel = P · (1 + e1S1 + e2S2) · C , (50)

whereP is the PSF matrix,e1,2 are the two components of galaxy ellipticities andS1,2 are
the first-order shear operators. It is noted thate1,2 here include both the intrinsic ellipticities
of galaxies and the lensing shear signals. In other words, inthis approach, an elliptical source
with ellipticity e1,2 is regarded as a circular source that is sheared twice, first by the intrinsic
ellipticity of the source and then by the gravitational lensing shear. For the assumed circular
source of an arbitrary radial brightness profile, it can be expressed by the circular shapeletsC
in the form ofc0C0 + c4C

4 + ...., whereci are free coefficient parameters. The PSF matrix
P of each galaxy is obtained by interpolating the stellar PSF across the field of view to the
galaxy position. The best-fittingGmodel to the observed image yields the estimated ellipticity
distortions. The lensing shear signals can then be further obtained by, e.g., averaging over a
number of galaxies with proper weights (Kuijken 2006).

(3) lensfit
Lensfit is a Bayesian model-fitting approach for galaxy shape measurements developed by Miller
et al. (2007) and Kitching et al. (2008). Although its fittingprocess is slower than KSB+ and
shapelets, it is fast enough to be used for large weak-lensing surveys. This method allows an
optimal joint measurement of multiple, dithered image exposures, taking into account imaging
distortions and the alignment of the multiple measurements.

In this method, a Bayesian posterior probability distribution for the ellipticity of a galaxy
given its observed image can be generated as (Miller et al. 2007)

pi(e|yi) =
P (e)L (yi|e)

∫

P (e′)L (yi|e′) de′
, (51)

whereP (e) is the ellipticity prior probability distribution andL (yi|e) is the likelihood of
obtaining theith set of data valuesyi given ellipticitye presumably measured without the effects
of PSF or noise. Ideally, the true distribution ofe can be obtained from the data by considering
the summation over the data,

〈

1

N

∑

i

pi(e|yi)

〉

=

∫

dy
P (e)L (y|e)

∫

P (e′)L (y|e′) de′
∫

f(e′′)ǫ(y|e′′)de′′ , (52)

whereǫ(y|e) is the probability distribution fory of the data sample given ane, andf(e) is
the sample distribution ofe. Equation (52) demonstrates that the integration of the probability
distribution for individual galaxies gives rise to the expectation value of the summed posterior
probability distribution for the sample. Under the conditions thatǫ(y|e) = L (y|e) andP (e) =
f (e), Equation (52) yields the true distribution ofe, i.e.,

〈

1

N

∑

i

pi(e|y)

〉

= P (e) = f(e) . (53)

In other words, if the chosen prior is a good representation of the underlying distribution ofe, the
estimated posterior probability should be unbiased. Kitching et al. (2008) propose an iterative
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method to create the prior from a subset of the data itself. They show that to recover the prior
properly, the number of galaxies contained in the subset should be at least on the order of a
few hundred depending on the assumed functional form for theprior. It is noted that the lensing
shear signals that we are interested in are contained in the ellipticities e. In principle, they should
be included in the prior construction. However, the lensingshear signals vary from one place to
another. Given the limited number of galaxies in weak-lensing analyses, it is difficult to perform
the prior construction locally. Therefore it is suggested that the correct generation of the prior
should be zero-shear based and can be obtained from a large number of galaxies (Miller et al.
2007; Kitching et al. 2008). Such a zero-shear prior can introduce a bias in the shear estimate.
To correct for the bias, ashear sensitivityfactor|∂〈e〉i/∂g| should be included. Specifically, the
estimated shear can be expressed as

ĝ =

∑N
i 〈e〉i

∑N
i |∂〈e〉i/∂g|

. (54)

To calculate the likelihoodL (yi|e) for a galaxy,lensfit fits a model surface brightness convolved
with a PSF to the galaxy image. Miller et al. (2013) model the varying PSF in individual image
exposures on the pixel-based level by taking into account the properties of real surveys. The
optimum (with maximum S/N) shape measurement for each galaxy is estimated by fitting the
PSF-convolved two-component model with disk and bulge to the observed image, and with
Bayesian marginalization over nuisance model parameters of galaxy position, size, brightness
and the bulge fraction. The output for each galaxy is a Bayesian “posterior probability surface”
of the two ellipticity parameters, marginalized over the above model parameters. A weight for
each galaxy is also available considering the variance of the ellipticity likelihood surface and the
variance of the ellipticity distribution of the galaxy population.

3.3 Simulations for Pipeline Calibration

In weak-lensing analyses, a good shear measurement method should be able to accurately extract the
shape information from the observed galaxy images that are known to be affected by different effects,
such as pixelization, PSF-convolution and noise. During the past decade, a number of collaborations
have been built up to improve the accuracy and reliability ofdifferent weak-lensing measurement
methods using simulations. The Shear TEsting Program9 (STEP I & II, Heymans et al. 2006; Massey
et al. 2007) was set for a blind challenge. It produced a largevolume of images containing a mixture
of stars and simple galaxies. Participants were asked to runobject detection software to identify
stars and galaxies from noisy data. The simulated images were smoothed and distorted by a PSF
convolution kernel. The simplified shear and PSF from STEP did not vary across an image, but this
known fact was not allowed to be used by participants in the process of shear measurements from
simulations. Different sets of simulated images were produced by applying different combinations of
a constant PSF with different rotations and a constant inputshear. STEP2 considered more realistic
and more complex galaxy morphologies and built larger simulations to improve the measurement
precision. Different shear measurement methods have been tested in STEP resulting in significant
progress in the development of shear measurement techniques.

With the successful experience of the STEP program, GRavitational lEnsing Accuracy Testing10

(GREAT08 & 10, Bridle et al. 2009, 2010; Kitching et al. 2011), also a blind challenge, was further
designed to measure varying image distortions in the presence of a variable PSF, pixelization and
noise. Different from STEP, the GREAT08 Challenge providedposition information for sets of non-
overlapping galaxies in order to focus on the issue of inferring shear from a given PSF with different

9 http://www.roe.ac.uk/ heymans/step/cosmicsheartest.html
10 http://www.greatchallenges.info/
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noise levels. Both galaxy and star images are produced. GREAT10 extended the challenge by spa-
tially varying both the shear and the PSF across astronomical images. The lensing shear signals
caused by LSSs are not constant across the sky. Their spatialvariation reflects the non-uniform mat-
ter distribution in the Universe. On the other hand, the variation of PSF arises from effects from the
atmosphere and telescope optics. From the GREAT10 Challenge, it was found that the best shear
measurement methods can achieve an accuracy with average biases on the level of sub percent. The
results also showed that for most of the methods, the accuracy strongly depends on the S/N level. In
addition, there is also a weak dependence of the accuracy on the type and size of galaxies.

The above challenges demonstrate that thelensfit method performs better than KSB+ and
Shapelets, especially for data with low S/N. Its overall accuracy can reach a level of 1% for shear
estimates calculated by a weighted average over individualshape measurements from different ex-
posures.

3.4 Systematic Uncertainties

With the increase of survey areas and the improvement of image qualities, statistical uncertainties
of shear measurements have been significantly reduced. As a result, it has become more and more
crucial that systematic errors be understood and even quantified. Systematic errors can come from
any step in the process from data reduction to shear measurement. An inappropriate data reduction
process, such as astrometric and photometric calibration;reprojection, resampling and coadding of
exposures; masking cosmic rays, tracks left by satellites,etc., can introduce errors. Problems in
the process of shear measurement, e.g., inaccurate PSF modeling and correction, can also generate
severe systematic effects. As discussed in Sections 3.1 and3.2, systematics from the data reduction
and shear measurement themselves can be reduced by increasing our understandings of the observed
images and further improving the reduction pipeline, manually checking the auto masks and properly
modeling a PSF (e.g., Rowe 2010). For example, by assuming that a PSF varies in a relatively
systematic way from exposure to exposure, it is possible to describe the PSF with a high number
density of stars and to decompose the observed PSF patterns into their principal components (Jarvis
& Jain 2004).

While observational data processing is critical, physicaleffects can also contaminate weak-
lensing analyses. Arising from environmental tidal effects, the intrinsic alignment of close pairs of
galaxies, denoted as II, is one of the important physical systematics. For a deep weak-lensing survey,
the contaminations of II to cosmic-shear 2-point correlation signals are on the level of a few percents
(Pen et al. 2000; Brown et al. 2002). Such contaminations canbe significantly reduced by choosing
galaxy pairs from two different redshift bins, using the information of photometric redshifts, in two-
point correlation analyses.

Hirata & Seljak (2004) point out another type of alignment. The shape of a galaxy is correlated
with its local surrounding density field. On the other hand, this density field can generate lensing
shear effects on background galaxies. Therefore there exists a background galaxy-foregroundgalaxy
shear-shape alignment, denoted as GI. If a foreground galaxy has an intrinsic shape that is linearly
correlated with its local tidal field, the GI alignment contributes negatively to the cosmic-shear two-
point correlations, and has to be properly taken into account. The correlation of galaxy shapes and
their local density field can be measured by the cross correlation of galaxy ellipticities and their
number densities assuming a bias factor between the galaxy number distribution and the underlying
density perturbation field (Hirata et al. 2007; Joachimi et al. 2011). The GI contamination increases
significantly if a tomographic cosmic shear analysis is applied. Different methods to minimize the
impacts of GI on weak-lensing analyses have been proposed, and a detailed introduction can be
found in Heymans et al. (2013).

Uncertainties of photometric redshift (photo-z) estimation are another source of systematic er-
rors. Because lensing signals strongly depend on the distances to lens, to source, and between lens
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and source, the accuracy of photo-z can considerably affect the uncertainties of cosmologicalinfer-
ences from weak-lensing studies. Modern surveys are designed with multiple-band observations for
estimating photo-z for individual galaxies. Different codes, e.g., Hyperz (Bolzonella et al. 2000),
BPZ (Benı́tez 2000), and Le PHARE11, have been developed. Hildebrandt et al. (2012) use BPZ to
estimate photo-z for galaxies in CFHTLenS. They discuss different ways of improving the photo-z
estimation. For instance, the photometric zero-points arere-calibrated using spectroscopy redshift in-
formation in the fields. They also modify the prior to avoid the systematic overestimation of photo-z
at low redshift. The homogenization of the PSF between different bands improves the photo-z accu-
racy, particularly for faint galaxies that are small and their flux measurements are affected more by
PSF effects. The effects of photo-z uncertainties on weak-lensing cosmological studies have been
investigated extensively (e.g., Ma et al. 2006). We will come back to this in Section 5.

4 COSMOLOGICAL APPLICATIONS OF WEAK-LENSING EFFECTS

4.1 Cluster Studies

Clusters of galaxies are the largest virialized objects in the Universe. Their total mass is typically
∼ 1014 − 1015M⊙, and the baryon-to-dark matter mass ratio is∼ 15%, approximately the same as
the cosmological ratio. Besides having a large number of galaxies, the baryonic matter in a cluster is
dominantly in the form of diffuse hot gas with a typical temperature of∼ 107 − 108 K. Clusters of
galaxies play a very important role in the hierarchy of LSSs.From a theoretical point of view, their
formation and evolution are sensitive to underlying cosmological models. Observationally, they can
be probed by multiple means, optical for member galaxies, X-ray (e.g., Rosati et al. 2002) and
Sunyaev-Zeldovich effects (e.g., Carlstrom et al. 2002) for hot gas, and gravitational lensing effects
for their dark matter distribution (e.g. Bartelmann & Schneider 2001). Therefore clusters of galaxies
are regarded as critical objects in cosmological studies.

Gravitational lensing effects have played important rolesin cluster studies, especially in con-
straining the mass distribution of their dark matter halos.Here we mainly focus on weak-lensing
effects, which are particularly useful in understanding the overall dark matter distribution of clusters
out to their virial radii. A more complete review, includingtopics related to strong lensing, can be
found in Kneib & Natarajan (2011).

For massive clusters of galaxies, weak-lensing analyses for individual ones are observationally
possible by accurately measuring the shapes of a large number of source galaxies behind them.
Because both the shear and the convergence depend on the lensing potential, in principle the con-
vergence fieldκ, directly linked to the 2D projected mass distribution of clusters, is reconstructable
from the shear componentsγ estimated from the measured shapes of source galaxies. Specifically,
from the definition ofκ andγ in terms of the lensing potential, it is shown that in the Fourier space,
we have (Kaiser & Squires 1993, KS)

κ̃(k) =
k2
1 − k2

2

k2
γ̃1(k) +

2k1k2

k2
γ̃2(k) , (55)

wherek2 = k2
1 + k2

2 . This corresponds to the real space relation, subject to an arbitrary constant
(namely the mass-sheet degeneracy),

κ(θ) = − 1

π

∫

d2θ′ℜ
[

D(θ − θ′)γ∗(θ′)
]

, (56)

where the kernelD(x) = (x2
1 − x2

2 + 2ix1x2)/|x|4, andℜ is for the real part (Bartelmann 1995).

11 www.lam.oamp.fr/arnouts/LEPHARE.html
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In reality, however, the shear information can only be estimated discretely from source galaxies.
The measured complex ellipticityǫ (|ǫ| = (1− b/a)/(1 + b/a)) of a galaxy is related to the lensing
effect by

ǫ =











ǫs+g
1+g∗ǫs

for |g| ≤ 1 ,

1+gǫ∗

s

ǫ∗

s
+g∗

for |g| > 1 ,
(57)

whereǫs is the intrinsic ellipticity of the galaxy andg = γ/(1 − κ) is the reduced shear at the
position of the galaxy. Different frome in the left part of Equation (44), here the complexǫ is
defined as (e.g., Seitz & Schneider 1997)

ǫ =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2
√

Q11Q22 −Q2
12

, (58)

whereQij are the weighted quadrupole moments given in the right part of Equation (44). The in-
trinsic ǫs can be much larger than the lensing signals we are interestedin, and they can induce a
large noise in the reconstructed convergence field. Proper treatments to suppress the noise are thus
crucially important in the convergence reconstruction. Furthermore, it is shown that in the case of
no intrinsic alignments for source galaxies, the average〈ǫ〉 gives rise to an unbiased estimate of〈g〉
(in non-critical regions), rather than〈γ〉 (Seitz & Schneider 1997). Therefore an additional compli-
cation occurs in the convergence reconstruction particularly in cluster regions given the nonlinear
relation betweeng andγ. Limited observing field and masking out bad data can lead to artificial
boundary effects in the reconstruction. Local reconstruction methods have been proposed to reduce
the boundary effects, which involve the use of the derivatives of the shears (e.g., Bartelmann 1995;
Seitz & Schneider 1996). With developments in instrumentation, the current state-of-the-art wide
field imaging facilities can have a field of view close to1 × 1 deg2. Given that the angular radius of
a typical cluster atz ∼ 0.2 is ∼ 10′, the boundary effects due to the limited field of view have been
significantly reduced.

On the other hand, noise is always a concern. To avoid the problem of overfitting in the con-
vergence reconstruction, certain regularization procedures for noise suppression are necessary (e.g.,
Kaiser & Squires 1993; Bartelmann 1995; Bartelmann et al. 1996). One straightforward approach is
to first smooth the observedǫ with a suitable smoothing scale to get the average〈ǫ〉 ≈ g. From that,
the smoothed convergence can be reconstructed either usingthe nonlinear KS method (Kaiser &
Squires 1993; Squires & Kaiser 1996; Seitz & Schneider 1997)or the maximum likelihood method
by χ2 fitting to the smoothed reduced shear field to derive the lensing potential (e.g., Bartelmann
et al. 1996). In this approach, the residual noise depends onthe smoothing function and the scale,
and can be approximately described by a Gaussian random fielddue to the central limit theorem
(e.g., van Waerbeke 2000; Fan 2007). Another approach, named entropy-regularized maximum like-
lihood reconstruction, introduces an entropy term inln(L), the logarithm of the likelihood function
(e.g., Wallington et al. 1994, 1996; Squires & Kaiser 1996; Bridle et al. 1998; Seitz et al. 1998;
Starck et al. 2006; Jee et al. 2007; Jullo et al. 2014). This entropy term plays a role that disfavors
strong small-scale structures presumably from noise. Withsuitable choices of the regularization en-
tropy, the noise can be effectively suppressed. On the otherhand, the left-over noise can be highly
non-Gaussian resulting in some complications in analyses of statistical error (e.g., Jiao et al. 2011;
Jullo et al. 2014).

Non-parametric lensing reconstruction of the mass distribution for clusters of galaxies is im-
portant for revealing complicated structures therein. Thelensing study of the Bullet Cluster is an
excellent example, which shows a clear separation between the total mass density distribution and
the gas distribution, providing supporting evidence for the existence of dark matter (e.g., Clowe et al.
2006; Paraficz et al. 2012).



Weak Gravitational Lensing 1083

Fig. 8 Left: mass distribution of Abell 222/223 system reconstructed from weak-lensing shear mea-
surements, reproduced from figure 1 in Dietrich et al. (2012b) with permission from the authors and
by permission of Nature Publishing Group.Right: mass distribution of the Coma cluster from weak-
lensing shear measurements, reproduced from fig. 3 in Okabe et al. (2014) with permission from N.
Okabe and T. Futamase.

Figure 8 presents two other examples. The left panel shows the mass distribution in the Abell
222/223 system from weak-lensing analyses of Dietrich et al. (2012b), where the filamentary struc-
tures between the two clusters are clearly seen at the S/N of∼ 4σ. The right panel shows the re-
cent weak-lensing studies of the nearby Coma cluster with Subaru/Suprime-Cam from Okabe et al.
(2014). The high quality observational data reveal abundant substructures in Coma.

On the other hand, for quantitative constraints on the mass distribution of clusters of galaxies,
some simplifications are usually applied. For a sphericallyaveraged mass distribution with its center
atθ = 0, it is shown that (e.g., Bartelmann & Schneider 2001)

〈γt〉(θ) = κ̄(< θ) − κ̄(θ) , (59)

where〈γt〉(θ) is the azimuthally averaged tangential shear component atθ, andκ̄(< θ) andκ̄(θ) are
the averageκ within θ and atθ, respectively. The corresponding parameter-freeζ-statistics has been
proposed to measure the 1D mass distribution of dark matter halos, which is given by (Fahlman et al.
1994)

ζ(θ, θm) = κ̄(< θ) − κ̄(θ < θ′ < θm)

=
2

1 − θ2/θ2m

∫ θm

θ

d ln θ′〈γt〉(θ′) . (60)

It gives the mass distribution withinθ subject to a boundary term̄κ(θ < θ′ < θm), and can be
obtained directly fromγt within the annulus ofθ < θ′ < θm. A further improved statistics, namely
theζc-statistics, is defined byMζc

(< θ) = πθ2Σcrζc(θ, θinn, θout), whereζc(θ, θinn, θout) is given
by (e.g., Clowe et al. 2000)

ζc(θ, θinn, θout) = κ̄(< θ) − κ̄(θinn < θ′ < θout)

= 2

∫ θinn

θ

d ln θ′〈γt〉(θ′) +
2

1 − θ2inn/θ
2
out

∫ θout

θinn

d ln θ′〈γt〉(θ′) , (61)
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whereθinn andθout are the inner and outer radii of the background annulus, respectively. It is seen
thatMζc

(< θ) presents the lower bound of the projected mass withinθ subject to a boundary term
πθ2κ̄(θinn < θ′ < θout), whereκ̄(θinn < θ′ < θout) is independent ofθ. Applying such statistics
in real observations, however, it should be noted again thatthe average of the tangential component
of the observedǫ gives an estimate of the reduced shear−〈gt〉. In cluster regions, the difference be-
tweengt andγt is not negligible, and iterative procedures are needed to account for this nonlinearity
(e.g., Clowe et al. 2000).

To further quantify the density profile of dark matter halos,parametric models are often adopted
to fit either toMζc

(< θ) or more directly to the reduced shear profilegt (e.g., Okabe et al. 2010;
Oguri et al. 2010). The derived parameters are then comparedwith cosmological predictions aiming
to reveal the underlying mechanism for the formation and evolution of dark matter halos, including
the properties of dark matter particles as well as the astrophysical processes affecting their formation
and evolution (e.g., Umetsu & Broadhurst 2008; Broadhurst et al. 2008; Okabe et al. 2010, 2013;
Oguri et al. 2010, 2012; Kneib & Natarajan 2011; Hoekstra et al. 2013; Sereno & Covone 2013).

In the cold dark matter scenario, numerical simulations reveal an approximate universality for
the density profile of dark matter halos (e.g., Navarro et al.1996, 1997; Moore et al. 1999; Jing
2000; Gao et al. 2008; Zhao et al. 2009; Navarro et al. 2010; Gao et al. 2012; Ludlow et al. 2013).
Different fitting models have been proposed to describe suchprofiles (e.g., Navarro et al. 1996, 1997;
Hernquist 1990; Einasto 1965; Retana-Montenegro et al. 2012). Among others, the Navarro-Frenk-
White density profile (NFW) is a frequently used one given by Navarro et al. (1996, 1997)

ρ(r) =
ρs

r/rs(1 + r/rs)2
, (62)

whereρs andrs are the characteristic density and scale of a halo. Given themass of the haloM∆,
the halo radius is defined byM∆ = (4π/3)∆ρcritr

3
∆ with ∆ being the average density of dark

matter halos withinr∆ with respect to the critical density of the Universeρcrit. For∆, the spherical
collapse model gives rise to∆vir for virialized halos corresponding to the virial radiusrvir (e.g.,
Henry 2000). The value∆ = 200 has also been adopted often to defineM200 andr200. With r∆, the
concentration parameter is given byc∆ = r∆/rs with largerc∆ for a more centrally concentrated
density distribution. Studies show that with certain scatters, there is a relation betweenc∆ andM∆

closely reflecting the mass assembly history of dark matter halos (e.g., Navarro et al. 1997; Bullock
et al. 2001; Duffy et al. 2008; Zhao et al. 2009; Prada et al. 2012; Bhattacharya et al. 2013; De Boni
et al. 2013).

Figure 9 shows the stacked weak-lensing analyses of50 clusters from Okabe et al. (2013).
The upper left panel shows the profile of〈Σ+〉 = Σcr〈gt〉, where the symbols with error bars are
for the observational results and the lines are for the best fit model results. The lower left panel
shows the corresponding result by rotating the source galaxies by45◦, indicting possible systematic
effects. The right panel presents the derived(c200,M200) by fitting the data to the NFW profile,
where different lines indicate different simulation results. It is seen that the NFW profile provides an
excellent fit to the stacked weak-lensing signals. Noting the differences of the results from different
simulations, the fitted parameters(c200,M200) are in line with the simulation predictions. On the
other hand, there is a tendency that the derived concentration parameter is somewhat higher than
that from simulations.

Besides the 1D profile, current weak-lensing observations begin to be able to probe the shape of
the mass distribution, which also carries important cosmological information. Figure 10 presents the
results from Oguri et al. (2012), who study25 clusters selected from the Sloan Giant Arcs Survey
(SGAS). The mass distribution of the clusters is analyzed bycombining the weak-lensing obser-
vations with the strong-lensing giant arcs. The left panel shows the weak-lensing convergence and
shear maps by stacking the25 clusters. The position angle of each cluster derived from strong-
lensing modeling is aligned before stacking. The elongation of the mass distribution is clearly seen
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Fig. 9 Upper left: the projected density profile from stacked weak-lensing analyses of50 clusters.
Different lines are the best fit results of different models as indicated therein.Lower left: the corre-
sponding result with a45◦ rotation of the source galaxy ellipticities showing the potential systematic
effects.Right: The derived(c200, M200) from fitting the stacked tangential reduced shear data to the
NFW profile. Reproduced from fig. 3 in Okabe et al. (2013) with permission from the authors and
by permission of the AAS.

Fig. 10 Left: The 2D weak-lensing convergence and shear maps obtained from stacking analyses
of 25 clusters, where the position angle of each cluster obtainedfrom strong-lensing modeling is
aligned before stacking. Reproduced from the left panel of fig. 11 in Oguri et al. (2012).Right:
Mean ellipticities of mass distribution obtained from the stacked shear signals in three mass bins,
reproduced from the bottom panel of fig. 14 in Oguri et al. (2012). The shaded range indicates
the fitting result from the full cluster sample. The blue dashed line is the semi-analytic prediction of
Oguri et al. (2012). Printed with permission from the authors and by permission of Oxford University
Press on behalf of The Royal Astronomical Society.

in the convergence map. The right panel shows the mean ellipticities of the mass distribution con-
strained from the stacked shear signals in three different mass bins. The shaded region indicates the
results from stacking all the25 clusters, and the blue dashed line is the semi-analytical prediction of
Oguri et al. (2012) taking into account the triaxiality of dark matter halos (Jing & Suto 2002) and
the strong-lensing selection bias from the arc cross section. Given the error ranges, the results are in
broad agreement with the model prediction based on cold-dark-matter simulations.
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Fig. 11 Thec − M relation reproduced from fig. 5 in Oguri et al. (2012). The redsymbols are the
results from Oguri et al. (2012) obtained by combining the weak-lensing analyses and the strong-
lensing giant arcs. The blue squares are for A1689, A370, CL0024 and RXJ1347 from Umetsu et al.
(2011) and A383 from Zitrin et al. (2011). The shaded region indicates the theoretical predictions
taking into account the strong-lensing selection bias (Oguri et al. 2012). The solid and dotted lines are
for the best fit and1σ range of the fitting results to the red symbols. Printed with permission from the
authors and by permission of Oxford University Press on behalf of The Royal Astronomical Society.

Furthermore, with a relatively large cluster sample spanning a sizable mass range, it is becoming
possible to observationally constrain the concentration-mass (c−M ) relation for dark matter halos
(e.g., Okabe et al. 2010; Oguri et al. 2012; Sereno & Covone 2013; Auger et al. 2013).

Figure 11 shows thec − M relation from Oguri et al. (2012). The typical redshift for their
strong-lensing-selected sample isz ∼ 0.45. Assuming a power lawc − M relation with cvir =
A(Mvir/Mp)

α and performing aχ2 fitting with

χ2 = Σ
{[

log(cvir,obs) − log(cvir,fit)
]2

/(σ2
st + σ2

in)
}

,

they obtainA = 7.7 ± 0.6 andα = −0.59 ± 0.12 atMp = 5 × 1014 h−1 M⊙. Hereσst is the
measurement error incvir,obs for individual clusters, andσin is the intrinsic scatter ofcvir taken
to beσin = 0.12 (Oguri et al. 2012). The valuecvir,fit = A(Mvir,obs/Mp)

−α. The derived slope
parameterα is significantly steeper than that ofα ∼ −0.1 predicted by simulations for general halos
(e.g., Duffy et al. 2008), and that ofα ∼ −0.2 considering the strong-lensing selection bias (Oguri
et al. 2012). The amplitude factorA is also somewhat larger than theoretical predictions. Similar
steepc−M relations have also been reported by other weak-lensing studies (e.g., Okabe et al. 2010;
Sereno & Covone 2013).

Having shown the fruitful achievements of weak-lensing studies on massive clusters, we note
that in order to make detailed comparisons with cosmological predictions and draw physical con-
clusions, different effects have to be considered carefully. The important aspects related to accurate
shape measurements for galaxies have been discussed in Section 3. The distances of the source
galaxies, or their redshift information, affect the estimate ofΣcr, and therefore the physical interpre-
tation of the observed lensing signals. For weak-lensing cluster studies, the separation of the cluster
member galaxies from the source galaxy catalog is also important to avoid the dilution effect on
lensing signals by the unlensed member galaxies. Color information is crucial in identifying mem-
ber galaxies for clusters. Analyzing the spatial concentration of galaxies around clusters can also be
helpful to suppress the contamination from member galaxies. The availability of photometric red-
shift for individual galaxies, such as the CFHTLenS data sample (Hildebrandt et al. 2012), can be
greatly helpful for determining the distance information and to reduce the contaminations by cluster



Weak Gravitational Lensing 1087

member galaxies. Detailed discussions on these issues can be found in, e.g., Hoekstra et al. (2013)
and Kneib & Natarajan (2011).

Besides, different physical effects, such as the projection effects of correlated and un-correlated
LSSs, and the complex mass distribution of clusters themselves, can lead to complications in weak-
lensing analyses (Hoekstra 2003; Dodelson 2004; Corless etal. 2009; Hoekstra et al. 2011; Oguri
& Hamana 2011). Finding centers of clusters is also an issue (e.g., Oguri et al. 2010; Israel et al.
2010, 2012; Zitrin et al. 2012; Mann & Ebeling 2012; George etal. 2012). Extensive theoretical and
simulation studies have been done to explore these effects (e.g., Corless & King 2008; Becker &
Kravtsov 2011; Bahé et al. 2012; Giocoli et al. 2012; Dietrich et al. 2012a; Du & Fan 2014).

Aiming to understand the apparently steepc −M relation obtained from a number of weak-
lensing observations, Du & Fan (2014) perform systematic studies based on the dark matter halo
catalog extracted from theMillennium Simulation(Springel et al. 2005). We generate mock weak-
lensing data for each individual halo considering different noise levels characterized byσn =
σǫs/

√
ng. By assuming a spherical NFW profile and fitting to the reducedtangential shear data

gt, (c,M) is derived for each halo. Because of the existence of noise, the (c,M) determined from
weak-lensing analyses can deviate from the true ones. More importantly, due to the known degen-
eracy between(c,M) in terms ofgt of a halo, a larger determinedM generally corresponds to a
smaller determinedc and vice versa. In other words, the scatters of(c,M) determined by weak lens-
ing for a halo are strongly correlated. Therefore when deriving thec −M relation from a sample
of halos studied by weak lensing, an apparently steeper relation than that for the underlying halos is
generally expected if the covariance ofc andM is not taken into account properly. The larger the
noise, the steeper thec−M relation derived by weak lensing. Thus in order to correctlyextract the
c −M relation from weak-lensing analyses, it is necessary to take the scatters and covariance of
(c,M) into consideration rather than to simply fit the observedcobs to cfit = A(Mobs/Mp)

α in χ2

analyses.
Similar to studies for the scaling relation of X-ray clusters taking into account the covariance

between the observed luminosity and temperature (e.g., Stanek et al. 2006; Nord et al. 2008), Du
& Fan (2014) propose a Bayesian approach to derive thec −M relation from weak-lensing analy-
ses. Assumingp(cobs,Mobs|cT,MT) to be the probability distribution of the weak-lensing derived
(cobs,Mobs) for a halo with the true concentration and mass(cT,MT), and taking into account the
intrinsic dispersion of the concentration parameter for halos with a given massp(cT|MT), we have

p(cobs,Mobs|MT) =

∫

p(cobs,Mobs|cT,MT)p(cT|MT) dcT , (63)

and

p(cobs,Mobs) =

∫ ∞

Mlim

p(cobs,Mobs|MT)n(MT) dMT
∫ ∞

Mlim

n(MT) dMT

, (64)

wheren(MT) is the halo mass function andMlim is the lower limit for mass in the considered
sample. Then the probability distribution forcobs givenMobs can be written as

p(cobs|Mobs) =
p(cobs,Mobs)

p(Mobs)
, (65)

wherep(Mobs) =
∫

p(cobs,Mobs) dcobs. We can then theoretically predict the expected median
value ofcobs givenMobs by

∫

cfit(Mobs)

p(cobs|Mobs) dcobs =
1

2
. (66)
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Note thatcfit(Mobs) depends on the underlyingc−M relation for halos through the average〈cT〉 in
p(cT|MT). Therefore for a large sample of observed weak-lensing clusters, thec−M relation can
be constrained by minimizing theχ2 given by

χ2 =
∑

i

[log cmobs(M
i
obs) − log cfit(M

i
obs)]

2

σ2
i

, (67)

wherecmobs(M
i
obs) is the median value ofcobs for clusters in the mass bin centered atM i

obs, andσi

is the corresponding measurement error forcmobs(M
i
obs).

In Du & Fan (2014), we approximatep(cobs,Mobs|cT,MT) by a 2D Gaussian distribution in
log space given by

p(cobs,Mobs|cT,MT) =
1

2πσMσc

√
1 − r2

exp(−T ) , (68)

where

T =

[

σ2
M

(

log cobs − log cT

)2

+ σ2
c

(

logMobs − logMT

)2

−2rσMσc

(

log cobs − log cT

)(

logMobs − logMT

)

]/

2(1 − r2)σ2
Mσ

2
c . (69)

The parameterσM, σc and the correlation coefficientr depend onMT and the noise level. For
p(cT|MT), it can be written as

p(cT|MT) =
1√

2πσin

exp

[

− (log cT − 〈log cT〉)2
2σ2

in

]

, (70)

whereσin is the intrinsic dispersion oflog cT. For〈log cT〉, it is assumed to satisfy thec−M relation
〈log cT〉 = logA + α log(MT/Mp) with Mp being a chosen pivot mass. It is this(A,α) that we
want to constrain from cluster analyses with weak lensing.

In Figure 12, we show the results from simulation studies of Du & Fan (2014). The upper panels
are for the results with a simple fitting assumingcfit = A(Mobs/Mp)

α with Mp = 1014 h−1 M⊙.
The lower panels show the results withcfit given by Equation (66). It is seen clearly that for the
simple fitting that does not account for the correlation betweencobs andMobs, the derivedA andα
depend strongly on the noise levelσn. The higherσn is, the steeper the slope parameterα is. In other
words, suchc −M relation is significantly biased with respect to the underlying c−M relation of
dark matter halos. On the other hand, with the Bayesian method taking into account the scatters and
the covariance ofcobs andMobs, the derivedA andα agree with the truec −M relation for halos
very well (lower panels), demonstrating the great potential to properly constrain thec−M relation
with future large weak-lensing surveys.

Since the first detection of weak-lensing signals around massive clusters in the 1990s (Tyson
et al. 1990), cluster studies that use weak lensing have advanced tremendously. With future weak-
lensing surveys, we can study a large number of clusters. With the thorough understanding of differ-
ent observational and physical effects, it is highly promising that we can probe the mass distribution
of clusters in detail to reveal the underlying cosmologicalinformation related to their formation and
evolution. Furthermore, the accurate weak-lensing measurement in mass can allow us to calibrate
the observable-mass relations for other observations, such as X-ray (e.g., Leauthaud et al. 2010;
Mehrtens et al. 2012; Böhringer et al. 2013; Willis et al. 2013) and the Sunyaev-Zeldovich effect
(e.g, Reichardt et al. 2013; Hasselfield et al. 2013; Planck Collaboration et al. 2013b). This in turn
can significantly improve the cosmological constraints from cluster statistics.
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Fig. 12 The c − M relation constrained from simulation studies, reproducedfrom figs. 7 and 11
in Du & Fan (2014). The left panels show the fitted normalization parameterA vs. the noise level
σn = σǫs

/
√

ng, and the right panels are for the power indexα. The upper panels are for the results
with a simple fitting assumingcfit = A(Mobs/Mp)α, and the lower panels show the results from
the Bayesian analyses withcfit given by Eq. (66). Different colored symbols are for the results
from different NFW fittings for individual halos. Printed with permission from the authors and by
permission of the AAS.

4.2 Cosmic Shear Correlations

4.2.1 Theoretical considerations

Cosmic shear is the weak-lensing effect caused by LSSs in theUniverse. Its signals are very weak,
on the order of a percent at angular scales of a few arcminutes. It is impossible to detect cosmic
shear from individual galaxies. Instead, cosmic shear signals can be extracted by measuring shear
correlations from large samples of galaxies.

As shown previously, weak-lensing shear is a spin-2 field andcan be described in a complex
form γ = γ1 + iγ2. The second-order shear correlation function can be definedas

ξγ(θ) =
〈

γ(θ1) · γ∗(θ2)
〉

, (71)

whereθ = |θ1 − θ2| is the separation between a pair of galaxies located atθ1 andθ2, respectively.
The average is taken over all the galaxy pairs with the separation of θ.

To analyze the second-order shear correlations for pairs ofgalaxies, it is convenient to define the
shear of a galaxy in its pair frame with respect to the line connecting the two galaxies. In this frame,
the shear of a galaxy is written asγ = γt + iγ× with the tangential componentγt = −Re(γe−2iφ)
and cross componentγ× = −Im(γe−2iφ) (e.g., Bartelmann & Schneider 2001). Hereφ is the polar
angle of the line connecting the two galaxies. We then have the correlation functionsξtt andξ××

given by, respectively,

ξtt(θ) =
〈

γt(θ1)γt(θ2)
〉

, (72)
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and

ξ××(θ) =
〈

γ×(θ1)γ×(θ2)
〉

. (73)

Fromξtt andξ××, we can further define

ξ±(θ) = ξtt(θ) ± ξ××(θ) . (74)

In the weak-lensing regime where the lensing potential is determined by the convergenceκ
under the Born approximation, only the E-mode of the lensingshear is expected, and the B-mode
should be identically zero (e.g., Crittenden et al. 2002). Therefore it is desirable to decompose the
correlation functions into E-mode and B-mode correlations. All the lensing information should be
contained in the E-mode correlation, and the B-mode one should contain only noise. The E/B-mode
decomposition provides an important means to test for the existence of systematic errors. The E-
mode and B-mode correlation functions are given by (e.g., Crittenden et al. 2002; Schneider et al.
2002b; Pen et al. 2002)

ξE(θ) =
ξ+(θ) + ξ′(θ)

2
, (75)

and

ξB(θ) =
ξ+(θ) − ξ′(θ)

2
, (76)

with

ξ′(θ) = ξ−(θ) + 4

∫ ∞

θ

dθ′

θ′
ξ−(θ′) − 12θ2

∫ ∞

θ

dθ′

θ′3
ξ−(θ′) . (77)

As shown in Section 2.3, theoretically, the shear power spectrum, which is identical to the con-
vergence power spectrumPκ(l), is of great importance. In the ideal case without B-mode contami-
nations, it is the Fourier transform of the two-point shear (convergence) correlation function (2PCFs)
given by

〈γ(0)γ∗(θ)〉 = ξ+(θ) =

∫ ∞

0

dl l

2π
J0(lθ)Pκ(l) . (78)

For ξ−, it is

ξ−(θ) =

∫ ∞

0

dl l

2π
J4(lθ)Pκ(l) . (79)

HereJ0 andJ4 are Bessel functions.
From Equation (43), it is seen thatPκ(l) can be written as a projection of the 3D power spectrum

of dark matter perturbationsPδ along the line of sight. This projection is approximated as an integral
over the comoving radial distancesχ from the observer out to the limiting distanceχH of the survey
by using Limber’s equation. The convergence power spectrumdepends on the geometrical factor
fK(χ) and the linear growth factorG(z) which is contained in the power spectrum of dark matter
perturbationsPδ, following a simple relationPδ ∝ G2(z) on large scales. BothfK(χ) andG(z)
are sensitive to cosmological parameters, including the properties of dark energy. The nonlinear
power spectrumPδ cannot be easily expressed by a simple theoretical formula.As calibrated by
simulations, different methods have been developed to calculatePδ (e.g., Peacock & Dodds 1996;
Smith et al. 2003; Lawrence et al. 2010; Heitmann et al. 2014).

The decomposition of the E/B-mode can also be achieved by analyzing the variance of the
aperture mass defined by Schneider (1996) and Schneider et al. (1998)

Map(θ0, θ) =

∫

d2θ′′κ(θ′′)U
(

|θ′′ − θ0|, θ
)

, (80)
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whereU is a compensated filter satisfying

∫ θ

0

dθ′ θ′U(θ′, θ) = 0 for θ′ ≤ θ . (81)

From the physical relation betweenκ andγ, Equation (80) is equivalent to filtering the tangential
shear fieldγt with respect toθ0 using a filterQ, given by Schneider et al. (1998)

Map(θ0, θ) =

∫

d2θ′′γt(θ
′′)Q

(

|θ′′ − θ0|, θ
)

, (82)

and

Q(θ′, θ) =
2

θ′2

∫ θ′

0

dθ′′ θ′′U(θ′′, θ) − U(θ′, θ) for θ′ ≤ θ . (83)

Therefore in the cosmic shear regime withκ ≪ 1 andγ ≪ 1, Map can be estimated directly from
the tangential component of the observed ellipticities of source galaxies. The variance ofMap can
be written in terms of the covergence power spectrum

〈

M2
ap

〉

(θ) =

∫

dℓ ℓ

2π
Pκ(ℓ)Û2(θℓ) , (84)

whereÛ is the Fourier transform of the filterU . Similarly, we can defineM× by

M×(θ0, θ) =

∫

d2θ′′γ×(θ′′)Q(|θ′′ − θ0|, θ) . (85)

It is shown that there is no E-mode contribution inM× (Crittenden et al. 2002). Therefore〈M2
×〉(θ)

can be used to check possible systematics in lensing measurements.
While the two-point shear correlation/power spectrum analyses carry important cosmological

information, they cannot reveal the non-Gaussian nature ofLSSs arising from nonlinear gravitational
interactions. The third-order cosmic shear correlations and the corresponding bispectrum are the
lowest-order measure of the non-Gaussianity of LSSs (e.g.,Bernardeau et al. 1997; van Waerbeke
et al. 1999; Van Waerbeke et al. 2001).

The bispectrumBκ of the convergence is defined by (e.g. Schneider et al. 2005)
〈

κ̂(l1)κ̂(l2)κ̂(l3)
〉

= (2π)2δD(l1 + l2 + l3)Bκ(l1, l2, l3) , (86)

andBκ(l1, l2, l3) can be written as

Bκ(l1, l2, l3) = Bκ(l1, l2) +Bκ(l2, l3) +Bκ(l3, l1) , (87)

whereδD is the 2D Dirac delta function. Thus the bispectrum is non-zero only in the case that the
three wave vectors(l1, l2, l3) form a closed triangle. Under the Limber approximation, therelation
betweenBκ and the 3D bispectrumBδ of matter density perturbations is similar to that of the power
spectrum, and is given by (e.g., Sato & Nishimichi 2013)

Bκ(l1, l2, l3) =
27H6

0Ω3
m

8

∫ χH

0

dχ′ Ḡ3(χ′)

a3(χ′)fK(χ′)
Bδ

[

l1

fK(χ′)
,

l2

fK(χ′)
,

l3

fK(χ′)
;χ′

]

, (88)

whereBδ

[

l1/fK(χ′), l2/fK(χ′), l3/fK(χ′);χ′

]

is the 3D bispectrum withki = li/fK at the cos-

mic time corresponding toχ′, andḠ is given in Equation (42).
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In the quasi-linear perturbation regime,Bδ can be computed in terms of the power spec-
trum (Fry 1984). On highly nonlinear scales, however, it is achallenging task to predictBδ ac-
curately. Different models have been proposed (e.g., Scoccimarro & Couchman 2001; Pan et al.
2007; Valageas et al. 2012). The hyper-extended perturbation theory (Scoccimarro & Couchman
2001, HEPT) interpolatesBδ between the strongly nonlinear regime and the quasi-linearregime
where the second-order perturbation theory is a good approximation. HEPT on very small scales
falls back on the stable clustering hypothesis, where clustering is assumed to have reached virial
equilibrium (Peebles 1980). The original HEPT bispectrum is based on the nonlinear power spec-
trum fitting formula from Peacock & Dodds (1996). Sato & Nishimichi (2013) recently show that
HEPT can provide a much better fit to the convergence bispectrum with the revisedhalofit ver-
sion of Takahashi et al. (2012). These revised fitting functions also match the convergence power
spectrum more closely.

To probe the bispectrum, the skewness of the aperture mass has been introduced by, e.g., Jarvis
et al. (2004) and Pen et al. (2003). Its generalization involves the correlation of the aperture mass for
three different smoothing scales, which optimally probes the bispectrum for general triangles. The
definition is given by Schneider et al. (2005),

〈

M3
ap

〉

(θ1, θ2, θ3) ≡ 〈Map(θ1)Map(θ2)Map(θ3)〉

=

∫

d2ℓ1

(2π)2

∫

d2ℓ2

(2π)2
Bκ(ℓ1, ℓ2)

×
∑

(i,j,k)∈S3

Û(θi|ℓ1|) Û(θj |ℓ2|) Û(θk|ℓ1 + ℓ2|) , (89)

whereS3 is the symmetric permutation group of(123), andÛ denotes the Fourier transform of the
aperture filterU .

There are several advantages of using aperture moments instead ofn-point correlation func-
tions. Most importantly, aperture measures are only sensitive to the E-mode of the shear field. They
filter out long-wavelength modes where an E-/B-mode separation is not possible given a finite sur-
vey volume (Schneider et al. 2010). They are therefore less susceptible to systematics in the data.
Furthermore, a theoretical prediction from the convergence bispectrumBκ can be obtained much
easier and faster for the aperture three-point statistics than for the three-point correlation function
(Schneider et al. 2005). It is therefore more efficient to usethe aperture moments to constrain cos-
mological parameters where a Monte-Carlo sampling analysis is necessary.

4.2.2 The statistics of cosmic shear

From an observational point of view, the most direct study ofweak lensing effects is in real space, by
using the shear signals derived from measurements of galaxyellipticity. It is possible to reconstruct
the convergence field from the measured shear field. Such a convergence reconstruction has been
performed recently using CFHTLenS data, and moments of the convergence up to order 5 have been
measured (Van Waerbeke et al. 2013).

More generally, the two-point shear correlation functionsξ+ and ξ− can be estimated in an
unbiased way by averaging over pairs of galaxies (Schneideret al. 2002a). It does not require the
treatment of masks and smoothing of the shear field, and is given by

ξ̂±(ϑ) =

∑

ij wiwj [εt(ϑi) εt(ϑj) ± ε×(ϑi) ε×(ϑj)]
∑

ij wiwj
. (90)

Hereεt andε× are denoted as the tangential and cross components of observed galaxy ellipticities,
respectively, and the sum is performed over all galaxy pairs(ij) with angular distance|ϑi − ϑj |
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within the chosen bin aroundϑ. The weightw represents the shear uncertainty of each galaxy in the
measurements. Witĥξ±, the second-order aperture E-mode〈M2

ap〉 and B-mode〈M2
×〉 can further

be calculated by Crittenden et al. (2002) and Schneider et al. (2002b),

〈M2
ap,×〉(θ) =

1

2

∑

i

ϑi ∆ϑi

[

T+(ϑi) ξ̂+(ϑi) ± T−(ϑi) ξ̂−(ϑi)
]

, (91)

where the functionsT±(x) are

T+ =

∫ ∞

0

dt J0(xt) Û
2(t)

and

T− =

∫ ∞

0

dt J4(xt) Û
2(t) .

The three-point correlation functions (3PCFs) are calculated on triangles. They have eight com-
ponents and can be expressed by four complexnatural components(Schneider & Lombardi 2003;
Zaldarriaga & Scoccimarro 2003; Takada & Jain 2003). An unbiased estimator for the zero-th com-
ponent is (Schneider & Lombardi 2003)

Γ̂(0)(s, t) =

∑

ijk wi wj wk εi εj εk e
−6iα

∑

ijk wiwj wk
, (92)

whereε is the complex ellipticity of galaxies, and(s, t, α) give the chosen configuration of triangles
with s andt being the two sides andα being the angle between them. The other three components
are estimated as

Γ̂(1)(s, t) =

∑

ijk wi wj wkε
∗
i εj εk e

−2iα

∑

ijk wi wj wk
; (93)

Γ̂(2)(s, t) =

∑

ijk wi wj wkεi ε
∗
j εk e

−2iα

∑

ijk wi wj wk
; (94)

Γ̂(3)(s, t) =

∑

ijk wi wj wkεi εj ε
∗
k e

−2iα

∑

ijk wi wj wk
. (95)

The third-order aperture E-mode (EEE), B-mode (BBB), and the mixed modes of EEB and EBB
can be expressed as different combinations of〈M3〉, 〈M2M∗〉, 〈MM∗M〉 and 〈M∗M2〉 where
M = Map + iM×, and those, in turn, can be obtained through the integrals over Γ̂(i) with chosen
filter functions. We refer readers to Jarvis et al. (2004) andSchneider et al. (2005) for details. The
expectation values of the mixed components EEB and EBB are non-zero only if the E- and B- modes
are correlated. For a parity-symmetric shear field, only theEBB component is non-zero (Schneider
2003). However in practice, noise sample variance causes a violation of parity for a given observed
region, and all three B-mode related components can be non-zero.

4.2.3 Cosmological applications

The 2PCFs of cosmic shears have been observationally measured since the year 2000. These first
detections encouraged early studies with different surveys (e.g., Refregier 2003), including RCS (53
deg2, Hoekstra et al. 2002), VIRMOS (8.5 deg2, Van Waerbeke et al. 2005), CTIO (70 deg2, Jarvis
et al. 2006), GaBoDs (13 deg2, Hetterscheidt et al. 2007) and CFHTLS Deep (4 deg2, Semboloni
et al. 2006). Recently, Schrabback et al. (2010) performed comprehensive second-order analyses
of cosmic shear signals by LSSs with COSMOS data (2 deg2). They showed that the shear signal
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scales with redshift as expected from the theory of general relativity in the concordanceΛCDM
cosmology, including the full cross-correlation signals between different redshift bins. Under the
flatness assumption for the Universe, they obtainσ8(Ωm/0.3)0.51 = 0.75±0.08 (68.3% conf.) from
lensing alone. They find a negative deceleration parameterq0 at the 94.3% confidence level using the
tomographic lensing analysis without the assumption of flatness and using priors from the HST Key
Project forH0 andΩbh

2 from constraints on Big Bang nucleosynthesis. This provides independent
evidence for the accelerated expansion of the Universe.

Semboloni et al. (2011) present a first detection of the third-order moments of the aperture mass
statistics using the same COSMOS data. Their results are reproduced in the left panel of Figure 13.
It is seen that the results are in very good agreement with thepredictions of the WMAP7 best-fit
cosmological model. The combined likelihood analysis of〈M3

ap〉(θ) and 〈M2
ap〉(θ) improves the

cosmological constraints toσ8(Ωm/0.3)0.50 = 0.69+0.07
−0.12 (reproduced in the right panel of Fig. 13).

CFHTLenS covers 154 deg2 sky in five optical bands. It gives rise to accurate photometric red-
shifts and shape measurements for 4.2 million galaxies between redshifts of 0.2 and 1.3. Kilbinger
et al. (2013) present the analyses of cosmic shear signals byLSSs using CFHTLenS. They com-
pute the 2D cosmic-shear correlation function over angularscales ranging between0.8′ and350′.
The results are reproduced in the left panel of Figure 14. Fora flatΛCDM model, they obtain the
corresponding constraintsσ8(Ωm/0.27)0.6 = 0.79 ± 0.03. With the combinations of CFHTLenS
with WMAP7, BOSS and an HST distance-ladder prior onH0, they findΩm = 0.283 ± 0.010 and
σ8 = 0.813±0.014. The reproduced results are shown in the right panel of Figure 14. Benjamin et al.
(2013) measure the shear correlation functions on angular scales in the range∼ 1 − 40 arcmin with
the same CFHTLenS data, in two broad redshift bins,0.5 < zp ≤ 0.85 and0.85 < zp ≤ 1.3. The
auto and cross correlations of the two bins are reproduced inthe left panel of Figure 15. They show
good agreements with the theoretical predictions of WMAP7.For a flatΛCDM model, they find
σ8 = 0.771 ± 0.041 with a fixed matter densityΩm = 0.27. In combination with WMAP7, BOSS
and a prior onH0 from HST, they obtainΩm = 0.2762±0.0074andσ8 = 0.802±0.013 (reproduced
in the right panel of Fig. 15). Fu et al. (2014) measure second- and third-order weak-lensing aper-
ture mass statistics from CFHTLenS and combine them with cosmic microwave background (CMB)
anisotropy for cosmological constraints. The results are shown in Figure 16. The third moment is
measured with a significance of2σ (left panel of Fig. 16). Compared to only using second-order
correlations, including the third-order statistics improves the constraint onΣ8 = σ8(Ωm/0.27)α by
10%. The allowed ranges forΩm andσ8 are substantially reduced. Adding second- and third-order
CFHTLenS lensing measurements to Planck CMB temperature anisotropy tightens the Planck-only
constraints onΩm andσ8 by 26% for flatΛCDM (middle panel of Fig. 16). For a model without the
flatness prior, the joint CFHTLenS-Planck result isΩm = 0.28 ± 0.02 with 68% confidence, which
shows an improvement of 43% compared to Planck alone (right panel of Fig. 16).

4.3 Peak Statistics

As discussed in Section 4.1, clusters of galaxies are strongsources for generating weak-lensing sig-
nals, and they appear as high peaks in weak-lensing maps. Therefore observations of weak lensing
can not only be used to study the mass distribution of known clusters, but also provide a unique
way to detect clusters blindly (e.g., Tyson 1992; Kruse & Schneider 1999). The feasibility of clus-
ter detections with weak lensing has been demonstrated by different observational analyses (e.g.,
Miyazaki et al. 2002; Wittman et al. 2006; Gavazzi & Soucail 2007; Miyazaki et al. 2007; Schirmer
et al. 2007; Geller et al. 2010; Shan et al. 2012; Hamana et al.2012; Van Waerbeke et al. 2013; Shan
et al. 2013). Figure 17 shows the mass distribution that is reconstructed with weak-lensing analyses
from Shan et al. (2012) with CFHTLS (left) and Van Waerbeke etal. (2013) with CFHTLenS (right).
Different symbols are explained in the caption. Certain correspondence between the weak-lensing
peaks and the clusters identified optically or in X-ray can beseen clearly.
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Fig. 13 Left: The three-point aperture statistics measured from COSMOS, reproduced from the right
panel of fig. 4 in Semboloni et al. (2011). The black diamonds are for 〈M3

ap〉 (EEE) and the red tri-
angles are for〈MapM2

×〉 (EBB). Error bars are for statistical errors. The solid lineis the WMAP7
model prediction.Right: The probability distribution for the parametersΩm and σ8, reproduced
from the right panel of fig. 7 in Semboloni et al. (2011). The constraints (colored regions) are ob-
tained from the joint measurements of〈M2

ap〉(θ) and〈M3
ap〉(θ) as compared to that separately from

〈M2
ap〉(θ) (inner lines) and〈M3

ap〉(θ) (outer lines), respectively. The solid (dashed) lines represent
the 68.3% (95.5%) level of confidence. Printed with permission from the authors and by permission
of Oxford University Press on behalf of The Royal Astronomical Society.
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Fig. 14 Left: Aperture-mass dispersion of〈M2
ap〉 (E-mode,black filled squares) and 〈M2

×〉 (B-
mode,red open squares) from CFHTLenS, reproduced from the upper panel of fig. 8 in Kilbinger
et al. (2013). The signal is compared to the theoretical prediction for a WMAP7-cosmology (dashed
line) and the simulation result from Clone lines-of-sight mean signal (dotted line). The error bars
are the Clone field-to-field rms.Right: For the flatΛCDM model, the marginalized parameter
constraints(Ωm, σ8) (68.3%, 95.5%, 99.7%) from CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (red) and CFHTLenS+WMAP7+BOSS+R09 (black) are shown, reproduced
from the upper panel of fig. 10 in Kilbinger et al. (2013), withpermission from the authors and by
permission of Oxford University Press on behalf of The RoyalAstronomical Society.

Being closely associated with mass concentrations, notably clusters of galaxies, weak-lensing
peak statistics are anticipated to carry important cosmological information (e.g., Kruse & Schneider
1999; Hamana et al. 2004; Kratochvil et al. 2010; Marian et al. 2013). Particularly, they are more
sensitive to massive structures, and thus the non-Gaussianfeatures of the LSSs in the Universe
(e.g., Marian et al. 2011). Therefore they are highly complementary to the cosmic shear two-point
correlation analyses. To demonstrate the cosmological dependence of weak-lensing peak statistics,



1096 L. P. Fu & Z. H. Fan

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ωm
σ 8

2D lensing CFHTLenS
tomography CFHTLenS
2D lensing CFHTLenS+WMAP7+BOSS+R11
tomography CFHTLenS+WMAP7+BOSS+R11

Fig. 15 Left: Auto and cross correlationsξ+ (filled circles) andξ− (filled squares) of two redshift
bins measured from CFHTLenS, reproduced from figure 6 in Benjamin et al. (2013). Error bars are
the square-root of the diagonal elements of the covariance matrix measured from Clone mock cata-
logs. Theoretical predictions for the WMAP7 cosmology are presented as lines.Right: The marginal-
ized parameter constraints (68.3% conf. level) on(Ωm, σ8) for a flatΛCDM cosmology: 2D lensing
(blue), 2-bin tomography (green) from CFHTLenS, 2D lensing combined with WMAP7, BOSS and
H0 prior of R11 (black), and 2-bin tomography with all combinations (pink). Reproduced from fig-
ure 8 in Benjamin et al. (2013), with permission from the authors and by permission of Oxford
University Press on behalf of The Royal Astronomical Society.

Fig. 16 Left: The third-order aperture-mass EEE components as a function of smoothing scaleθ,
measured from CFHTLenS data. The prediction from WMAP9 is shown as a red solid line and the
third moment measured from the Clone is the black dash-dotted curve.Middle: Marginalized poste-
rior density contours (68.3%, 95.5%) from CFHTLenS (joint second-order COSEBIs and third-order
diagonal aperture-mass; magenta lines), WMAP9 (blue), Planck (green), CFHTLenS+ WMAP9
(black) and CFHTLenS+ Planck (orange). The flatΛCDM cosmology is assumed here.Right: The
corresponding results in the case without the flatness prior. Reproduced from the upper panel of
figs. 2 and 11 in Fu et al. (2014), with permission from the authors and by permission of Oxford
University Press on behalf of The Royal Astronomical Society.
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Fig. 17 The weak-lensing reconstructed mass distribution of the CFHTLS W1+2+3 pointing repro-
duced from fig. 17 in Shan et al. (2012) (left), and of the CFHTLenS W1 field reproduced from fig. 8
in Van Waerbeke et al. (2013) (right). The color maps (with white contours in the right panel) arethe
weak-lensing reconstructed convergence maps shown in the S/N. In the left panel, the triangles are
for optically detected clusters in the K2 catalog (Thanjavur et al. 2009), the cross symbols are for the
X-ray detected clusters (Adami et al. 2011), and the plus andsquares symbols are for convergence
peaks with S/N> 3.5 in maps with Gaussian smoothing scalesθG = 1′ andθG = 2′, respectively
(Shan et al. 2012). In the right panel, the Gaussian smoothing scale isθG =

√
2 × 8.9 ≈ 12.6′ for

the convergence map. The white circles show the predicted peaks from the galaxy distribution with
their size indicating the height of the peaks (Van Waerbeke et al. 2013). Note that here the Gaussian
smoothing function is taken to have the formW (θ) = (1/πθ2

G) exp(−θ2/θ2
G). Printed with per-

mission from the authors, and by permission of the AAS (left) and of Oxford University Press on
behalf of The Royal Astronomical Society (right).

we consider the most simple and ideal case assuming a one-to-one correspondence between a weak-
lensing convergence peak and a dark matter halo. Then the peak abundance can be theoretically
calculated from the mass function of dark matter halos taking into account the lensing efficiency
(e.g., Kruse & Schneider 2000; Bartelmann et al. 2001). Specifically, we have (Hamana et al. 2004)

N(ν > νth) =

∫

dz
dV

dΩdz

∫

dM nhalo(M, z)Ht[ν(M, z) − νth] , (96)

whereν stands for the S/N of weak-lensing peaks,N(ν > νth) is the surface number density of
peaks withν > νth, dV anddΩ are the volume element and the solid angle element of the Universe,
respectively, andnhalo is the mass function of dark matter halos. The termHt is a Heaviside step
function withHt(x) = 1 for x ≥ 0 andHt(x) = 0 otherwise, representing the selection function
for halos based on their peak weak-lensing signals.

Here the S/N isν = K/σ0 with K the peak value of the lensing convergence andσ0 the rms
of the noise. As discussed previously, the intrinsic ellipticity plus the uncertainty in shape measure-
ment for a source galaxy is much larger than its weak-lensingsignal, thus bringing large noise to
the reconstructed convergence map affecting severely the detectability of true peaks. Therefore noise
suppression procedures, such as smoothing (e.g., Hamana etal. 2004; Van Waerbeke et al. 2013) and
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entropy regularization (e.g., Starck et al. 2006), are necessary andσ0 is the rms of the left-over noise.
For the peak signalK of a halo with massM and at redshiftz, it depends on the halo density profile,
the redshift information of the lens and the source galaxiesthrough the angular diameter distances,
and the noise suppression procedures applied to the convergence. ThereforeK(M, z) contains im-
portant cosmological information (e.g., Bartelmann et al.2001; Hamana et al. 2004) and reflects
the sensitivity of weak-lensing cluster detection. For thesource redshiftzs ∼ 1, the weak-lensing
detections are sensitive to clusters atz ∼ 0.2 (Hamana et al. 2004). For the halo mass functionnhalo,
it is directly related to the formation and evolution of darkmatter halos and thus sensitive to cosmo-
logical models. Given Gaussian linear density perturbations, dynamical models for halo formation,
such as the spherical and ellipsoidal collapse models (e.g., Peebles 1980; Bond & Myers 1996), al-
low us to link the nonlinear formation of dark matter halos tolinear density perturbations above a
collapse threshold. Then the halo mass function can be theoretically predicted based on properties of
linear density perturbations, including the power spectrum and the linear growth factor (e.g., Press
& Schechter 1974; Bond et al. 1991; Sheth et al. 2001). While these theoretical models capture the
essence of the halo formation, their accuracies are limitedby simplified assumptions. Because of
its important roles in cosmological studies, accurate modeling of the halo mass function is strongly
desired (e.g., Wu & Huterer 2013). With numerical simulations, different fitting models have been
proposed to improve the halo mass function (e.g., Sheth & Tormen 1999; Jenkins et al. 2001; Warren
et al. 2006; Tinker et al. 2008; Bhattacharya et al. 2011; Watson et al. 2013; Knebe et al. 2013).

From Equation (96), we see that the cosmological dependenceof the weak-lensing peak abun-
dance is reflected in the halo mass function, the lensing signalK(M, z) and the volume elementdV .
In other words, the weak-lensing peak abundance depends both on the structure formation and on the
global expansion history of the Universe. This lays the theoretical motivation for probing cosmology
with weak-lensing peak statistics. On the other hand, however, the model shown in Equation (96) is
a highly idealized one, and many effects can significantly influence weak-lensing peaks. The non-
spherical mass distribution of dark matter halos introduces complications in calculating the peak
convergence signalK for a halo with given(M, z) (e.g., Tang & Fan 2005; Corless et al. 2009;
Hamana et al. 2012). The correlated structures near a halo and non-correlated ones along its line of
sight can affect the peak signalK (e.g., Hoekstra 2003; Dodelson 2004; Marian et al. 2010; Hoekstra
et al. 2011; Oguri & Hamana 2011; Yang et al. 2011). For relatively low peaks, a large fraction of
these do not have dominant halos responsible for their lensing signals. Rather, the projection effects
of LSSs along lines of sight contribute coherently to these peaks (e.g., Maturi et al. 2010; Yang
et al. 2011). Furthermore, the weak-lensing peak analyses involve, in one way or another, the re-
construction of the convergence field from the measured shapes of source galaxies. The existence
of noise in the reconstructed convergence field because of intrinsic ellipticities of source galaxies is
therefore inevitable even after the noise suppression treatments. The noise can lead to false peaks
from chance alignments of source galaxies, and thus considerably reduce the efficiency of cluster
detection (e.g., White et al. 2002; Wittman et al. 2006; Gavazzi & Soucail 2007; Schirmer et al.
2007; Geller et al. 2010). A more subtle effect of noise is that it can also affect the signals of the
peaks associated with true dark matter halos, generating not only scatters but also systematic bias
(e.g., Fan et al. 2010; Yang et al. 2011). The spatial clustering and the intrinsic alignment of source
galaxies can also affect the cosmological interpretationsof weak-lensing peak statistics (e.g., Fan
2007; Schmidt & Rozo 2011). Different observational effects should also carefully be taken into
account (e.g., VanderPlas et al. 2012; Van Waerbeke et al. 2013; Liu et al. 2014).

Extensive analyses have been performed to explore different effects on weak-lensing peak statis-
tics. In terms of cluster detections, various filtering strategies are developed to optimize weak-lensing
signals of clusters (e.g., Schirmer et al. 2004; Hennawi & Spergel 2005; Maturi et al. 2005; Starck
et al. 2006; Marian et al. 2012). The aperture mass statisticsMap introduced in Equation (80) can
be calculated from the tangential component of the observedellipticities of source galaxies using a
filter Q (Eq. 83). This has been extended to the so called shear-peak statistics where the analyses are
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done on the basis of the filtered tangential shears defined as

M̃ap(θ) =

∫

d2θ′γt(θ
′)Q(|θ′ − θ|)

with a general filterQ. By choosing an appropriate functionQ, e.g., with a similar profile of the halo
tangential shear, the S/N of̃Map can be maximized for detecting clusters efficiently (e.g., Schneider
et al. 1998; Schirmer et al. 2007). An optimal filter can also be found by minimizing the effects
both from the noise arising from intrinsic ellipticities and from the projection of LSSs (e.g., Maturi
et al. 2005). By incorporating the redshift information of source galaxies, the weak-lensing cluster
detection can be further improved by applying a tomographicmatched filter (Hennawi & Spergel
2005). For a survey with the source galaxy number densityng ∼ 30 arcmin−2 and the typical source
redshiftzs ∼ 1, the S/Nν ∼ 4 corresponds to clusters with massM ∼ 1014M⊙ at redshiftz ∼ 0.2
with a possible extension to smaller mass and higher redshift depending on the filter optimization
(e.g., White et al. 2002; Hamana et al. 2004; Hennawi & Spergel 2005). At this threshold, the effi-
ciency of cluster detection is typically∼ 60% with certain variations from different filtering methods
(e.g., White et al. 2002; Hennawi & Spergel 2005; Jiao et al. 2011). This has been demonstrated ob-
servationally by analyzing the correspondences between weak-lensing peaks and clusters identified
from optical/X-ray observations (e.g., Gavazzi & Soucail 2007; Miyazaki et al. 2007; Geller et al.
2010; Shan et al. 2012; Kurtz et al. 2012). The efficiency increases with the increase in the detection
threshold but at the expense of detection completeness.

On the other hand, for probing cosmology with weak-lensing peak statistics, it is not necessary
to individually find explicit correspondences between peaks and the underlying clusters (e.g., Marian
et al. 2009). Furthermore, peaks from projection effects ofLSSs also carry important cosmological
information (e.g., Maturi et al. 2010; Dietrich & Hartlap 2010; Yang et al. 2011). Therefore, for
cosmological studies, weak-lensing peaks themselves can be statistically analyzed directly without
the need to find one-to-one links between peaks and specific clusters. Extensive investigations have
been done to understand the cosmological dependence of weak-lensing peak statistics and its com-
plementary role in cosmological studies (e.g., Marian et al. 2009; Kratochvil et al. 2010; Dietrich
& Hartlap 2010; Fan et al. 2010; Yang et al. 2011; Marian et al.2011, 2013; Liu et al. 2014). In
Dietrich & Hartlap (2010), they carry out ray tracing simulations for a total of158 cosmological
models with different(Ωm, σ8) in the flatΛCDM framework, and analyze the dependence of the
peak abundances on the two parameters.

Figure 18 shows the expected constraints on(Ωm, σ8) from aperture mass peak abundances from
Dietrich & Hartlap (2010), where the survey area is taken to be180 deg2, and the number density and
the rms of intrinsic ellipticities of source galaxies are set to beng = 25 arcmin−2 andσǫs = 0.38,
respectively. The green region shows the1σ and2σ confidence ranges fromS statistics that considers
the peak S/N (ν) corresponding to different number fraction of peaks withν ≥ 3.25 (see fig. 2 of
Dietrich & Hartlap (2010)). The blue regions are for the corresponding constraints fromM statistics
that counts peaks in different redshift bins determined tomographically assuming the peaks are from
individual halos (Dietrich & Hartlap 2010). The joint1σ, 2σ and3σ constraints of the two are shown
by the regions delimited by the black contour lines. The+ symbol indicates the fiducial model. It is
seen that the peak statistics can give rise to constraints oncosmological parameters comparable to the
two-point cosmic shear correlation analyses. Including the redshift information can further improve
the constraints. With the advantage of its sensitivity to non-Gaussian information, the feasibility of
using weak-lensing peak statistics to probe the primordialnon-Gaussianity has also been analyzed
(Marian et al. 2011). It is shown that future Euclid-like surveys can constrainfNL to ∆fNL ∼ 10
(Marian et al. 2011). Beyond the abundance, further information from the peak correlation and the
peak profile can provide additional values to cosmological studies (Marian et al. 2013).

While it is clear that weak-lensing peak statistics can be animportant probe complementary to
cosmic shear correlation analyses, their applications in deriving cosmological parameter constraints
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Fig. 18 Expected constraints on(Ωm, σ8) derived from aperture mass peak abundances for a
CFHTLS-like180 deg2 survey reproduced from fig. 4 in Dietrich & Hartlap (2010). The green and
blue regions show1σ and2σ confidence ranges fromS andM statistics, respectively. The regions
delimited by the black contours are the joint1σ, 2σ and3σ constraints from the two peak statistics.
Printed with permission from the authors and by permission of Oxford University Press on behalf of
The Royal Astronomical Society.

rely on accurate predictions of relevant peak statistics for different cosmological models. From large
simulations, it is possible to generate a numerical libraryfor different model predictions with densely
sampled cosmological parameters. However, because of the large number of cosmological parame-
ters and the necessity to include different physical and observational effects, e.g., baryonic effects
(e.g., Yang et al. 2013a) and mask effects (e.g., Liu et al. 2014), such an approach can be computa-
tionally expensive. In addition, while simulations can give rise to results that combine all the effects,
theoretical understandings of different effects on peak analyses are crucially important. Therefore, it
is highly desirable to develop models for weak-lensing peakstatistics, either through fitting to sim-
ulation results with important physical quantities or parameters explicitly written out in the fitting
formula, or from theoretical considerations of the origin of weak-lensing peaks. The model shown
in Equation (96) is an example of the latter. Unfortunately,it is too simplified to be used in real
cosmological studies. By analyzing simulation results, Marian et al. (2009, 2010) find that with a
proper choice of a hierarchy of matched filters recursively applied to the projected mass density field
from the highest mass to the lower ones, the resulting 2D peakmass function follows very well the
scaling relation of the 3D mass function with respect to different cosmological models. Therefore
the cosmological dependence of the 2D peak mass function canpossibly be modeled by

nX = nfiducial
fit × nX

ST/n
fiducial
ST ,

wherenX is the predicted 2D peak mass function for the cosmological modelX ,nfiducial
fit is the fitted

2D peak mass function for the fiducial model derived from simulations, andnX
ST andnfiducial

ST are
the corresponding 3D Sheth-Tormen mass functions (Marian et al. 2010). In Hamana et al. (2004,
2012), they derive, from simulation results, a fitting formula for the abundance of weak-lensing
convergence peaks that modifies Equation (96) by taking intoaccount the bias and scatter of the
peak height induced by the noise from intrinsic ellipticities of source galaxies, the non-spherical
mass distribution of halos and the projection effect from LSSs.

In Fan et al. (2010), we develop a model for weak-lensing peakabundances including the noise
effects modeled as a Gaussian random field. We consider halo regions and regions away from halos
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separately. In a particular halo region, the smoothed convergence field can be modeled as

KN = K +N ,

whereK is for the smoothed signal from the halo andN is the Gaussian random field from noise.
Assuming a knownK, e.g., following the NFW halo profile, the peak abundance of the fieldKN,
which is also a Gaussian random field, can be calculated theoretically. Compared to the pure noise
case, the peak abundance is modified by the halo’s mass distribution. For the highest peak corre-
sponding to the halo, its height is altered by the existence of noiseN generating both scatters and a
systematic bias toward higher values. The bias depends on the density profile of the halo. This, in a
certain sense, provides a theoretical explanation for the fitting result of Hamana et al. (2004, 2012).
By employing the halo mass function, we can then calculate the peak abundance in halo regions. For
regions outside halos, we simply calculate the peak abundance fromN . The total peak abundance
is the sum of the two parts (Fan et al. 2010). It is noted that inour modeling, the peaks in a halo
region are counted individually. Therefore when finding peaks from weak-lensing maps, we do not
combine peaks that are close together to form a single peak assome of the analyses do (Hamana
et al. 2012).

In Figure 19, we show the derivatives of the peak abundance with respect toσ8 (left panel) and
Ωm (right panel). Here we considerng = 30 arcmin−2 andσǫs = 0.4, and a Gaussian smoothing
with θG = 1′. We only include the noise from intrinsic ellipticities of source galaxies in the theoret-
ical calculation. The blue symbols and the error bars are theaverage values and corresponding1σ
variations computed from64 sets of simulated maps of3 × 3 deg2 with differentσ8 andΩm. The
shaded regions are the1σ variations from one set of maps to another. It is seen that within the error
ranges, our theoretical predictions (red lines) agree withthe simulation results very well. The green
lines using the simple model of Equation (96) without accounting for the noise effects overpredict
the cosmological information in peak abundances for relatively low peaks withν ≤ 5.

Figure 20 shows the peak number distributions and the expected cosmological constraints for
a 3 × 3 deg2 survey. From the left panel, we see that without including the effects of noise (black
histograms), the number of peaks are systematically underestimated. On the other hand, our model
predictions (red histograms) are in good agreement with thesimulation results (blue histograms). The
right panel shows the derived constraints on(Ωm, σ8) from a survey of3 × 3 deg2 with the ‘data’
constructed from the simulations for the fiducial model and the theoretical predictions calculated
from the model of Fan et al. (2010). In the fitting analyses, wetake into account the covariance of
the number of peaks between different bins. It is seen that the best fit values shown by the red symbol
are consistent with the fiducial ones (blue symbol) with little bias noting the degeneracy of the two
parameters indicated approximately by the dotted line. This demonstrates the applicability of our
model. Details of the analyses can be found in Liu et al. (2014).

We note that the current model of Fan et al. (2010) concerns high peaks and considers the dom-
inant shape noise from intrinsic ellipticities of source galaxies. The projection effects from LSSs
contribute extra ‘noise’ affecting signals from individual halos. They can also generate peaks them-
selves. These peaks are relatively low and not dominated by single halos (e.g., Yang et al. 2011).
Different from the shape noise, the projection effects themselves contain important cosmological in-
formation. In Maturi et al. (2010), they propose a theoretical model for weak-lensing peak statistics
caused by the projection effects of LSSs and the shape noise of source galaxies by assuming that they
can be described by a Gaussian random field. By comparing withsimulations, it is shown that the
model can predict well the peak counts for peaks withν < 5, and underestimate the high peaks. This
is understandable because high peaks are dominantly from single halos that are highly non-Gaussian.
Our model from Fan et al. (2010) combines the contribution from individual halos and the Gaussian
random field from shape noise. It should be readily extended to include the projection effects in the
Gaussian random field. Then all the calculations are basically the same with the only change being
the inclusion of the power spectrum from the projection effects. In this approach, we can in principle
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Fig. 19 Derivatives of the peak abundances with respect toσ8 (left) andΩm (right) reproduced from
fig. 6 in Liu et al. (2014). The blue symbols with error bars arethe average results and their1σ errors
calculated from64 sets of simulated maps with differentΩm andσ8, and the shaded regions show
the1σ variations from map to map (3 × 3 deg2 each). The red lines are the theoretical predictions
from our model of Fan et al. (2010), and the green dashed linesare from the model of Eq. (96).
Printed with permission from the authors and by permission of the AAS.
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Fig. 20 Number distribution of peaks (left) and the expected cosmological constraints on(Ωm, σ8)
from a survey of3 × 3 deg2 (right), reproduced from fig. 7 in Liu et al. (2014). In the left panel,
the results from simulations by averaging over128 maps for the fiducial model are shown by blue
histograms. The error bars indicate the1σ variations from map to map. The red histograms are for
the predictions of Fan et al. (2010), and the black histograms are for the results from Eq. (96). The
right panel shows the corresponding constraints derived from the peak number distribution. The
theoretical predictions are calculated from the model of Fan et al. (2010), and the data are from the
simulations for the fiducial model (blue histograms in the left panel). The(Ωm, σ8) of the fiducial
model are shown by the blue “*” symbol. The best fit values are shown by the red “+” symbol.
Printed with permission from the authors and by permission of the AAS.
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model the peaks over a large range of S/N, from low to high. Oneimportant issue to be investigated
carefully is the determination of the mass scale above whichsingle halos are responsible dominantly
for the corresponding peak signals. The power spectrum describing the large-scale projection effects
should then exclude the contributions from those massive halos.

Observationally, current weak-lensing peak analyses are still limited by relatively large statisti-
cal errors because of limited survey areas (e.g., Shan et al.2012; Hamana et al. 2012). However, its
feasibility for cosmological studies has begun to emerge. For example, by analyzing the64 deg2 of
the CFHTLS W1 field, Shan et al. (2012) detect∼ 1000 peaks with S/Nν > 3. Future weak-lensing
surveys covering∼ 5000−20 000 deg2 survey areas will be able to give rise to, on the order of,
∼ 100 000 peaks for cosmological analyses. With much reduced statistical errors, precision cosmo-
logical studies ask for thorough understandings of different systematic effects. The accurate mod-
eling of peak statistics either theoretically or from simulation libraries is critical. It is worth noting
that with a theoretical model explicitly including the density profile of dark matter halos, such as the
model of Fan et al. (2010), future weak-lensing peak analyses from large surveys can in principle
allow us to constrain the halo density profile simultaneously with other cosmological parameters.
This, on the one hand, can return to us more physical information about the formation and evolu-
tion of halos, and on the other hand, can also reduce the potential bias in cosmological parameter
constraints arising from the incorrect pre-assumption about the density profile of dark matter halos.

4.4 Galaxy-galaxy Lensing

Galaxy-galaxy (g-g) lensing is named for analyzing weak-lensing signals of background galaxies
around a selected sample of foreground lens galaxies (e.g.,Miralda-Escude 1996; Squires & Kaiser
1996; Guzik & Seljak 2001). By stacking the signals over the foreground galaxies in the sample,
g-g lensing analyses can statistically probe the mass distribution down to galactic scales, though not
individually (e.g., Tyson et al. 1984; Brainerd et al. 1996;Kovner & Milgrom 1987; Schneider & Rix
1997; Hudson et al. 1998; Hoekstra et al. 2003; Mandelbaum etal. 2006, 2008; Pastor Mira et al.
2011; Li et al. 2013; Gillis et al. 2013; Hudson et al. 2013; Brimioulle et al. 2013). Furthermore,
g-g lensing provides us a unique way to study the correlationbetween the properties of galaxies and
those of their dark matter halos, and therefore to test the theory of galaxy formation (e.g., Hoekstra
et al. 2002; Fan 2003; Mandelbaum et al. 2005; Li et al. 2009b;Reyes et al. 2012; Miyatake et al.
2013; Velander et al. 2014). In cosmological studies, g-g lensing measurements can also be helpful
in breaking the degeneracy between the bias factor of the galaxy distribution with respect to that of
the dark matter and the amplitude of dark matter density perturbations involved in galaxy clustering
analyses. Therefore the combination of g-g lensing and galaxy clustering analyses can give rise to
better cosmological constraints than that using galaxy clustering alone (e.g., Seljak et al. 2005; Yoo
et al. 2006; Baldauf et al. 2010; Mandelbaum et al. 2013; van den Bosch et al. 2013; More et al.
2013; Cacciato et al. 2013).

For g-g lensing, it analyzes shear signals around foreground lens galaxies. The mean tangential
shear〈γt〉(R) along the boundary of a circular aperture of radiusR around a lens galaxy is linked to
the mean convergencēκ(< R) inside the aperture by (e.g., Miralda-Escude 1996; Squires& Kaiser
1996)

〈γt〉(R) = −1

2

dκ̄(< R)

d lnR
= κ̄(< R) − κ̄(R), (97)

whereκ̄(R) is the meanκ atR. For a single lens galaxy, its weak-lensing signals are hardly de-
tectable from background galaxies noting their much largerintrinsic ellipticities. We thus need to
stack the signals over a sample of foreground lens galaxies.This effectively increases the number
density of source galaxies tongNlens and, consequently, enhances the S/N by

√
Nlens times com-

pared to that from a single lens galaxy, whereNlens is the number of lens galaxies to be stacked and
ng is the surface number density of background galaxies. Therefore, statistically, g-g lensing probes
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the matter-galaxy cross correlation with the contributionfrom uncorrelated structures along lines
of sight being averaged out. Specifically, on average, in comoving coordinates we can writēκ(R)
around foreground galaxies at a known redshiftzl with background galaxies atzs as (e.g., Guzik &
Seljak 2001)

κ̄(R) =

∫

ρm

Σ̃cr(χ, χs)

[

1 + ξg,dm(r)
]

dχ, (98)

whereξg,dm is the 3D matter-galaxy cross correlation,r = r(R,χl, χ) andR are the 3D comoving
distance and the 2D projected comoving distance to the lens galaxy, respectively, andχl, χ andχs

are the radial comoving distances to the lens galaxy, to the matter that contributes to the lensing
signal and to the background source galaxies, respectively. The quantityΣ̃cr is the lensing critical
density in comoving coordinates with

Σ̃cr = a(χ)fK(χs)/
[

4πGfK(χ)fK(χs − χ)
]

andρm is the comoving matter density of the Universe. ThusΣ̃−1
cr reflects the lensing efficiency for

the matter distribution atχ. Given the typical correlation scale ofξg,dm, the dominant contribution
to the lensing signals is from the matter distribution closely around lens galaxies. Thus at givenzl,
Σ̃cr can be moved out of the integration in Equation (98). We then have approximately

Σ̃cr〈γt〉(R) = Σ̄(< R) − Σ̄(R) = ∆Σ(R) , (99)

where

Σ̄(R) =

∫

ρm

[

1 + ξg,dm(r)
]

dχ . (100)

Thus g-g lensing leads to an estimate of the excess surface mass density (ESD)∆Σ(R). Note that the
inclusion of the constant term1 in the square bracket in Equation (98) is for relatingκ̄ to Σ̄(R)/Σ̃cr,
and it is canceled out in∆Σ(R).

For observations with known redshift information for individual source and lens galaxies, we
can calculatẽΣcr for each source-lens pair, and the average quantity〈Σ̃crγt(R)〉 over all the pairs
gives rise to a measure of ESD averaged over the lens sample. In the case of known redshifts for
lens galaxies but not for individual source galaxies, we canget the effectivẽΣzl

cr and the average
γt(R)zl at eachzl by averaging overzs with the source redshift distribution ofps(zs). Then the
mean ESD over the lens sample can be obtained by averagingΣ̃zl

crγt(R)zl over the lens galaxies. If
the individual redshifts for lens galaxies are also unknownand their redshift distribution is wide, the
direct measure of〈γt〉(θ) leads tōκ(< θ) − κ̄(θ) whereθ = R(χl)/fK(χl) is the projected angular
distance to the lens galaxy, and (e.g., Guzik & Seljak 2001)

κ̄(θ) = 6π2

(

H0

c

)2

Ωm

∫ χH

0

dχ plens(χ)
W (χ)

a(χ)

×
∫

k dk Pg,dm(k, χ)
2J1[kfK(χ)θ]

kfK(χ)θ
, (101)

and

〈γt〉(θ) = κ̄(< θ) − κ̄(θ)

= 6π2

(

H0

c

)2

Ωm

∫ χH

0

dχ plens(χ)
W (χ)

a(χ)

×
∫

k dk Pg,dm(k, χ)
2J2[kfK(χ)θ]

kfK(χ)θ
, (102)
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wherePg,dm(k, χ) is the matter-galaxy cross-power spectrum,plens(χ) is for the lens distribution,

W (χ) = fK(χ)

∫ χH

χ

ps(χ
′)

[

fK(χ′ − χ)/fK(χ′)
]

dχ′ ,

andJ1 andJ2 are the Bessel functions.
Figure 21 presents the ESD∆Σ from g-g lensing analyses of Mandelbaum et al. (2006) with

SDSS (left) and Velander et al. (2014) with CFHTLenS (right). The lens galaxies are divided into
different luminosity bins. In each bin, the lensing signalsaround early-type (red in the left panels
and dark purple in the right panels) and late-type (blue in the left and green in the right) galaxies are
analyzed separately. Both measurements clearly show that the ESD increases with the luminosity,
and statistically, late-type galaxies reside in halos lessmassive than those hosting early-type galaxies.
The lines in each panel are the fitting results using the halo model (Mandelbaum et al. 2006; Velander
et al. 2014). Note that the considered scale covers the rangefrom∼ 10 kpc to∼ 10 Mpc, i.e., from
galactic scales to cluster scales and even beyond. Thus, besides the halos directly hosting the lens
galaxies, the ESD shown in Figure 21 also reflects the environment of the lens galaxies. For galaxies
in a given luminosity bin, some are central galaxies in clusters, and some are satellite galaxies.
The halo mass distributions of the central and the satellitegalaxies are different. Therefore in the
theoretical modeling of g-g lensing, they should be considered differently (e.g., Seljak et al. 2005;
Mandelbaum et al. 2005, 2006; van Uitert et al. 2011; Cacciato et al. 2014; Velander et al. 2014).
The halo model fitting shown in Figure 21 takes into account the differences of the two classes of
lens galaxies (Mandelbaum et al. 2006; Velander et al. 2014). For the CFHTLenS analyses, because
the measurements extend to large scales, the two-halo termsare also included in the modeling. In
addition, the baryonic matter contribution from the mean stellar mass of lens galaxies is also put in
by modeling it as a point source (Velander et al. 2014). By employing the halo model, g-g lensing
observations can then set constraints on the relevant parameters, such as the luminosity-mass relation
for central galaxies, the fractional contribution of satellite galaxies for a given luminosity bin, etc.

Figure 22 shows the constraints on the luminosity-mass (left) and stellar mass-halo mass (right)
relations derived from different g-g observations (Velander et al. 2014). Given the somewhat dif-
ferent classifications of different types of lens galaxies and theoretical modeling, the results from
different observations are in broad agreement with each other. For the satellite fraction, it is found
that for early-type/red galaxies, it is about 0.5 for lens galaxies with luminosityLr ∼ 1010L⊙, and
decreases for brighter lens galaxies. On the other hand, forlate-type/blue galaxies, the fraction is
low for all the luminosity bins, indicating that they are mostly isolated galaxies (Mandelbaum et al.
2006; Velander et al. 2014).

While the g-g lensing alone can provide valuable information, more can be learned by combining
with galaxy clustering analyses. In Li et al. (2009b), we usethe group catalog constructed from
SDSS DR4 by Yang et al. (2007) to model the g-g lensing signals. With the group catalog, the
information about central and satellite galaxies is known,and therefore we do not need to involve
the free parameter(s) for satellite fractions in differentbins. With the ranking method, the mass of
parent halos for groups and the mass of subhalos for satellite galaxies at the time of their accretion
into parent halos can be assigned (Yang et al. 2007; Giocoli et al. 2008; Li et al. 2009b). Taking
into account the tidal disruption of subhalos afterwards inthe merging process, we can then model
the g-g lensing signals assuming known density profiles for parent and subhalos, respectively. We
note that for different cosmological models, the mass assignment can be different, and thus different
lensing signals can be expected. In comparison with observational results, g-g lensing analyses in
combination with galaxy clustering information can thus set constraints on cosmological parameters.

We show the cosmology dependence of the lensing signals fromLi et al. (2009b) in Figure 23.
The symbols with error bars are the results of Mandelbaum et al. (2006) using SDSS. The solid
and dotted lines are the predictions of WMAP3 (Spergel et al.2007) and WMAP1 (Spergel et al.
2003) cosmological models, respectively. The differencesof the results from the two cosmological
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Fig. 21 Galaxy-galaxy lensing measurements from SDSS reproduced from fig. 2 in Mandelbaum
et al. (2006) (left) and from CFHTLenS reproduced from fig. 5 in Velander et al. (2014) (right),
respectively. Different panels show the results of ESD for lens galaxies in different luminosity bins
as specified therein. In the left (right) panels, the red (dark purple) and blue (green) symbols with
error bars are the observational results for early and late-type lens galaxies, respectively. The corre-
sponding lines are for the fitting results of the halo model. Printed with permission from the authors
and by permission of Oxford University Press on behalf of TheRoyal Astronomical Society.

Fig. 22 Constraints on the luminosity-mass (left) and stellar mass-halo mass (right) relation for
central galaxies derived from galaxy-galaxy lensing analyses, reproduced from fig. 12 in Velander
et al. (2014). The results from Velander et al. (2014) using CFHTLenS, van Uitert et al. (2011) using
RCS2 and Mandelbaum et al. (2006) using SDSS are shown for theluminosity-mass relation in the
left panels. In the right panels, an additional result from Leauthaud et al. (2012) using COSMOS
is also shown. Note that the COSMOS result is the same in the upper and lower right panels with
no distinctions between red and blue lens galaxies. Printedwith permission from the authors and by
permission of Oxford University Press on behalf of The RoyalAstronomical Society.
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Fig. 23 Galaxy-galaxy lensing results reproduced from fig. 8 in Li etal. (2009b). The symbols with
error bars are the observational results of Mandelbaum et al. (2006) for different luminosity bins
using SDSS. The solid lines are the theoretical results predicted from Li et al. (2009b) based on
the group catalog of Yang et al. (2007) using cosmological parameters consistent with those from
WMAP3. The dotted lines are the theoretical results for the WMAP1 cosmological model. Printed
with permission from the authors and by permission of OxfordUniversity Press on behalf of The
Royal Astronomical Society.

models are clearly seen. The observational results agree better with the WMAP3 cosmology for high
luminosity bins. For low luminosity bins, WMAP1 seems to fit the observations better. It is noted
that the most up-to-date observations showσ8 ≈ 0.83 for flatΛCDM, in between that from WMAP1
with σ8 ≈ 0.9 and that from WMAP3 withσ8 ≈ 0.75 (e.g., Planck Collaboration et al. 2013a).

With galaxy group catalogs, we can also measure the g-g lensing effects around selected satellite
galaxies and therefore to directly probe the properties of their subhalos (e.g., Li et al. 2013). The
application of such analyses to the CFHT/MegaCam Stripe-82Survey has resulted in the first clear
detection of g-g lensing signals around satellite galaxies(Li et al. 2014). The left plot of Figure 24
shows the measured g-g lensing signals around satellite galaxies in parent halos with assigned mass
in the range1013 h−1 M⊙ ≤M ≤ 5 × 1014 h−1 M⊙. The locationrp of the satellites to the center
of their parent halos is shown in each panel. In the left panels of this plot, the black solid lines are
the fiducial model predictions, and the green and red lines are the predictions taking into account the
center offsets using two different models. The solid black lines in the right panels of this plot are the
results from the best fit model to the data. The right plot shows the derived constraints on the host
halo massM , the distancerp and subhalo massMsub using data shown in the upper panels of the
left plot (Li et al. 2014). It is seen that current data can already give rise to reasonable constraints on
these quantities. Future LSST-like surveys can detect subhalo lensing signals with much higher S/N
and therefore can potentially constrain the properties of subhalos much better (Li et al. 2014).

Recently, by combining the g-g lensing and the two-point autocorrelation function of galaxies
from SDSS DR7, Mandelbaum et al. (2013) demonstrate the feasibility and the added value of using
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Fig. 24 Galaxy-galaxy lensing signals around satellite galaxies measured from the CFHT/MegaCam
Stripe-82 Survey (left) and the constraints derived from the data shown in the upperright panel of
the left plot (right), reproduced from figure 1 and figure 4, respectively, in Li etal. (2014), with
permission from the authors and by permission of Oxford University Press on behalf of The Royal
Astronomical Society.

Fig. 25 (σ8, Ωm) constraints for flatΛCDM, reproduced from fig. 14 in Mandelbaum et al. (2013).
The black contours are from the joint analyses of galaxy-galaxy lensing and the galaxy autocorre-
lation using SDSS DR7. The red contours are from WMAP7. The filled contours are the combined
results of the two. Printed with permission from the authorsand by permission of Oxford University
Press on behalf of The Royal Astronomical Society.

g-g lensing analyses in constraining cosmological parameters. By suitably eliminating small scale
g-g lensing and galaxy autocorrelation signals, complications from the detailed galaxy distribution
within dark matter halos and the effects of baryonic physicscan be controlled. Then by assuming
that the galaxy distribution is solely determined by the matter distribution, the galaxy number density
field can be written as the Taylor expansion of the matter density field. Therefore the g-g lensing
signals that are related toρmξgm and the autocorrelation function of galaxiesξgg can be calculated
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in terms of the linear bias factor and quadratic bias factor,and the nonlinear matter power spectrum
times the matter density of the Universe (Baldauf et al. 2010; Mandelbaum et al. 2013). The joint
observational analyses of the g-g lensing and the galaxy autocorrelation can thus constrain the galaxy
bias and the matter power spectrum separately to break theirdegeneracy which exists in the galaxy
autocorrelation. This in turn leads to better constraints on the cosmological parameters. Figure 25
shows the constraining result for(σ8,Ωm) in flat ΛCDM from Mandelbaum et al. (2013), where the
black contours are from the joint analyses of g-g lensing andthe galaxy autocorrelation using SDSS
DR7, the red contours are from WMAP7 data, and the filled contours are the combined result of the
two. The different directions of the black and red contours demonstrate the great value of including
the g-g lensing data in the analyses. Similar studies have been done by Cacciato et al. (2013) who
include the small scale information in the analyses by usingthe conditional luminosity function
(CLF) to populate galaxies in dark matter halos (van den Bosch et al. 2013; More et al. 2013). They
show that in principle, the cosmological parameters and thehalo-galaxy connection through the CLF
can be constrained simultaneously.

Beyond the two-point g-g lensing analyses, higher order studies carry additional cosmologi-
cal information. Using CFHTLenS data, Simon et al. (2013) recently report the first measurements
of galaxy-galaxy-galaxy lensing signals of〈N2

gMap〉 and〈NgM
2
ap〉 with high significance, where

〈N2
gMap〉 is related to lensing signals around lens galaxy pairs and〈NgM

2
ap〉 represents excess

shear correlations around lens galaxies. Such studies can be used to probe the bispectrum of the
matter-galaxy connection for further understanding the formation and evolution of different types of
galaxies (Simon et al. 2013).

5 DISCUSSION

For large-scale cosmic shear studies, current Stage II weak-lensing observations have reached∼
150 deg2 with ng ∼ 15 arcmin−2 (e.g., Erben et al. 2013). Careful data analyses have demonstrated
the cosmological applicability of the weak-lensing effect(e.g., Heymans et al. 2012; Kilbinger et al.
2013). For g-g lensing analyses, shallow but wide surveys, such as SDSS, have also yielded fruitful
results (Mandelbaum et al. 2013). For individual cluster studies, analyses have been done for about∼
100 clusters resulting in constraints on the mass and density profile of associated dark matter halos,
and providing mass calibrations for other observables, such as X-ray, SZ and optical richness (Okabe
et al. 2013). Stage III projects represented by the Dark Energy Survey (The Dark Energy Survey
Collaboration 2005) and the Hyper Suprime Cam survey (HSC Design Review 2009) are beginning
to be functional. The scale of such surveys will reach a few thousand square degrees with depth
similar to if not deeper than that of CFHTLenS. Therefore thedata expected from these surveys will
be about1.5 order of magnitude more than the available data sets to date,which will considerably
increase our knowledge about the dark matter distribution in the Universe, from galactic scales to
superclusters of galaxies. This in turn will advance our understanding about the physical properties of
dark matter, and the formation and evolution of galaxies presumably formed inside dark matter halos
(e.g, van den Bosch et al. 2013; Kang et al. 2013). The derivedcosmological parameter constraints
together with other cosmological probes can be tightened, reaching∼ 1% level of precision for
σ8 and improving the Figure of Merit of(w0, wa) for dark energy by a factor of2 − 5 depending
on the control of systematics (e.g., Weinberg et al. 2013b,a; Albrecht et al. 2006). Stage IV weak-
lensing observations, expected to be in operation around orafter 2020, include notably the ground-
based Large Synoptic Survey Telescope (LSST) (LSST ScienceCollaboration et al. 2009; LSST
Dark Energy Science Collaboration 2012), and the space missions of Euclid (Laureijs et al. 2011;
Amendola et al. 2013; Amiaux et al. 2012) and WFIRST (Spergelet al. 2013). With six optical filters,
LSST will cover a survey area of∼ 20 000 deg2. The surface number density of source galaxiesng

usable for weak-lensing analyses is expected to be close to30 − 40 arcmin−2. Euclid will have a
very broad band filter in optical for weak-lensing shape measurements, and three near infrared filters
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Y , J , H for photometric redshift estimates. The planned survey area is∼ 15 000 deg2, andng ∼
20 arcmin−2. Thus we expect that both LSST and Euclid can obtain images for a few billion galaxies
for weak-lensing analyses. Mainly operating in infrared bands, WFIRST weak-lensing observations
target∼ 2000 deg2 with ng ∼ 70 arcmin−2, reaching higher redshift than that of LSST and Euclid.
Thus WFIRST will be greatly important in probing the growth of LSSs, and therefore the law of
gravity. The Stage IV surveys aim at ambitious goals to studythe nature of dark energy, gravity and
dark matter. Taking the equation of state of dark energy as anexample, we show in Figure 26 the
current constraints on(w0, wa) from Xia et al. (2013) using the most up-to-date observational data. It
is seen that the cosmological constant with(w0, wa) = (−1, 0) is consistent with the data at the level
of 1σ−2σ. The allowed range for dynamical dark energy is still ratherlarge. In other words, current
data cannot clearly reveal if the dark energy is in the form ofa cosmological constant or is dynamical
in nature. Stage IV observations are designed to reach the level of constraints for∆w0 ∼ 0.01 and
∆wa ∼ 0.1. Then the best fit dynamical model obtained by the current data can be distinguished
well from the cosmological constant at a high significance level, and thus the fundamental question
regarding the nature of dark energy can be expected to be answered decisively.

However, the full realization of their statistical power for future large surveys crucially depends
on our understandings about different systematic effects.For weak-lensing studies, the principal
systematics from the observational side are the errors in galaxy shape measurements and those in the
estimations of photometric redshifts, critical for tomographic analyses (e.g., Weinberg et al. 2013b).
The weak-lensing induced shape distortion is typically on the order of1% in cosmic shear regimes
and can be larger in cluster regions. But even for cluster induced signals, they are still much smaller
than the intrinsic ellipticities of galaxies withσǫs ∼ 0.2−0.4. Furthermore, as discussed in Section 3,
the observed images experience the influences of telescope optics and atmospheric disturbances for
ground based observations. Such PSF effects must be carefully modeled in order to obtain accurate
weak-lensing signals for high precision cosmological studies.

Extensive studies have been done to discuss the tolerance level of the systematic errors in shape
measurements, focusing on cosmic shear two-point correlation (power spectrum) analyses (e.g.,
Amara & Réfrégier 2008; Chang et al. 2013; Massey et al. 2013).

Figure 27 shows the bias on the dark energy equation-of-state parameterw induced by the
additive (left) and multiplicative (right) errors in shapemeasurements (Massey et al. 2013). Here
the baseline Stage IV survey is15 000 deg2 with ng = 30 arcmin−2 and a median redshift of1.
The source galaxies are split into10 redshift bins in the tomographic weak-lensing power spectrum
analyses. The effects of the errors on shear measurements are written in the form of̂γ = (1 +
m)γ + c where γ̂ andγ are the measured and the true shear signals, respectively, and m and c
represent the multiplicative and additive errors, respectively. Correspondingly, the measured cross-
power spectrum between redshift bins atzA andzB is written as

Ĉ(l, zA, zB) =
[

1 +M(l, zA, zB)
]

C(l, zA, zB) +A(l, zA, zB) .

The quantitiesĀ andM̄ in the plots are defined, respectively, by

Ā =
[

∑

zbins

(1/2π)

∫ lmax

lmin

|A(l, zA, zB)|l2d ln l
]

/NA ,

M̄ =
[

∑

zbins

(1/2π)

∫ lmax

lmin

|M(l, zA, zB)|l2d ln l
]

/NM ,

with

NA = NM =
[

∑

zbins

(1/2π)

∫ lmax

lmin

l2d ln l
]
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Fig. 26 The current constraints on(w0, wa), reprinted with permission from fig. 4 in Xia et al.
(2013). Copyright(2013) by the American Physical Society.

Fig. 27 Bias onw, the equation-of-state parameter of dark energy, induced by the additive (left) and
multiplicative (right) errors for shape measurements, reproduced from fig. 3 in Massey et al. (2013).
Each black point shows the result for a random realization ofsystematics with a unique dependence
on angular scale and redshift. The dotted lines show the results with constant shear measurement
systematics. The solid lines show limiting values including 95% and99% of random realizations.
Printed with permission from the authors and by permission of Oxford University Press on behalf of
The Royal Astronomical Society.

(Massey et al. 2013). It is seen that in order to control the bias to be less than0.31σ with σ being the
statistical error, we requirēA ≤ 3.5× 10−12 if M = 0 andM̄ ≤ 8.0× 10−3 if A = 0. Considering
the coexistence ofA andM , the requirements for̄A andM̄ should be tighter by a factor of two or
so (Massey et al. 2013).

The accuracy of the galaxy shape measurements depends on thePSF modeling, corrections for
other non-convolutive errors, and image processing algorithms. Tremendous efforts have been made
to evaluate the performances of different shape measurement methods. A number of challenging pro-
grams have been conducted based on simulated data with increasing complications that resemble real
observations, including the STEP (Heymans et al. 2006; Massey et al. 2007), GREAT08 Challenge
(Bridle et al. 2009, 2010), GREAT10 Challenge (Kitching et al. 2011, 2012, 2013) and the current
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ongoing GREAT3 Challenge (Mandelbaum et al. 2014). Studiesspecific to different surveys have
also been carried out (e.g., Chang et al. 2013). The general conclusion from these investigations is
that the accuracies achieved by the best shape measurement algorithms currently available are not
fully sufficient for the realization of the statistical power for Stage IV surveys, although they are not
pessimistically far from the requirements (e.g., Kitchinget al. 2012; Chang et al. 2013; Massey et al.
2013). Further careful studies are intensively ongoing, and it is believed that by the time or even
before the Stage IV projects are in place, systematic errorsin shape measurements can be controlled
well and they should not be major obstacles for high precision weak-lensing cosmological studies
(e.g., Massey et al. 2013; Mandelbaum et al. 2014, and references therein).

Because lensing effects are sensitive to positions of background galaxies, another important
source of errors for precision weak-lensing studies comes from uncertainties in the redshift informa-
tion for faint source galaxies. In particular, tomographicweak-lensing analyses by dividing source
galaxies into multiple redshift bins can significantly boost the amount of cosmological information
compared to 2D analyses, and have become one of the key parts of weak-lensing studies for fu-
ture surveys (e.g., Hu 1999; Schrabback et al. 2010; Benjamin et al. 2013). For that, we need to
measure the redshift for every single source galaxy. Obtaining accurate spectroscopic redshifts for
individual galaxies is infeasible even for the current generation of weak-lensing surveys involving
a few million source galaxies, needless to say for future Stage III and Stage IV surveys targeting
hundreds of millions to a few billion galaxies with mean redshift close toz ∼ 1 or higher. Therefore
photometric redshift (photo-z) determinations from multi-filter photometry become a necessary part
of weak-lensing surveys. Photo-z measurements rely on the characteristic SED features of galax-
ies. Their precisions depend on the observed wavelength coverage, filter sets, photometric accuracy,
our understanding about the physical properties of galaxies in the sample and so on (e.g., Abdalla
et al. 2008; Ilbert et al. 2009; Hildebrandt et al. 2012). Different algorithms have been developed
for photo-z determination, either based on template fitting or on sets oftraining data with known
spectroscopic redshifts (e.g., Hildebrandt et al. 2010; Abdalla et al. 2011; Dahlen et al. 2013). The
specific choice of the templates and training data can also introduce errors to the determination
of photo-z if they are not representative for the considered galaxy samples (e.g., Abrahamse et al.
2011).

Because the errors in photo-z determinations are inevitable, their impacts on weak-lensing cos-
mological studies are then among the issues in the field that are of most concern. The systematic
bias of photo-z zp with respect to the true redshiftzspec, the scatter of(zp − zspec), and the fraction
of outliers with large|zp − zspec|, or more completely, the distribution of(zp − zspec), depend on
measurements of photo-z. If we precisely know the bias and the outlier fraction, theycan in principle
be included in the modeling and thus be potentially correctable. The scatters contribute to statisti-
cal errors in cosmological parameter constraints, and sucherrors increase relatively mildly with the
increase of scatters in photo-z (e.g., Ma et al. 2006; Zhan 2006; Newman et al. 2013). More seri-
ously, the uncertainties in the bias, the scatter and the outlier fraction, namely errors on errors, can
significantly degrade constraints on the cosmological parameters. Studies show that in order to limit
the degradation of constraints on the dark energy parameters to be less than1.5, these uncertainties
need to be known to a precision better than∼ 10−3 (e.g., Ma et al. 2006; Ma & Bernstein 2008; Sun
et al. 2009; Bernstein & Huterer 2010; Hearin et al. 2010). This requires high-quality calibrations of
photo-z. Direct calibrations using spectroscopically determinedredshifts demand an order of105 for
spectroscopic redshifts spanning the redshift range of theconsidered photometric sample (e.g., Ma
& Bernstein 2008; Hearin et al. 2010). The sample variance ofthe spectroscopic data can introduce
additional effects on calibration of photo-z and needs to be carefully taken into account when design-
ing spectroscopic follow-up surveys (e.g., Cunha et al. 2012). Involving cross-correlation techniques
through galaxy clustering can provide self-calibrations for photo-z and thus mitigate the stringent
requirements for spectroscopic redshift measurements (e.g., Zhan 2006; Newman 2008; Zhang et al.
2010; Newman et al. 2013; Rhodes et al. 2013, and references therein).
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Apart from observational uncertainties, different astrophysical effects can also impact weak-
lensing cosmological studies. Accurate understanding andmodeling of the nonlinear evolution of
LSSs and baryonic effects are highly desired for extending the analyses to small scales where weak-
lensing effects are significant (e.g., Zhan & Knox 2004; Huterer & Takada 2005; Jing et al. 2006;
Kitching & Taylor 2011; Takahashi et al. 2012; Hearin et al. 2012; Yang et al. 2013a; Zentner et al.
2013; Semboloni et al. 2013). The intrinsic alignments of galaxies, arising from either the physical
connection of close pairs of galaxies or the lensing effectsof foreground halos on background galax-
ies, can considerably contaminate the cosmic shear correlation analyses (e.g., Hirata et al. 2007;
Joachimi et al. 2013; Heymans et al. 2013). On the other hand,these effects themselves carry im-
portant information about the astrophysical processes related to galaxy formation. With a proper
understanding and modeling for their characteristic behaviors, the intrinsic alignments of galaxies
can potentially be separated from weak-lensing effects, and thus their systematic effects on cosmo-
logical parameter determinations can be significantly reduced. Moreover, such an approach can also
provide constraints on the intrinsic alignments, and therefore probe the galaxy formation simultane-
ously from weak-lensing observations, though at a cost of somewhat losing statistical accuracy (e.g.,
King & Schneider 2003; Fan 2007; van den Bosch et al. 2013; More et al. 2013; Heymans et al.
2013).

It should be emphasized that the impacts of observational orastrophysical effects can be different
for different weak-lensing analyses. Most of the above mentioned requirements, e.g., the accuracy of
shape measurement and of photo-z, are derived from two-point correlation/power spectrum studies.
Other statistical quantities, such as higher-order correlations, g-g lensing and peak abundance, may
require different systematic controls. To fully realize the power of future large weak-lensing sur-
veys, careful investigations of systematic effects for different weak-lensing studies are needed. Joint
analyses of multiple statistical quantities related to weak lensing should be helpful to diagnose the
possible existence of systematic effects, and further to reduce their impacts on cosmological studies
(e.g., Weinberg et al. 2013b).

In this paper, we focus our discussions on weak-lensing shear signals obtained by accurately
measuring shapes of faint galaxies. However, they are not the only observables related to weak lens-
ing. Weak-lensing magnification can affect the observed size, flux and therefore the number density
of background objects (e.g., Bartelmann & Schneider 2001; Zhang & Pen 2005; van Waerbeke 2010;
Bauer et al. 2011; Mao et al. 2012; Morrison et al. 2012; Ford et al. 2014; Yang et al. 2013b). Higher
order weak-lensing effects, such as flexion, can reveal moredetailed structures about the distribution
of dark matter (e.g., Goldberg & Bacon 2005; Bartelmann et al. 2013; Er & Bartelmann 2013; Rowe
et al. 2013). Compared with other cosmological probes, the full potential of weak-lensing cosmo-
logical studies is far from being achieved by current observations. Future large surveys will bring
weak-lensing analyses to the central stage of cosmologicalstudies. The complete matrix involving
different weak-lensing observables and statistical analyses will be in place, which is expected to
greatly improve our understanding about the dark side of theUniverse.
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Bahé, Y. M., McCarthy, I. G., & King, L. J. 2012, MNRAS, 421, 1073
Baldauf, T., Smith, R. E., Seljak, U., & Mandelbaum, R. 2010,Phys. Rev. D, 81, 063531
Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15
Bartelmann, M. 1995, A&A, 303, 643
Bartelmann, M., King, L. J., & Schneider, P. 2001, A&A, 378, 361
Bartelmann, M., Limousin, M., Meneghetti, M., & Schmidt, R.2013, Space Sci. Rev., 177, 3
Bartelmann, M., Narayan, R., Seitz, S., & Schneider, P. 1996, ApJ, 464, L115
Bartelmann, M., & Schneider, P. 2001, Phys. Rep., 340, 291
Bauer, A. H., Seitz, S., Jerke, J., et al. 2011, ApJ, 732, 64
Bauer, D., Buckley, J., Cahill-Rowley, M., et al. 2013, arXiv:1305.1605
Becker, M. R., & Kravtsov, A. V. 2011, ApJ, 740, 25
Benı́tez, N. 2000, ApJ, 536, 571
Benjamin, J., Van Waerbeke, L., Heymans, C., et al. 2013, MNRAS, 431, 1547
Bernardeau, F., van Waerbeke, L., & Mellier, Y. 1997, A&A, 322, 1
Bernstein, G., & Huterer, D. 2010, MNRAS, 401, 1399
Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583
Bhattacharya, S., Habib, S., Heitmann, K., & Vikhlinin, A. 2013, ApJ, 766, 32
Bhattacharya, S., Heitmann, K., White, M., et al. 2011, ApJ,732, 122
Birkinshaw, M. 1999, Phys. Rep., 310, 97
Blandford, R., & Narayan, R. 1986, ApJ, 310, 568
Blas, D., Lesgourgues, J., & Tram, T. 2011, J. Cosmol. Astropart. Phys., 7, 034
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