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Abstract With the rapid development of techniques for astronomical observations,
the precision of measurements has been significantly increasing. Theories describing
astronomical relativistic reference systems, which are the foundation for processing
and interpreting these data now and in the future, may require extensions to satisfy the
needs of these trends. Besides building a framework compatible with alternative the-
ories of gravity and the pursuit of higher order post-Newtonian approximation, it will
also be necessary to make the first order post-Newtonian multipole moments of celes-
tial bodies be explicitly expressed in the astronomical relativistic reference systems.
This will bring some convenience into modeling the observations and experiments and
make it easier to distinguish different contributions in measurements. As a first step,
the global solar system reference system is expressed as a multipolar expansion and
the post-Newtonian mass and spin moments are shown explicitly in the metric which
describes the coordinates of the system. The full expression of the global metric is
given.
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1 INTRODUCTION

Recent years have witnessed the rapid development of techniques for astronomical observations,
causing the precision of measurements to significantly increase. One example is the space astrometry
mission Gaia, which was launched by the European Space Agency (ESA) in 2013 (see Lindegren
et al. 2008; Lindegren 2010, for recent reviews). It will obtain accurate astrometric data for ∼ 109

objects from 6th to 20th magnitude. The accuracies for single stars down to 15th magnitude typically
range from 8 to 25 microarcseconds (µas). With such a high performance, Gaia will be able to detect
the relative positional change of a star due to the first order post-Newtonian (1PN) effects from the
spherically symmetric parts of gravitational fields of the Sun and some giant planets (Klioner 2003).
In some cases where the observed source is very close to the surfaces of Jupiter and Saturn, the
higher order multipole moments might cause 1PN light bending up to the level from several tens to
hundreds of µas (Klioner 1991; Kopeikin 1997; Klioner 2003), which are also observable by Gaia.
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Future space missions may even go further by measuring distances of laser links and angles
among these links with unprecedented precision, such as the Télémetrie InterPlanétaire Optique
(TIPO) (Samain 2002), the Laser Astrometric Test Of Relativity (LATOR) (Turyshev et al. 2004),
the Astrodynamical Space Test of Relativity using Optical Devices (ASTROD) (Ni 2008), the Search
for Anomalous Gravitation using Atomic Sensors (SAGAS) (Wolf et al. 2009), the Phobos Laser
Ranging (PLR) (Turyshev et al. 2010) and the Beyond Einstein Advanced Coherent Optical Network
(BEACON) (Turyshev et al. 2009). Some of them might be able to measure not only 1PN effects
caused by the quadrupole moment of the Sun but also effects of the second order post-Newtonian
(2PN) light deflection resulting from intrinsic nonlinearity of gravity with high precision.

On the surface of the Earth, time keeping and dissemination equipment are also undergoing
great improvements such as optical clocks (e.g. Chou et al. 2010) and optical fiber networks (e.g.
Predehl et al. 2012). These technologies will be able to measure the Earth’s gravitational potential
to new levels of precision by gravitational time dilation at the scale of daily life (Chou et al. 2010)
and might bring some subtle effects due to the multipole moments of the Earth into their thresholds
in the not-so-distant future.

Although, for processing and interpreting these data now and in the future, the International
Astronomical Union (IAU) 2000 and subsequent Resolutions1 on reference systems in the solar sys-
tem for astrometry, celestial mechanics and metrology in the framework of general relativity (GR)
(Soffel et al. 2003) provide a solid foundation, extensions might be required in some specific obser-
vations and measurements. To model the light propagation in those observations and experiments
accessing 2PN GR effects, some efforts are dedicated to making the IAU Resolutions include all
these contributions (e.g. Minazzoli & Chauvineau 2009). Meanwhile, some works are devoted to
establishing self-consistent astronomical relativistic reference systems compatible with alternative
relativistic theories of gravity, such as the scalar-tensor theory (Kopeikin & Vlasov 2004), setting up
a framework for testing GR. Under these systems, the 2PN theory of light propagation is studied in
astronomical observations and experiments using large bodies in the solar system (e.g. Minazzoli &
Chauvineau 2011; Deng & Xie 2012). Astronomical relativistic reference systems for gravitational
subsystems are also introduced for the advanced theory of lunar motion and for a new generation of
lunar laser ranging (Kopeikin & Xie 2010; Xie & Kopeikin 2010).

When higher order post-Newtonian approximation for light propagation is considered, it will
also be necessary to ensure the 1PN multipole moments of celestial bodies are explicitly expressed
in the astronomical relativistic reference systems. Because, in some cases like the LATOR mission,
the light bending caused by the quadrupole at 1PN order can be comparable with those due to the
monopole at 2PN order (Klioner 2003). It also helps to distinguish effects from the 1PN multipole
moments as well as the intrinsic nonlinearity of gravity at 2PN order. However, the IAU Resolutions
on astronomical relativistic reference systems are written in the forms of integrals without show-
ing explicit dependence on the mass and spin multipole moments of each local gravitating body,
which may cause some inconvenience in modeling the observations, experiments and data analy-
sis. To achieve this purpose, it is necessary to apply the techniques of multipolar expansion of the
gravitational field, which have been intensively studied by many researchers (e.g. Sachs 1961; Pirani
1965; Bonnor & Rotenberg 1966; Epstein & Wagoner 1975; Wagoner 1979; Thorne 1980; Blanchet
& Damour 1986; Blanchet 1987; Tao & Huang 1998).

Thus, in this work, I will focus on astronomical relativistic reference systems with multipolar
expansion. More specifically, this approach ensures the 1PN multipole moments are expressed ex-
plicitly in the mathematical description of the reference systems within the framework of the scalar-
tensor theory. As a first step, only the solar system barycentric reference system — the global one
— will be considered here. Local reference systems with multipolar expansion will be presented in
subsequent works.

1 Resolutions adopted at the IAU General Assemblies: http://www.iau.org/administration/resolutions/general assemblies/
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The rest of the paper is organized as follows. Section 2 is devoted to debriefing primary concepts
in astronomical relativistic reference systems. In Section 3, I present the outline of the techniques
of multipolar expansion for astronomical relativistic reference systems (a demonstration is given in
Appendix B, see online version). The full mathematical description of the solar system barycentric
reference system with multipolar expansion and its two special cases are shown in Appendix C (see
online version). Finally, in Section 4, I summarize the results.

2 BASICS OF ASTRONOMICAL RELATIVISTIC REFERENCE SYSTEMS

Theories of astronomical relativistic reference systems have been intensively studied (e.g. Kopejkin
1988; Brumberg & Kopejkin 1989; Brumberg 1991; Damour et al. 1991, 1992, 1993; Klioner 1993;
Klioner & Voinov 1993; Klioner & Soffel 1998; Kopeikin & Vlasov 2004; Kopeikin & Xie 2010;
Xie & Kopeikin 2010). The following part of this section will only give an overview of the primary
concepts and necessary mathematical description (see Kopeikin et al. 2011; Soffel & Langhans 2013,
for recent reviews and more details).

A reference system is a mathematical construction which gives “names” to spacetime events
and a reference frame is a realization of the reference system. A well-defined reference system is the
solid and robust foundation for a reference frame which can be materialized by astronomical catalogs
and/or dynamical ephemerides of celestial bodies. One leading purpose of classical astrometry in the
Newtonian framework is to establish an inertial celestial reference frame. However, this Newtonian
concept of absolute space and time is abandoned in GR. In the 4-dimensional curved spacetime, time
and space are two parts of a single event. The curvature of spacetime determines motion of matter
and the matter, in turn, affects geometry of the spacetime.

An astronomical relativistic reference system is a mathematical description which assigns coor-
dinates (four real numbers) xµ (µ = 0, 1, 2, 3) for an event within it. Among four coordinates, x0 is
the time coordinate: t = c−1x0 is the coordinate time where c is the speed of light; and the remaining
three xi (i = 1, 2, 3) are space coordinates. The coordinates xα = (ct, xi) as a whole are described
by the metric tensor gµν(xα) which is a solution of the field equations of Einstein’s GR or other
alternative relativistic theories of gravity. The metric tensors of reference systems and the coordi-
nate transformations between them hold all of the properties of the reference systems. Although all
reference systems are mathematically equivalent, using some specific systems can largely simplify
calculations in modeling astronomical and astrophysical processes.

In the solar system, an adequate relativistic description of a gravitational body’s motion is not
conceivable without a self-consistent theory of astronomical relativistic reference systems, because
the solar system has a hierarchical structure with a diversity in various masses of the bodies and the
presence of planetary satellite systems which form a set of gravitationally bounded subsystems. The
Sun is the most massive body in the system, but giant planets, like Jupiter and Saturn, can still make
it revolve at some distance around the solar system barycenter (SSB). Thus, a global solar system
barycentric reference system is required to describe the orbital motion of bodies in the solar system
and model the light propagation from distant celestial objects. On the other hand, rotational motion
of a body is more natural for describing the local reference systems associated with each of the
bodies. A local reference system of a body is also adequate for describing its figure and satellites’
motion. Sometimes, a planet may have natural satellites with non-negligible masses which form
a gravitational subsystem. It is convenient to introduce a local reference system associated with
the barycenter of the subsystem, which leads to a natural decomposition of orbital motion of the
subsystem around SSB and relative motion inside the subsystem.

In 2000, IAU adopted new resolutions which laid down a self-consistent general relativistic
foundation for applications in modern geodesy, fundamental astrometry, celestial mechanics and
spacetime navigation in the solar system. These resolutions combine two independent approaches
to the theory of relativistic reference systems including the global one and local ones in the solar



1196 Y. Xie

system developed in a series of publications by Brumberg and Kopeikin (BK formalism) (Kopejkin
1988; Brumberg & Kopejkin 1989; Brumberg 1991) and Damour, Soffel and Xu (DSX formalism)
(Damour et al. 1991, 1992, 1993, 1994).

To make the IAU Resolutions fully compatible with modern ephemerides of the solar system
(e.g. Pitjeva 2005; Folkner 2010; Fienga et al. 2011) which employ the generalized Einstein-Infeld-
Hoffman (EIH) equations (Einstein et al. 1938) with two parameterized post-Newtonian (PPN) pa-
rameters β and γ, some efforts (Klioner & Soffel 2000; Kopeikin & Vlasov 2004) have been con-
tributed. They can go back to the IAU Resolutions when β = 1 and γ = 1. I will follow the approach
of Kopeikin & Vlasov (2004) in this work.

The metric tensor gµν(xα) under 1PN approximation for any reference system can be formally
written as

g00 = −1 + ε2N + ε4L +O(ε5) , (1)

g0i = ε3Li +O(ε5) , (2)

gij = δij + ε2Hij +O(ε4) , (3)

where ε ≡ 1/c and N , L, Li and Hij are coefficients of the metric. These coefficients can be solved
from the field equations of Einstein’s GR or other alternative relativistic theories of gravity with
certain boundary conditions.

In particular, to solve the metric tensor for the solar system barycentric reference system, it is
assumed that the solar system is isolated and there are no masses outside it. The considered number
of bodies in the system depends on the required accuracy. Therefore, the spacetime of the solar sys-
tem is asymptotically flat at infinity with the metric tensor gµν approaching the Minkowskian metric
ηµν = diag(−1,+1,+1,+1). In addition, “no-incoming-radiation” conditions are also imposed on
the metric tensor to prevent the appearance of non-physical solutions (see Kopeikin & Vlasov 2004,
for details). Its coordinates xα cover the entire spacetime of the solar system and their origin co-
incides with the SSB at any instant of time. The law of conservation of angular momentum in the
solar system can make the spatial axes of the global coordinates non-rotating in space either kine-
matically or dynamically (Brumberg & Kopejkin 1989). A reference system is called kinematically
non-rotating if its spatial orientation does not change with respect to the Minkowskian spacetime at
infinity as time goes on. A dynamically non-rotating system is defined by the condition that equa-
tions of motion of test particles moving with respect to the system do not have any terms that can be
interpreted as the Coriolis or centripetal forces. With these assumptions and conditions, the metric
tensor gµν(xα) can be obtained in the 1PN approximation within the framework of the scalar-tensor
theory (Kopeikin & Vlasov 2004) and the solutions of its coefficients are given in Appendix A (see
online version) in the form of integrals. Theoretically, this metric can be taken to model observa-
tions and experiments; however, its dependence on integrals makes this expression inconvenient and
non-intuitive in practice.

Thus, in the next section, these integrals will be multipolarly expanded and expressed in terms
of local mass and spin multipole moments of each bodies. This would make the metric tensor easier
to deal with and show the physical contribution of multipole moments more clearly.

3 MULTIPOLAR EXPANSION OF GLOBAL REFERENCE SYSTEM

To realize the purpose of this work, I need to apply the techniques of relativistic multipolar expansion
of the gravitational field, which involves some parameters of the so-called mulitpole moments.

In the Newtonian framework, multipole moments are uniquely defined as coefficients in a Taylor
expansion of the gravitational potential in powers of the radial distance from the origin of a reference
system to a field point. They can be functions of time in the most general astronomical situations.
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Multipolar expansion in GR is quite different (see Thorne 1980, for a review). Because of the non-
linearity of the gravitational interaction, a proper definition of relativistic multipole moments is
much more complicated. This issue has been intensively and widely studied (e.g. Sachs 1961; Pirani
1965; Bonnor & Rotenberg 1966; Epstein & Wagoner 1975; Wagoner 1979; Thorne 1980; Blanchet
& Damour 1986; Blanchet 1987; Tao & Huang 1998). It was shown that, in GR, the multipolar
expansion of the gravitational field of an isolated gravitating system is characterized by only two
independent sets: mass-type and current-type multipole moments (Thorne 1980; Blanchet & Damour
1986; Blanchet 1987).

In the scalar-tensor theory of gravity, the multipolar expansion becomes even more complicated
due to the scalar field. It introduces an additional set of multipole moments which are caused by
the scalar field (see Kopeikin & Vlasov 2004, for details). In this work, I will follow and apply the
techniques of multipolar expansion and definitions of multipole moments which have been studied
in great detail and used in Kopeikin & Vlasov (2004).

These required techniques are rather straightforward. All of the integrals in gµν(xα) [see
Eqs. (A.11)–(A.17) and (A.19)] for the global reference system can be written in the form (Kopeikin
& Vlasov 2004)

I(C)
n {f}(t, x) =

∫

VC

f(t, x′)|x− x′|nd3x′ , (4)

where n is an integer with values of either −1 or 1. It suggests that multipolar expansion of these
integrals needs three steps:

– Step 1. Taylor expand the integral (4) using the fact that the characteristic size of the body
C is less than the characteristic distance between the field point, x, and the body C, xC, i.e.
|x′ −xC| < RC, where RC = x−xC and RC = |RC|. Here xC represents the position of the
center of mass of the body C with respect to the global system and it changes with the global
time due to its orbital motion. See Figure 1 for the geometry of the vectors x, x′, xC and RC.

– Step 2. Convert the global coordinates x′ of a matter element inside body C into the local
coordinates Z ′

C with respect to the center of mass of body C: Z ′
C = x′ − xC +O(ε2) (see eq.

(11.2.3) in Kopeikin & Vlasov 2004, for details). See Figure 1 for the geometry of the vector
Z ′

C.
– Step 3. Collect and rearrange the expansion according to the definitions of mass and spin multi-

pole moments (see eqs. (6.3.1) and (6.3.8) in Kopeikin & Vlasov 2004, for these definitions).

To demonstrate this procedure, the multipolar expansion of UC(t, x) [see Eq. (A.11)] is shown
in Appendix B as an example.

Fig. 1 The geometry of the vectors x, x′, xC, RC and Z′
C.
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After applying it straightforwardly on all of the integrals, the global metric tensor gµν of the
solar system barycentric reference system can be written as

gµν = ηµν + h(I)
µν + h(I2)

µν + h(S)
µν + h(F)

µν + h(B)
µν +O(ε5) , (5)

where h
(I)
µν is the contribution from one-body interactions, h

(I2)
µν originates from two-body interac-

tions, h(S)
µν is due to spins, h(F)

µν contains scaling function AC and kinematic rotation F km
C , and h

(B)
µν is

caused by bad moments. Their full expressions can be found in Appendix C. h
(F)
µν can be eliminated

by redefining mass multipole moments and by assuming local reference systems are kinematically
non-rotating (see Appendix C for details). It is worth mentioning that h

(B)
µν is gauge-dependent so

that it can be eliminated by a coordinate transformation of the time component as

t′ = t + ε3λ , (6)

where

λ = 2(γ + 1)
∑

C

∞∑

l=0

(−1)l(2l + 1)
(2l + 3)(l + 1)!

GR〈L〉C

(
1

RC

)

,〈L〉
. (7)

Here, R〈L〉C is a so-called “bad” moment defined in Equation (B.18) (Damour et al. 1992)2. The
components of the new metric g′µν are

g′ij = gij +O(ε4) , (8)

g′0i = g0i − ε3λ,i +O(ε5) , (9)

g′00 = g00 − ε42λ,t +O(ε5) . (10)

The issue of coordinate transformations and gauges in the relativistic astronomical reference systems
is practically important and it has been investigated in detail in several works (e.g. Tao & Huang
1998; Tao et al. 2000; Tao 2006).

4 CONCLUSIONS

With advances in techniques for astronomical observations and experiments, the theories of astro-
nomical relativistic reference systems might require extensions to satisfy the needs of new high-
precision measurements. One direction is to ensure the 1PN multipole moments of celestial bod-
ies are explicitly expressed in the reference systems. Since the effects of both these moments and
nonlinearity of gravity are accessible for future space missions, it will bring some convenience for
modeling the observations and experiments and make it easier to distinguish different contributions
in measurements.

Therefore, as a first step, the global solar system reference system is expressed as a multipolar
expansion and the 1PN mass and spin moments are shown explicitly in their metric which describes
the coordinates of the system. The full expression of the global metric is given (see Appendix C for
details of main results). These results might be used in modeling future high-precision time transfer
(e.g. Petit & Wolf 1994; Wolf & Petit 1995; Blanchet et al. 2001; Petit & Wolf 2005; Nelson 2011;
Deng 2012; Deng & Xie 2013b,a; Pan & Xie 2013, 2014).
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i1i2 · · · il and comma denotes a partial derivative. Therefore, Y,L = ∂lY/∂xi1∂xi2 · · · ∂xil .
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Appendix A: METRIC TENSOR FOR GLOBAL SOLAR SYSTEM BARYCENTRIC
REFERENCE SYSTEM

The metric tensor gµν(xα) of the global solar system reference system can be solved in the 1PN
approximation within the framework of the scalar-tensor theory as (Kopeikin & Vlasov 2004)

g00 = −1 + ε2N + ε4L +O(ε5) , (A.1)

g0i = ε3Li +O(ε5) , (A.2)

gij = δij + ε2Hij +O(ε4), (A.3)

where ε ≡ c−1 and

ϕ = U(t,x) , (A.4)

N = 2 U(t, x) , (A.5)

L = 2Ψ(t, x)− 2(β − 1)ϕ2(t,x)− 2U2(t, x)− ∂2χ(t,x)
∂t2

, (A.6)

Li = −2(1 + γ)Ui(t,x) , (A.7)

Hij = 2γδijU(t,x) , (A.8)

in which x ≡ xi (i = 1, 2, 3) and

Ψ(t, x) ≡
(

γ +
1
2

)
Ψ1(t, x)− 1

6
Ψ2(t,x)+ (1+γ−2β)Ψ3(t, x)+Ψ4(t, x)+γΨ5(t,x) , (A.9)

Gravitational potentials U, U i, χ and Ψk (k = 1, ..., 5) can be represented as linear combinations
of the gravitational potentials of each body in the gravitational system

U =
∑

C

UC, Ui =
∑

C

U i
C, Ψk =

∑

C

ΨCk, χ =
∑

C

χC, (A.10)

where the summation index C numerates the bodies in the system, whose gravitational field con-
tributes to the calculations. The gravitational potentials of the body C are defined as integrals taken
only over the spatial volume VC of this body

UC(t, x) = G

∫

VC

ρ∗(t,x′)
|x− x′| d

3x′, (A.11)

U i
C(t, x) = G

∫

VC

ρ∗(t,x′)vi(t,x′)
|x− x′| d3x′, (A.12)

ΨC1(t, x) = G

∫

VC

ρ∗(t,x′)v2(t, x′)
|x− x′| d3x′, (A.13)

ΨC2(t, x) = G

∫

VC

ρ∗(t,x′)h(t,x′)
|x− x′| d3x′, (A.14)

ΨC3(t, x) = G

∫

VC

ρ∗(t,x′)ϕ(t,x′)
|x− x′| d3x′, (A.15)

ΨC4(t, x) = G

∫

VC

ρ∗(t,x′)Π(t,x′)
|x− x′| d3x′, (A.16)
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ΨC5(t, x) = G

∫

VC

πkk(t,x′)
|x− x′| d3x′, (A.17)

where ρ∗ is the invariant density (Fock 1959), Π is the specific internal energy of matter, παβ is the
anisotropic tensor of stress, ϕ is the perturbation of the scalar field and h(t,x) = Hii(t, x). Potential
χ is determined as a particular solution of the inhomogeneous equation

∇2χ = −2U (A.18)

with the right side defined over the whole space and it is

χC(t, x) = −G

∫

VC

ρ∗(t, x′)|x− x′|d3x′. (A.19)

Mathematically, all of the integrals in Equations (A.11)–(A.17) and (A.19) can be written in the
form (Kopeikin & Vlasov 2004)

I(C)
n {f}(t, x) =

∫

VC

f(t,x′)|x− x′|nd3x′, (A.20)

where n is an integer with values of either −1 or 1.

Appendix B: DEMONSTRATION OF MULTIPOLAR EXPANSION: THE CASE OF UC

This section of the appendixes is devoted to demonstrating the procedure of multipolar expansion
for the integrals in Equations (A.11)–(A.17) and (A.19). Since it is valid for each of them, we only
take UC as an example and show the details of how to apply it. For other integrals, what is needed is
just to repeat it. There are three steps.

– Step 1. Taylor expand the integral (4) using the fact that the characteristic size of the body
C is less than the characteristic distance between the field point, x, and the body C, xC, i.e.
R′C < RC, where R′

C = x′ − xC, RC = x − xC and R′C = |R′
C|, RC = |RC|. Here xC

represents the position of the center of mass of the body C with respect to the global system.
With the help of

1
|x− x′| =

1
|x− xC − (x′ − xC)| =

∞∑

l=0

(−1)l

l!
∂L

(
1

RC

)
R
′〈L〉
C , (B.1)

in which angle brackets surrounding a group of Roman indices denote the STF part of the corre-
sponding three-dimensional object (see appendix A of Blanchet & Damour 1986, for details) and
multi-index notations denote L ≡ i1i2 · · · il and ∂L ≡ ∂i1 · · · ∂il

, the integral in Equation (A.11)
can be Taylor expanded as

∫

VC

ρ∗(t, x′)
|x− x′| d

3x′ =
∞∑

l=0

(−1)l

l!

(
1

RC

)

,L

∫

VC

ρ∗′R′〈L〉C d3x′, (B.2)

where a comma denotes partial derivative.
– Step 2. Convert the global coordinates x′ of a matter element inside the body C into the local

coordinates Z ′
C with respect to the center of mass of the body C.

In the local reference system of the body C, the local coordinates of a field point in the vacuum
are (cΞC,ZC) and the coordinates of a matter element inside the body are (cΞC,Z ′

C), where
ΞC is its local coordinate time, ZC is the position vector of the field point and Z ′

C is the position
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vector pointing to the matter elements. These local coordinates have relationships with the global
coordinates given as (Kopeikin & Vlasov 2004)

ΞC = t + ε2ξ0
C , (B.3)

Zi
C = Ri

C + ε2ξi
C , (B.4)

Z ′iC = R′iC + ε2[ξ′iC + V ′iC (R′kC −Rk
C)vk

C] , (B.5)

where Ri
C = xi − xi

C(t), R′iC = x′i − xi
C(t), V ′iC = v′i − vi

C,

ξ0
C = −(AC + vk

CRk
C) +O(ε2), (B.6)

ξi
C =

(
1
2
vi
Cvk

C + Dik
C + F ik

C

)
Rk

C + Dijk
C Rj

CRk
C +O(ε2), (B.7)

ξ′iC =
(

1
2
vi
Cvk

C + Dik
C + F ik

C

)
R′kC + Dijk

C R′jCR′kC +O(ε2), (B.8)

F ij
C = −εijkFk

C, (B.9)

Dij
C = +δikγŪC(xC)− δikAC , (B.10)

Dijk
C =

1
2
(aj

Cδik + ak
Cδij − ai

Cδjk). (B.11)

Therefore, from Equations (B.5) and (B.8), it has

R′iC = Z ′iC − ε2
[(

1
2
vi

Cvk
C + Dik

C + F ik
C

)
Z ′kC + Dijk

C Z ′jC Z ′kC

]

+ε2V ′iC vk
C(Rk

C − Z ′kC ) +O(ε4), (B.12)

which will be a link connecting the global and local coordinates of a matter element.
– Step 3. Collect and rearrange the expansion according to the definitions of mass and spin multi-

pole moments.
According to Kopeikin & Vlasov (2004), the mass multipole moments I〈L〉C are defined as

I〈L〉C =
∫

VC

σC(ΞC ,Z ′
C)Z ′〈L〉C d3Z ′C +

ε2

2(2l + 3)

[
d2

dΞ2
C

∫

VC

σC(ΞC ,Z ′
C)Z ′〈L〉C Z ′2C d3Z ′C

−4(1 + γ)
2l + 1
l + 1

d

dΞC

∫

VC

σi
C(ΞC ,Z ′

C)Z ′<iL>
C d3Z ′C

]
− ε2

∫

VC

d3Z ′C σC(ΞC ,Z ′
C)

×
{

AC + (2β − γ − 1)PC +
∞∑

k=1

1
k!

[
QK

C + 2(β − 1)PK
C

]
Z ′KC

}
Z
′〈L〉
C , (B.13)

in which

σC(ΞC ,Z ′
C) = ρ∗C(ΞC ,Z ′

C)
{

1 + ε2
[(

γ +
1
2

)
V2

C(Ξ,Z ′
C) + ΠC(ΞC ,Z ′

C)− (2β − 1)UC(ΞC ,Z ′
C)

]}

+ε2γπkk
C (ΞC ,Z ′

C), (B.14)

and the definitions of the spin moments S
〈L〉
C are

S
〈L〉
C =

∫

VC

εpq<ilZ ′L−1>p
C σq

C(ΞC ,Z ′
C)d3Z ′C , (B.15)

in which σi
C(ΞC ,Z ′

C) = ρ∗C(ΞC ,Z ′
C)Vi

C(ΞC ,Z ′
C).
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With Equation (B.12) and these two definitions, Equation (B.2) can be collected and rearranged
further as

G

∫

C

ρ∗(t,x′)
|x− x′| d

3x′

= G
∞∑

l=0

(−1)l

l!

(
1

RC

)

,L

{
I〈L〉C + ε2

[
AC + (2β − γ − 1)PC

]
I〈L〉C

−ε2
∫

VC

ρ∗C
′
[
(γ +

1
2
)V ′2C + Π′C + γ

π
′kk
C

ρ∗C
′

]
Z
′〈L〉
C d3Z ′C + ε2(2β − 1)

∫

VC

ρ∗C
′U ′

CZ
′〈L〉
C d3Z ′C

− ε2

2(2l + 3)

[
N̈ 〈L〉

C − 4(1 + γ)
2l + 1
l + 1

Ṙ〈L〉C

]
+ ε2

∞∑

k=1

1
k!

QK
C

∫

C

ρ∗C
′Z ′<K>

C Z
′〈L〉
C d3Z ′C

+ε22(β − 1)
∞∑

k=1

1
k!

PK
C

∫

C

ρ∗C
′Z ′<K>

C Z
′〈L〉
C d3Z ′C + ε2

(
− l

2
vk

Cv<il

C IL−1>k
C

+lF k<il

C IL−1>k
C − lDk<il

C IL−1>k
C − lIjk<L−1

C Dil>jk
C − vk

C İk〈L〉
C + vk

CRk
C İ〈L〉C

)}

+ε2G
∞∑

l=1

(−1)l

(l + 1)!

(
1

RC

)

,L

vk
C İ<kL>

C − ε2G
∞∑

l=1

(−1)ll

(l + 1)!
εkpqv

k
C

(
1

RC

)

,pL−1

S<qL−1>
C

+ε2G

∞∑

l=1

(−1)l(2l − 1)
(2l + 1)l!

vk
C

(
1

RC

)

,kL−1

R<L−1>
C +O(ε4), (B.16)

where N 〈L〉
C and R〈L〉C are called “bad” moments defined as (Damour et al. 1992)

N 〈L〉
C =

∫

VC

ρ∗C
′Z ′2C Z

′〈L〉
C d3Z ′C , (B.17)

and
R〈L〉C =

∫

VC

ρ∗C
′V ′kC Z ′<kL>

C d3Z ′C . (B.18)

This expression is not simplified further because many terms will cancel out by terms from other
integrals after repeating the same approach and collecting them together.

Appendix C: GLOBAL METRIC AS A MULTIPOLAR EXPANSION

Full expressions of the global metric gµν with a multipolar expansion can be written as

g00 = −1 + h
(I)
00 + h

(I2)
00 + h

(S)
00 + h

(F)
00 + h

(B)
00 +O(ε5), (C.1)

g0i = h
(I)
0i + h

(S)
0i + h

(B)
0i +O(ε5), (C.2)

gij = δij + h
(I)
ij +O(ε4), (C.3)

where

h
(I)
00 = ε22

∑

C

∞∑

l=0

(2l − 1)!!
l!

GI〈L〉C

R2l+1
C

R
〈L〉
C + ε4

∑

C

∞∑

l=0

[2(2γ + 1)l + 6γ + 5](2l − 1)!!
(2l + 3)l!

GI〈L〉C

R2l+1
C

v2
CR

〈L〉
C

−ε4
∑

C

∞∑

l=0

(2l + 1)!!
l!

GI〈L〉C

R2l+3
C

vk
Cvm

C R<kmL>
C − ε4

∑

C

∞∑

l=0

(2l + 1)(2l + 1)!!
(2l + 5)l!

GI<kL>
C

R2l+3
C

vk
Cvm

C R<mL>
C
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+ε44(γ + 1)
∑

C

∞∑

l=0

(2l − 1)!!
(l + 1)!

Gİ<kL>
C

R2l+1
C

vk
CR

〈L〉
C − ε4

∑

C

∞∑

l=0

(2l − 3)!!
l!

GÏ〈L〉C

R2l−1
C

R<L>
C , (C.4)

h
(I2)
00 = −ε42β

∑

C

∑

D

∞∑

l,k=0

(2l − 1)!!(2k − 1)!!
l!k!

G2I<L>
C I<K>

D

R2l+1
C R2k+1

D

R<L>
C R<K>

D

−ε42γ
∑

C

∑

D 6=C

∞∑

l,k=0

(l + 1)(2l − 1)!!(2k − 1)!!
l!k!

G2I<L>
C I<K>

D

R2l+1
C R2k+1

CD

R<L>
C R<K>

CD

+ε4
∑

C

∑

D 6=C

∞∑

l,k,p=0

(−1)p(2l − 1)!!(2k + 2p + 1)!!
l!k!p!MC

G2I<L>
C I<P>

C I<K>
D

R2l+1
C R2k+2p+3

CD

R<mL>
C R<mKP>

CD

+ε42
∑

C

∑

D 6=C

∞∑

l,k,p=0

(−1)p(l + 2)(2l + 1)(2l − 1)!!(2k + 2p + 1)!!
(2l + 3)l!k!p!MC

G2I<mL>
C I<P>

C I<K>
D

R2l+1
C R2k+2p+3

CD

R<L>
C R<mKP>

CD ,

(C.5)

h
(S)
00 = −ε44(γ + 1)

∑

C

∞∑

l=0

(2l + 1)!!
(l + 2)l!

GS<qL>
C

R2l+3
C

εkpqv
k
CR<pL>

C , (C.6)

h
(F)
00 = ε42

∑

C

∞∑

l=0

(l + 1)(2l − 1)!!
l!

GI<L>
C

R2l+1
C

ACR<L>
C + ε42

∑

C

∞∑

l=0

(2l + 1)!!
l!

GI<kL>
C

R2l+3
C

F km
C R<mL>

C ,

(C.7)

h
(B)
00 = ε44(γ + 1)

∑

C

∞∑

l=0

(2l + 1)(2l + 1)!!
(2l + 3)(l + 1)!

GR<L>
C

R2l+3
C

vk
CR<kL>

C + ε44(γ + 1)
∑

C

∞∑

l=0

(2l + 1)!!
(2l + 3)(l + 1)!

GṘ<L>
C

R2l+1
C

R<L>
C ,

(C.8)

h
(I)
0i = −ε32(γ + 1)

∑

C

∞∑

l=0

(2l − 1)!!
l!

GI<L>
C

R2l+1
C

R<L>
C vi

C − ε32(γ + 1)
∑

C

∞∑

l=0

(2l − 1)!!
(l + 1)!

Gİ<iL>
C

R2l+1
C

R<L>
C , (C.9)

h
(S)
0i = ε32(γ + 1)

∑

C

∞∑

l=0

(2l + 1)!!
(l + 2)l!

GS<qL>
C

R2l+3
C

εipqR
<pL>
C , (C.10)

h
(B)
0i = −ε32(γ + 1)

∑

C

∞∑

l=0

(2l + 1)(2l + 1)!!
(2l + 3)(l + 1)!

GR<L>
C

R2l+3
C

R<iL>
C , (C.11)

h
(I)
ij = ε22γδij

∑

C

∞∑

l=0

(2l − 1)!!
l!

GI<L>
C

R2l+1
C

R<L>
C , (C.12)

where l!! means the double factorial of l, δij is the Kronecker symbol, εijk is the Levi-Civita symbol
and dot means derivative with respect to time. Since these dots only appear at 1PN order, their
difference between the derivative with respect to the global time and that against local times is at the
2PN order. If new mass multipole moments are defined as

I〈L〉C

∣∣∣∣
new

= [1 + ε2(l + 1)AC ]I〈L〉C , (C.13)

then the first term of h
(F)
00 can be absorbed by the first term of h

(I)
00 and the other parts of gµν remain

formally unchanged. If the local reference system associated with the body C is kinematically non-
rotating, i.e. F km

C = 0, the second term of h
(F)
00 vanishes.
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C.1. Special Cases

Two special cases can be obtained:

1. A single body with arbitrary mass and spin multipole moments. Its metric tensor g
(1)
µν reads as

g
(1)
00 = −1 + ε22

∞∑

l=0

(2l − 1)!!
l!

GI〈L〉
R2l+1

R〈L〉 − ε4
∞∑

l=0

(2l − 3)!!
l!

GÏ〈L〉
R2l−1

R〈L〉

−ε42β
∞∑

l,k=0

(2l − 1)!!(2k − 1)!!
l!k!

G2I〈L〉I<K>

R2l+1R2k+1
R〈L〉R<K>

+ε44(γ + 1)
∞∑

l=0

(2l + 1)!!
(2l + 3)(l + 1)!

GṘ〈L〉
R2l+1

R〈L〉 +O(ε5), (C.14)

g
(1)
0i = −ε32(γ + 1)

∞∑

l=0

(2l − 1)!!
(l + 1)!

Gİ<iL>

R2l+1
R〈L〉 + ε32(γ + 1)

∞∑

l=0

(2l + 1)!!
(l + 2)l!

GS<qL>

R2l+3
εipqR

<pL>

−ε32(γ + 1)
∞∑

l=0

(2l + 1)(2l + 1)!!
(2l + 3)(l + 1)!

GR〈L〉
R2l+3

R<iL> +O(ε5), (C.15)

g
(1)
ij = δij + ε22γδij

∞∑

l=0

(2l − 1)!!
l!

GI〈L〉
R2l+1

R〈L〉 +O(ε4). (C.16)

When γ = β = 1, it can return to the previous results (e.g. Blanchet & Damour 1986; Blanchet
1987). This case might be a good approximation for modeling some measurements from the
LATOR mission after cutting the summations of l to certain values, since LATOR will be able
to measure the 1PN effects caused by the quadrupole moment of the Sun (Turyshev et al. 2004).

2. A system consisting of N spinning point masses. Its metric tensor g
(N)
µν has the form

g
(N)
00 = −1 + ε22

∑

C

GMC

RC
+ ε42(γ + 1)

∑

C

GMC

RC
v2

C − ε4
∑

C

GMC

R3
C

(vk
CRk

C)2

−ε42β
∑

C

∑

D

G2MCMD

RCRD
− ε42γ

∑

C

∑

D 6=C

G2MCMD

RCRCD

+ε4
∑

C

∑

D 6=C

G2MCMD

RCRCD
Rm

C Rm
CD − ε42(γ + 1)

∑

C

GSq
C

R3
C

εkpqv
k
CRp

C

+ε42
∑

C

GMC

RC
AC +O(ε5), (C.17)

g
(N)
0i = −ε32(γ + 1)

∑

C

GMC

RC
vi

C + ε3(γ + 1)
∑

C

GSq
C

R3
C

εipqR
p
C +O(ε5), (C.18)

g
(N)
ij = δij + ε22γδij

∑

C

GMC

RC
+O(ε4). (C.19)

If a sub-case is considered where γ = β = 1, g
(N)
µν identically matches the global metric shown

in previous works (Will 1993; Soffel et al. 2003).


