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Abstract Three-way spacecraft Doppler tracking is currently widely used and it plays
an important role in the control and navigation of deep space missions. Using the the-
ory of three-way Doppler tracking, including possible violations of the local Lorentz
invariance (LLI) and the local position invariance (LPI), we analyze the post-fit resid-
uals of three-way Doppler tracking data of Mars Express. These Doppler observations
were carried out from August 7th to 8th in 2009, with an uplink station administered
by the European Space Agency at New Norcia in Australia and three downlink stations
at Shanghai, Kunming and Urumqi in China. We find that, although these observations
impose preliminary bounds on LLI at the level of 10−2, they are not suitable for testing
LPI because of the configuration of these stations and the accuracy of the observations.
To our knowledge, this is one of the first attempts in China to apply radio science to
the field of fundamental physics.
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1 INTRODUCTION

As one of the most important current methods for determining the motion of a spacecraft, the
Doppler tracking technique has been successfully implemented in many deep space missions for
control and navigation (Kruger 1965; Moyer & Yuen 2000). It can also be used for a variety of sci-
entific applications, such as fundamental physics (e.g. chapter 7.8 of Kopeikin et al. 2011). In this
work, we focus on testing the Einstein equivalence principle (EEP).

EEP is the cornerstone for building general relativity (GR) and all other metric theories of grav-
ity. It states that: (1) in a homogeneous gravitational field, the acceleration of a freely-falling and
structureless test particle is independent of its properties — its mass, composition or thermodynamic
state, which is the so-called weak equivalence principle (WEP); (2) the outcome of any local non-
gravitational experiment is independent of the velocity of the freely-falling measuring apparatus
where it is performed, which is the so-called local Lorentz invariance (LLI); and (3) the outcome of
any local non-gravitational experiment is independent of where and when it is performed, which is
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the so-called local position invariance (LPI) (see Will 1993, 2006; Kopeikin et al. 2011, for more
details). The second and third pieces of EEP (i.e. LLI and LPI) can be tested by measuring the fre-
quency of a signal transmitted from a clock as it moves in the gravitational field of a massive body
(e.g. Krisher 1990). Some experiments have been conducted in the vicinity of Earth (Vessot et al.
1980) and in interplanetary space (e.g. Krisher et al. 1990, 1993), confirming EEP at the level of
∼ 10−4 – ∼ 10−2.

All these experiments relied on a one-way radio signal transmitted from the spacecraft to ground
stations. The transmitted frequency was referred to as the onboard clock or frequency standard, while
the received signal was referred to as these standards at the stations. However, onboard frequency
standards are significantly less stable than ground-based standards and they are limited by their own
noise. One solution for this is to use two-way or three-way Doppler tracking. Considering these
advantages, Deng & Xie (2014) extended relativistic theories of two-way and three-way Doppler
tracking by including possible violations of LLI and LPI.

In this work, we will analyze the post-fit residuals of three-way Doppler tracking data of Mars
Express (MEX) with this model and try to find preliminary bounds on LLI and LPI. These Doppler
observations were carried out from August 7th to 8th in 2009, with an uplink station administered
by the European Space Agency (ESA) at New Norcia (NN) in Australia and three downlink stations
at Shanghai (SH), Kunming (KM) and Urumqi (UR) in China.

The rest of the paper is organized as follows. Section 2 is devoted to describing three-way
Doppler tracking with possible violations of LLI and LPI and their detectability. In Section 3, we
present three-way Doppler observation of MEX and its data reduction. The post-fit residuals are
taken to estimate the bounds on LLI in Section 4. Finally, in Section 5, we summarize our results.

2 THREE-WAY DOPPLER TRACKING WITH VIOLATIONS OF LLI AND LPI

Starting from the one-way Doppler tracking model (Krisher et al. 1993), Deng & Xie (2014) ex-
tended the theories of two-way and three-way Doppler tracking by making them include possible
violations of LLI and LPI in order to test EEP. Here, we only brief the primary results that resulted
from this work. More details can be found in Deng & Xie (2014).

In three-way Doppler tracking, there are two stations. One ground station (S1) emits a radio
signal with frequency νE at time tE and a spacecraft (P) receives the signal with frequency ν′ at time
t′. Spacecraft (P) then immediately transmits the radio signal qν′ back, where q is a known ratio
between two integers. The other station (S2) receives the signal with frequency νR at time tR. The
whole procedure can be decomposed into two one-way Doppler trackings and the shift in frequency
in this open-loop can be easily and concisely expressed as

νR

qνE

∣∣∣∣
S1→P→S2

=
ν′

νE
· νR

qν′
= FS1→P(tE, t′) · FP→S2(t

′, tR) +O(ε3) , (1)

where ε ≡ c−1 and c is the speed of light. The function F contains two parts: F̂ and F̄ . F̂ represents
the shift in frequency as predicted by EEP and F̄ indicates the effects caused by possible violations
of LLI and LPI. Their full expressions can be found in equations (8) and (9) in Deng & Xie (2014).
With the linear approximation of the light-time solution (see chapter 8 in Moyer & Yuen 2000, for
details), we can have a deviation in the redshift δz from the prediction by EEP in the Barycentric
Celestial Reference System (BCRS) (Soffel et al. 2003), which is (Deng & Xie 2014)

δz ≡ νR

qνE

∣∣∣∣
S1→P→S2

− νR

qνE
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EEP

S1→P→S2

= δzLLI + δzLPI +O(ε3) , (2)
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where δzLLI and δzLPI are, respectively, caused by the possible violations of LLI and LPI, and they
are

δzLLI =
1
2
ε2

[
β̄S2v

2
S2

(tR)− β̄S1v
2
S1

(tR)
]
, (3)

δzLPI = ε2
{ ∑

A

ᾱA
S2

UA

[
yS2

(tR)
]
−

∑

A

ᾱA
S1

UA

[
yS1

(tR)
]}

. (4)

Here, violations of LLI can be tested by fitting the dimensionless parameters β̄S1 and β̄S2 , which
are associated with S1 and S2, respectively. If LLI is valid, then β̄S1/2 = 0. Violations of LPI
can be tested by fitting the dimensionless parameters ᾱA

S1
and ᾱA

S2
, which are associated with the

gravitational field of body A and two of the stations, respectively. If LPI holds true, ᾱA
S1/2

= 0.
Before applying this model to Doppler observations, it is first necessary for us to investigate

the detectability of these parameters. It is worth mentioning that this discussion on detectability is
not a statistical estimation of the parameters, which will be statistically estimated by the method of
weighted least squares in Section 4. Considering the two ground stations on Earth, we can rewrite
δzLLI as

δzLLI =
1
2
ε2

[
(β̄S2 − β̄S1)v

2
⊕ + 2v⊕ · (β̄S2V S2 − β̄S1V S1) + β̄S2V

2
S2
− β̄S1V

2
S1

]
, (5)

where v⊕ is the velocity of the Earth in the BCRS and V S1 and V S2 are, respectively, the velocities
of two stations in the Geocentric Celestial Reference System (GCRS) (Soffel et al. 2003). If we
assume β̄S1 = β̄S2 = β̄ for simplicity, δzLLI can be simplified as

δzLLI =
1
2
ε2β̄(2v⊕ + V S1 + V S2) · (V S2 − V S1) , (6)

which suggests that, in order to increase the detectability of β̄, one needs to use two stations whose
different velocities in the GCRS are as large as possible. Since |v⊕| ∼ 3×104 m s−1 and |V S1/2 | .
4.5× 102 m s−1, we can obtain

β̄ ∼ c2δzLLI

[
v⊕ · (V S2 − V S1)

]−1

& 6× 10−3

(
δzLLI

10−12

)
. (7)

This means that if residuals of the Doppler observation are at the level of 10−12, then the parameter
β̄ can be determined down to the level of ∼ 10−3. For the detectability of violations of LPI, if the
only monopole component of the gravitational field of the Sun is taken into account, we can rewrite
δzLPI as

δzLPI = ε2
[
ᾱ¯S2

GM¯
|y¯ − y⊕ − Y S2 |

− ᾱ¯S1

GM¯
|y¯ − y⊕ − Y S1 |

]
, (8)

where y¯ and y⊕ are, respectively, the positions of the Sun and the Earth in the BCRS and Y S1 and
Y S2 are, respectively, the positions of two stations in the GCRS. If we assume ᾱ¯S1

∼ ᾱ¯S2
= ᾱ¯

and make use of the condition that |y¯ − y⊕| À |Y S1/2 |, then δzLPI can be simplified as

δzLPI = ε2ᾱ¯
GM¯

|y¯ − y⊕|3
(y¯ − y⊕) · (Y S2 − Y S1) +O(Y 2

S1/2
) . (9)

Since |y¯ − y⊕| ∼ 1 au and |Y S2 − Y S1 | ≤ 2R⊕, where R⊕ is the radius of the Earth, we can
estimate that

ᾱ¯ ∼ δzLPI

(
GM¯

c2|y¯ − y⊕|
)−1[ (y¯ − y⊕) · (Y S2 − Y S1)

|y¯ − y⊕|2
]−1

& δzLPI

10−12
. (10)
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This means that even with residuals of Doppler data at the level of 10−12, the parameter ᾱ¯ can
barely be determined. Thus, according to Equations (7) and (10), the detectability of a possible
violation of LLI is higher than the possible violation of LPI by about two orders of magnitude for
two stations on the Earth conducting three-way Doppler tracking. In addition, in this configuration, if
and only if δz can be measured to much better than 10−12 will the observability of ᾱ¯ be significant.

Again, this is merely a short discussion about the detectability of these parameters instead of a
robust statistical estimation. In the following parts of this work we will analyze the post-fit residuals
of the three-way Doppler tracking data of MEX (see Sect. 3) and use these residuals to estimate the
preliminary bounds on these violations by using the method of weighted least squares (see Sect. 4).

3 THREE-WAY DOPPLER TRACKING OF MEX

In a cooperation between China and ESA, MEX was tracked by three-way Doppler observations.
This started at 20:00 on 2009 August 7 (UTC) and ended at 08:04 on 2009 August 8 (UTC). The
uplink signals were sent by the station administered by ESA at NN in Australia and the downlink
signals were received by three stations at SH, KM and UR in China. These observational data were
processed by the software MarsODP (Huang et al. 2009) for orbit determination of MEX. MarsODP
was developed by a group from Shanghai Astronomical Observatory, China. It can reduce data from
two/three-way range measurements, one/two/three-way Doppler tracking, VLBI and other types of
observations.

As the first step, we use the post-fit residuals of these three-way Doppler tracking in the X
band to estimate the preliminary bounds on possible violations of LLI and LPI in this work. These
residuals were obtained by fitting the observational data with the standard model built on Newton’s
law and Einstein’s GR (see Huang et al. 2009, for details). Therefore, the effects of violations of LLI
and LPI were not modeled in MarsODP and the parameters β̄S1/2 and ᾱA

S1/2
were not determined in

the fitting. In this sense, the results we obtain in the next section may not be considered to be genuine
“constraints” (it would be so if one solved for them in a covariance analysis by reanalyzing the data
with modified software including these effects) but as preliminary indications of acceptable values
according to the best contemporary knowledge, we call them “preliminary bounds” (see Iorio 2014,
for a further discussion).

Figure 1 shows the post-fit residuals δv (left panel) and their statistical histograms (right panel)
after MarsODP was used to process the three-way Doppler tracking data obtained by three Chinese
stations at SH, KM and UR (see Cao et al. 2011, for details). The time coordinates are represented
by taking 2009-Aug-07 00:00:00.000 (UTC) as the zero point. The gaps around 24h are caused by
the absence of uplink signals. The mean value of these residuals is ∼ 10−4 m s−1 and the standard
deviation is about ∼ 3 × 10−4 m s−1. This means that the values of δz are at the level of 10−12

and these observations are not sufficiently sensitive to detect possible violations of LPI (see the
discussion about the detectability in Sect. 2). Therefore, in the next section, we will only focus on
determining the bounds on violation of LLI.

4 PRELIMINARY BOUNDS ON LLI

By using the method of weighted least squares, we estimate the preliminary bounds on violations
of LLI in two different cases. In Case I, we assume β̄S1 = β̄S2 = β̄ and make other parameters
vanish. For comparison, we also consider another condition, Case I’, which includes an additional
contribution from violations of LPI due to the Sun. As in the special case investigated by Krisher
et al. (1993), we assume β̄S1 = β̄S2 = ᾱ¯S1

= ᾱ¯S2
= β̄′ in Case I’. The downlinks of SH, KM and

UR yield the bounds on β̄ of (−8.497± 0.010)× 10−2, (−1.450± 0.004)× 10−2 and (−0.975±
0.002) × 10−2, respectively (see Table 1 for a summary). Since the stations at NN and UR have
the largest difference in their velocities in GCRS, they have the highest sensitivity and obtain the
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Fig. 1 The post-fit residuals δv (left panel) and their statistical histograms (right panel) after
MarsODP was used to process the three-way Doppler tracking data obtained by three Chinese sta-
tions in SH, KM and UR. The time coordinates are represented by taking 2009-Aug-07 00:00:00.000
(UTC) as the zero point.

Table 1 Summary of Preliminary Bounds on LLI for Case I and Case II

Case I Case I’ Case II
Uplink Downlink β̄ (10−2) β̄′ (10−2) β̄U (10−2) β̄D (10−2)

NN SH −8.497± 0.010 −8.586± 0.010 3.091± 0.021 3.111± 0.021
NN KM −1.450± 0.004 −1.452± 0.003 0.902± 0.006 0.889± 0.006
NN UR −0.975± 0.002 −0.975± 0.002 2.732± 0.015 2.696± 0.015

NN: New Norcia, SH: Shanghai, KM: Kunming, and UR: Urumqi; β̄U/D is the β̄ associated with the
uplink/downlink.

tightest bound on β̄. As we discussed detectability in Section 2, the contribution of the violation in
LPI associated with the Sun is at least two orders of magnitude less than that of violation in LLI,
which makes β̄′ very close β̄ (also see Table 1).

In Case II, we treat β̄S1 and β̄S2 as free parameters and they are simultaneously estimated. In the
configuration that NN was the uplink and SH was the downlink, both β̄NN and β̄SH are at the level of
3%. The levels of ∼ 10−2 are obtained as well when KM and UR were the downlinks respectively
(see Table 1).

5 CONCLUSIONS

Using the theory of three-way Doppler tracking, including possible violations of LLI and LPI, we
analyze the post-fit residuals of three-way Doppler tracking of MEX. These Doppler observations
were carried out from August 7th to 8th in 2009, with an uplink station administered by ESA at NN in
Australia and three downlink stations at SH, KM and UR in China. We find that these observations
impose preliminary bounds on LLI at the level of 10−2, but they are not suitable for testing LPI
because of the configuration of these stations and the accuracy of the observations.
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To our knowledge, this is one of the first attempts in China to do radio science in the field of
fundamental physics. With the development of techniques used for tracking spacecraft, we wish to
obtain better bounds on possible violations of LLI and LPI in the future.
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