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Abstract With the fast increase in the resolution of astronomical images, the question
of how to process and transfer such large images has become a key issue in astron-
omy. We propose a new real-time compression and fast reconstruction algorithm for
astronomical images based on compressive sensing techniques. We first reconstruct
the original signal with fewer measurements, according to its compressibility. Then,
based on the characteristics of astronomical images, we apply Daubechies orthogonal
wavelets to obtain a sparse representation. A matrix representing a random Fourier
ensemble is used to obtain a sparse representation in a lower dimensional space. For
reconstructing the image, we propose a novel minimum total variation with block
adaptive sensing to balance the accuracy and computation time. Our experimental re-
sults show that the proposed algorithm can efficiently reconstruct colorful astronomi-
cal images with high resolution and improve the applicability of compressed sensing.
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1 INTRODUCTION

We can directly infer properties about outer space through astronomical images, which can be ob-
tained in two ways: ground-based telescopes and space-based telescopes (Hao 2007). With the de-
velopment of technology, the quantity and quality of astronomical images has rapidly increased, so
that it is hard to obtain a large compression ratio with conventional compression techniques. As a
result, the question of how to process and transfer such large images has become a key issue in
astronomy.

The conventional compression techniques applied to astronomical images can be divided into
four categories: the DCT based method (Furht 1995), the wavelet based method (Li et al. 2008;
Taubman & Zakhor 1994; Press 1992), the block based fractal compression method (Fisher 1994)
and some other methods, such as the multi-resolution Pyramidal Median Transform (PMT) algorithm
(Starck et al. 1996) and MathMorph (Huang & Bijaoui 1991). However, it is difficult for all of these
methods to achieve large compression ratios with acceptable loss. In addition, computation is an
enormous burden for CPUs running these algorithms (Bobin et al. 2008).
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In recent years, a new sampling theory called compressed sensing (CS) (Candès & Tao 2006;
Donoho 2006) has attracted considerable attention. CS recovers the signal from far fewer samples
than traditional methods and relies on the sparsity of the signal. CS has been applied to astronom-
ical image processing, but most of these studies have concentrated on the feasibility of CS. Liu
et al. (2010) used random and sparse Fourier samples to greatly reduce the amount of measure-
ment samples, and lower the requirements of cost and complexity in telescope systems that rely on
Fourier transforms for effective rapid imaging. Kolev presented a simple CS method in the orthogo-
nal wavelet domain (Kolev 2011). His analysis shows that these types of wavelets, such as Symmlet,
Daubechies and Coiflet, are especially effective for noise removal. Bobin et al. (2008) treated CS
as a new framework to handle multiple observations in the same field of view and recover infor-
mation at a very low signal-to-noise ratio, which is impossible with standard compression methods.
Barbey et al. (2011) successfully applied CS to real Herschel/PACS data, taking account of all the
instrumental effects, and significantly improved the resolution of sky maps.

In this paper, we propose a new algorithm for real-time compression and fast reconstruction
that can be applied to astronomical images using CS techniques. Inspired by Bobin’s research on
compression techniques and Gan’s block compressed sensing (Gan 2007), we first reconstruct the
original signal with fewer measurements. Daubechies orthogonal wavelets are then applied to obtain
the sparse representation according to the characteristics of astronomical images. For the process of
compression, we design a matrix representing a random Fourier ensemble to obtain a sparse repre-
sentation of images in a lower dimensional space to improve the quality of reconstructed images.
In contrast to iterative hard thresholding with an equivalent measurement matrix, a novel minimum
total variation with block adaptive sensing is put forward to balance the accuracy and computation
time in the process of image reconstruction. Our experiments demonstrate that the proposed algo-
rithm can improve the image accuracy and calculation speed in real time, which are disadvantages
of traditional methods such as iterative thresholding reconstruction.

Section 2 describes the construction process of our minimum total variation with block adaptive
sensing method. Section 3 gives experimental results of the proposed method, and compares them to
the iterative thresholding and the block TV minimization algorithms. Section 4 provides conclusions.

2 BLOCK ADAPTIVE SAMPLING COMPRESSED SENSING FOR ASTRONOMICAL
IMAGES

2.1 Background

Inspired by the idea from CS that the sparsity of a signal is an a priori condition for compressed
sampling, an astronomical image I (m,n) ,m = 1, 2, · · · ,M ;n = 1, 2, · · · , N with size M × N ,
can be represented sparsely in a certain basis,

I = ψα , (1)

where ψ is a sparse basis and α is a sparse matrix representation of I where most of its coefficients
are zero or approximately zero, so that α is compressive. We choose Daubechies wavelets as the
basis, referring to Kolev (2011).

When sampling from I , the measurement matrix Φ must satisfy the RIP condition (Candès &
Tao 2006). This means that Φ is not related to α.

y = ΦI ⇒ y = Φψα . (2)

Although general random Gaussian matrices have nearly no relation with any other sparse signal,
their randomness needs a huge storage space. Meanwhile, the absence of structure in Φ makes com-
puting it very complex (Li & Wei 2009). Thus, it is difficult to compute a fast reconstruction of large
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scale astronomical images to satisfy practical demands. To handle this issue, we select a fast sensing
matrix (random Fourier ensemble) to offer both fast encoding and fast decoding techniques,

Φ = SF, (3)

where F ∈ RN×N is the real Discrete Fourier Transform and the matrix S ∈ Rt×N randomly
selects a few elements of any N-dimensional vector. The random Fourier measurement reduces the
complexity of the sampling system (Jacques & Vandergheynst 2010).

The solution to the reconstruction problem is achieved by solving the following convex problem,

α̂ = arg min ‖α‖1 s.t. y = Φψα. (4)

In practical applications, astronomical images are often obtained in a noisy environment, for exam-
ple, where cosmic radiation is present, so a more realistic CS model should take account of noise
given by the expression y = Φ(I + η), where η represents noise. Then, a relaxed version becomes

α̂ = arg min ‖α‖1 s.t. ‖y − Φψα‖2 6 ε. (5)

There are several methods to solve Equation (5), such as stagewise orthogonal matching (Donoho
et al. 2012), gradient projection (Figueiredo et al. 2007) and iterative hard thresholding (Gan 2007;
Bobin et al. 2008).

2.2 Total Variation Minimization

Bobin and Gan reconstructed an image with iterative hard thresholding. Compared with the former
two methods, iterative hard thresholding has a faster construction speed. However, it is sensitive to
the initial thresholds, and the sparse solution is only optimized in the local parameter space.

In this paper, we aim at improving the quality of reconstruction and increasing the speed of
computation. The total variation (TV) minimization method is designed to reconstruct I from another
angle, in which the images are compressible with respect to their discrete gradient. Concretely, we
denote Im,n as any particular pixel of I . The discrete gradients D1Im,n and D2Im,n are defined as

{
D1Im,n = Im+1,n − Im,n

D2Im,n = Im,n+1 − Im,n

. (6)

The TV is the sum of magnitudes of the discretized gradient

‖I‖TV =
∑ √

(D1I)2 + (D2I)2 =
∑

|(OI)m,n|. (7)

Accordingly, the model for reconstruction is changed to

(TV) min ‖I‖TV s.t. ‖AI − y‖2 6 ε, (8)

where A = Φψ−1. Through TV minimization, the result is exact and robust (Needell & Ward 2013).
However, model (8) can be converted to an unconstrained convex problem.

minimize ‖AI − y‖22 + λ ‖I‖TV , (9)

where the parameter λ > 0 acts as a tradeoff between the sparsity of I and the approximation error.
To describe this method, we should define the matrix pairs (p, q) as %, where p ∈ R(M−1)×N and
q ∈ RM×(N−1) satisfy

p2
m,n + q2

m,n 6 1, for 1 6 m 6 M − 1, 1 6 n 6 N − 1 ,
|pm,M | 6 1, for 1 6 m ≤ M − 1 ,
|qn,N | 6 1, for 1 6 n ≤ N − 1.

(10)
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A linear operator Γ maps the element of % to an M ×N matrix as

[Γ(p, q)]m,n = pm,n − pm−1,n + qm,n − qm,n−1, for 1 ≤ m ≤ M, 1 ≤ n ≤ N. (11)

Finally, the algorithm is outlined below.
Inputs: observed image I , regularization parameter λ and iteration number J .
Output: An optimal solution I∗ of (9) up to tolerance.
Step 0: Take (p0, q0) = [O(m−1)×n, Om×(n−1)].
Step j (j = 1, 2, · · · , J): Compute

(pj , qj) = P%

{
(pj−1, qj−1) +

1
4λ

ΓT
[
I − λΓ(pj−1, qj−1)

]}
(12)

Set I∗ = PBι,u

[
I − λΓ(pJ , qJ)

]
.

The projection operator P% in (12) maps a matrix pair (p, q) to another matrix pair (r, s) =
P%(p, q).

2.3 Block Adaptive Sampling

The TV minimization algorithm also suffers from fairly heavy computations. Motivated by the great
success of the block DCT coding system, block CS is proposed in Gan (2007). In the block CS
framework, an image is divided into small blocks Iu,v with the same size of B × B and with the
same measurement operator Φb. The corresponding output sensing result can be represented by

yu,v = ΦbIu,v. (13)

So, for the entire image, the measurement matrix can be written in a block diagonal form

Φ =




Φb

Φb

. . .
Φb


 . (14)

Due to the different sparsities of different blocks, there is a drawback if all the blocks are sam-
pled with the same operator. If the ith block has a very low sparsity and the number of measurements
is too large, it will result in a waste of resources; Or, if the sparsity of the block is relatively high,
lower sampling will affect accuracy of reconstruction and generate some intermittent visual errors.
So, we propose a Block Adaptive Sampling TV minimization algorithm (BASTV), which considers
the different sparsities of different blocks, while Iu,v is measured with different sensing matrices.

In BASTV, the first block I1 is treated as a reference, and its sensing matrix should satisfy
S1 > k1 log P1, where P1 stands for the sum of the pixels in the first image block and its sparsity
is represented by k1. After this, we can compute the sampling rate of the ith block based on I1 by
Si = S1ki/k1, where ki is the sparsity of the ith block. Sparsity k is the proportion of nonzero
elements in the matrix.

For an image acquired during observations, its edge information often reflects the sparsity in the
transformed domain. More edge points mean more saltation is present in the pixel domain and lower
sparsity in the transformed domain, so that we can directly judge the sparsity in the pixel domain
through image edge detection. Sobel edge detection can be used to analyze the sparsity because of its
low computational complexity and excellent performance (Ercan & Whyte 2001). The edge image
is transformed into a binary image where 1 stands for edge points and 0 represents non-edge points.
Then, we can regard the edge points in each block as the sparsity ki.
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Fig. 1 The whole process of fast compression and reconstruction of astronomical images in the CS
framework.

Finally, the adaptive sampling operation can be represented as

Φ̃ =




Φ̃1

Φ̃2

. . .
Φ̃B


 . (15)

Thus, the proposed adaptive sensing guarantees the accuracy of reconstruction and at the same time
ensures a judicious use of resources.

As described in Gan (2007), the block dimension B = 32 is suggested and a 3× 3 Wiener filter
is applied in the spatial domain to reduce the blocking artifact and smooth the reconstructed image.
The process of fast compression and reconstruction in a CS frame is demonstrated in Figure 1.

3 EXPERIMENTAL RESULTS

To investigate the performance of the proposed TV minimization method that uses block adaptive
sensing, we compare it to the iterative thresholding method (Bobin et al. 2008) and the block TV
minimization method (Gan 2007). Unlike previous work that has conducted experiments on gray-
level images, we tested our method on a colorized Sun image with size 1024 × 1024 for practical
application, which is available online at the Solar Dynamics Observatory (SDO) website, and clas-
sic color images of galaxies, nebulae, stars and the Universe, which were obtained from the Hubble
Space Telescope. Because the three color channels R, G and B are highly correlated, the result of
each channel processed separately is unnecessary. To enhance the effect of color image reconstruc-
tion, channel R is selected as a reference. We can then get G′ and B′ through averaging G and B
with R to achieve compression. The experiments are implemented on a PC with an Intel Core i7 3.4
GHz CPU and 16 GB of RAM, Windows 7 and Matlab R2011b.

In Figure 2, each image is reconstructed with a 30% sensing rate and the gray level histogram
for the corresponding image is shown. Visually, the BASTV algorithm performs well because it
provides a solution that is close to the original image. The sharpness of the reconstructed image is
better than the other two methods. The objective quality of the reconstructed images is also measured
by PSNR. For a color image, computation of PSNR is defined as

PSNR = 10 log
2552

1
MN

{∑3
j

∑M
m=1

∑N
n=1 [Ij (m,n)− Ij (m,n)]2

}
/3

, (16)
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Fig. 2 (a)–(d): original SDO image, reconstructed image by IHT, reconstructed image by BTV–min,
reconstructed image by BASTV–min; (e)–(h): gray level histogram corresponding to (a)–(d).
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Fig. 3 PSNR increasing and MSE decreasing with the growth of the measurement rate for each
image.

where M and N denote the rows and columns of the image, respectively. j = 1, 2, 3 stand for the
three channels in the color image, respectively. Various sensing ratios are used to validate the effec-
tiveness of the proposed method. We conducted eight tests for each image at different measurement
rates.

Figure 3 illustrates that the PSNR values increase and MSE values decrease with the growth of
the measurement rate for each image. For the iterative thresholding method, PSNR does not increase
after a sensing rate of 30%. It can be seen that the BASTV algorithm has the best performance at
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Table 1 PSNR of Different Images Sampled with Different Ratios

10% 20% 30% 40% 50%

Galaxy IHT 20.5808 35.2554 38.1166 39.4995 40.0967

BTV−min 29.7142 35.2244 39.9649 42.6330 45.1968

BASTV−min 39.0203 45.1729 42.6330 52.4919 45.1968

Nebula IHT 17.2873 25.6129 28.8608 30.1763 30.6656

BTV−min 22.5588 26.7596 30.6449 33.9150 37.1294

BASTV−min 24.8311 30.1785 34.5977 37.9639 40.9334

Universe IHT 18.0158 26.1572 27.8563 28.8514 29.4639

BTV−min 25.5546 28.1134 30.1061 31.8241 34.2992

BASTV−min 26.2880 28.9967 31.0337 33.2671 35.9946

Star IHT 19.3212 26.3095 30.3701 31.5605 31.9855

BTV−min 22.8690 26.4708 30.4033 33.6947 37.3234

BASTV−min 24.5558 29.6246 34.8599 38.2334 41.4402

Table 2 Comparison of Reconstruction Methods under Different Kinds of TV-min

Reconstruction Method 10% 20% 30%

TV−MIN 0.0011 8.6037e–005 3.3204e–005
MSE Block TV−MIN 0.0039 7.8665e–004 2.6570e–004

Block adaptive TV−MIN 0.3259e–004 0.3259e–004 0.3259e–004

TV−MIN 29.5656 40.6532 44.7882
PSNR Block TV−MIN 24.0569 31.0422 35.7561

Block adaptive TV−MIN 30.7957 37.9421 42.7255

TV−MIN 276.0863 285.7559 283.9373
Time/s Block TV−MIN 207.6559 192.3176 189.1788

Block adaptive TV−MIN 203.8339 193.0413 189.5080

different rates. The PSNR values for different kinds of astronomical images sampled with different
ratios are reported in Table 1.

Obviously, for these reconstructed images, BASTV-min always yields a higher PSNR than
the other two methods. Furthermore, we report the computation cost of the proposed algorithm in
Table 2.

From the above table, we can see that the block TV minimization obviously improves the re-
construction speed, but reduces the correlation of the whole image, so as to reduce the accuracy of
reconstruction. The inclusion of the BASTV algorithm and deblocking filters makes up for the lack
of TV−min. That maintains the balance between speed and accuracy during reconstruction.

4 CONCLUSIONS

A block adaptive sensing TV-min method was proposed for astronomical images in the CS frame,
which aimed at achieving real-time sampling compression and fast reconstruction for astronomy.
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We selected Daubechies wavelets for better sparsity and a random Fourier ensemble for lower com-
plexity for sampling the system. During reconstruction, the block adaptive sensing TV−min method
maintained a balance between speed and accuracy during reconstruction. The experimental results
indicated that the proposed method was very efficient in terms of PSNR, visual quality and recon-
struction speed.
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