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Abstract We compiled a catalog of Faraday rotation measures (RMs) for 4553 ex-
tragalactic radio point sources published in literature. These RMs were derived from
multi-frequency polarization observations. The RM data are compared to those in the
NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of
about 10.0 ± 1.5 rad m−2 in the NVSS RM catalog. The Galactic foreground RM is
calculated through a weighted averaging method by using the compiled RM catalog
together with the NVSS RM catalog, with careful consideration of uncertainties in the
RM data. The data from the catalog and the interface for the Galactic foreground RM
calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/.
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1 INTRODUCTION

When a polarized signal propagates through a magnetized medium, the plane of polarization is ro-
tated, and this rotation depends on frequency. This is the Faraday effect discovered by M. Faraday
in 1844. The polarization angle ψ is thus equal to

ψ = ψ0 + RM · λ2 , (1)

where ψ0 is the intrinsic polarization angle, and the rotation of the polarization angle ∆ψ = ψ−ψ0 is
proportional to the wavelength squared, λ2, with a rate RM in units of rad m−2. This is the rotation
measure (RM), which is an integrated quantity of the product of the free electron density ne and
magnetic field strength B along the line of sight from the source to us, and is expressed by

RM = 0.81
∫ us

source

neB · dl . (2)

The electron density ne is in cm−3, the magnetic field is a vector B in units of µG, and dl is the unit
vector along the light path towards us in units of pc. Only the component of the magnetic field along
the line of sight determines the amount of Faraday rotation.

If there is no nπ ambiguity for the polarization angles, the RM value of a polarized radio point
source can be determined by polarization observations at two frequencies, through

RM = (ψ1 − ψ2)/(λ2
1 − λ2

2) . (3)
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Here ψ1 and ψ2 are the polarization angles at the wavelengths λ1 and λ2. Because of the nπ ambi-
guity in ψ values, in practice polarization angles at at least three frequencies are needed to determine
RM. When multi-frequency polarization observations are available from a radio source, the slope of
a linear fit to polarization angles against wavelength squared is the RM, if the polarization angles
have been properly unwrapped to correct for the nπ ambiguity.

The RMs of many radio sources have been determined well using multi-frequency polarization
observations. In the early days, polarization observations were carried out for strong radio sources
with single-dish radio telescopes, and measurements of polarization angles at several frequencies
were used to estimate RMs (e.g. sources in Simard-Normandin et al. 1981; Broten et al. 1988).
Later, synthesis radio telescopes were used for polarization observations with excellent resolutions,
so that RMs of different emission components of radio sources could be measured separately (e.g.
Minter & Spangler 1996). Recently, wideband observations have made it possible to determine RMs
from a set of measured ψ values of many channels in a single frequency band (e.g. Brown et al.
2003), or directly from the Stokes Q and U values of the channel maps using the technique of RM
synthesis (Brentjens & de Bruyn 2005).

Observations for RMs have great scientific merits. RMs of radio sources in small regions on the
sky have been used to probe the magnetic fields in galaxy clusters (Hennessy et al. 1989; Clarke
et al. 2001; Johnston-Hollitt & Ekers 2004; Govoni et al. 2010; Bonafede et al. 2010), in nearby
galaxies (Han et al. 1998; Gaensler et al. 2005; Mao et al. 2008, 2012; Gießübel et al. 2013), in
stellar bubbles (Savage et al. 2013) or HII regions (Harvey-Smith et al. 2011; Rodrı́guez et al. 2012)
and even supernova remnants (SNRs: Kim 1988; Simonetti 1992; Sun et al. 2011), and high velocity
clouds (McClure-Griffiths et al. 2010) in our Milky Way. RMs of radio sources behind the Galactic
disk revealed the magnetic structure in the disk (Simard-Normandin & Kronberg 1980; Sofue &
Fujimoto 1983; Brown et al. 2007; Van Eck et al. 2011). The RM distribution over the whole sky
has been used for delineating magnetic fields in the Galactic halo (Han et al. 1997, 1999) and for
deriving the Galactic foreground RM (Oppermann et al. 2012).

Early RM catalogs of galaxies or quasars were compiled by, for example, Eichendorf &
Reinhardt (1979) and Tabara & Inoue (1980). The most often used are the RM catalogs for 555
objects by Simard-Normandin et al. (1981) and 674 objects by Broten et al. (1988). Over the last
ten years, RMs of a large number of extragalactic radio sources (EGRs) have been derived in many
surveys, for example, the Canadian Galactic Plane Survey (Brown et al. 2003) and the Southern
Galactic Plane Survey (Brown et al. 2007). Observations of specific regions also increased the total
number of RM data, such as those for the Large Magellanic Cloud (Mao et al. 2012), the Small
Magellanic Cloud (Mao et al. 2008) and the Galactic poles (Mao et al. 2010). These RMs are in gen-
eral well determined, because the polarization angles of many frequency channels have been used to
derive the RM values.

We have extensively searched literature published in the last two decades for RM data. In
Section 2, we publish our compilation of RM data for 4553 point sources, which should be valu-
able for many research projects, as mentioned above. Archival surveys and databases are checked
for possible associations of radio sources with known objects, sometimes even with known red-
shifts. Taylor et al. (2009) have reprocessed the 2-channel polarization data from the NRAO VLA
Sky Survey (NVSS, Condon et al. 1998), and obtained RMs for 37 543 sources. In Section 3 we
will also compare the RM values that we compiled with those in the NVSS RM catalog of Taylor
et al. (2009). We will show the distribution of RM uncertainties, and derive the Galactic foreground
RMs in Section 4 by using the weighted averages of RM data. Discounting such a foreground RM
is important, for example, to calculate the intrinsic RMs of radio sources (e.g. Leahy 1987; Athreya
et al. 1998; Broderick et al. 2007; Schnitzeler 2010) and to understand the magnetic fields in galaxy
clusters (e.g. Clarke et al. 2001; Bonafede et al. 2010, 2013).
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To make the RM catalog available to the wider community, we have developed a web interface1

that allows users to tabulate the RM data in a selected area and calculate the Galactic foreground
RM.

2 COMPILING THE ROTATION MEASURE CATALOG

Faraday rotation is an effect that arises from propagation through the intervening magneto-ionized
medium between the radiation source and us, as we discussed above, and ideally can be mea-
sured through multi-frequency polarization observations. However, the properties of polarized radio
sources2 and observational characteristics can make things complicated. For example, when a radio
source has two or three components with different RMs (Law et al. 2011), observations with a low
angular resolution that is not enough to resolve these components would produce a non-linear de-
pendency between polarization angle and λ2 (Xu & Han 2012; O’Sullivan et al. 2012), and hence
observations at different frequencies with different resolutions would yield different RMs (Bernet
et al. 2012). It is also possible that a source has different components (e.g. diffuse or compact),
each having different spectral and/or polarization properties. Sources unresolved in low angular res-
olution observations often show extended and/or compact components with different RMs in high
angular resolution observations (e.g. Reynolds et al. 2001). Polarization observations at different
frequencies probe different depths of a source (Goldstein & Reed 1984). Therefore, properties of a
source (number of components and the difference in their intrinsic polarization) as well as obser-
vational parameters (resolution, observational bands and the bandwidth) are important factors for
determinations of RM.

Most extragalactic radio sources are compact cores in galaxy centers, jets or lobes from ac-
tive galactic nuclei (AGNs). Observations with high angular resolutions and at high frequencies can
always resolve jet regions because they can probe deeply into the emission cores; and the diffuse
emission detected in lower resolution observations is often resolved and cannot be detected. There
may be a large contribution to RM of the compact core from the medium between the core of the
source and its edge, in addition to RMs from intergalactic space and the foreground Galactic RM.
Observations with very high resolution and at high frequencies often help us to understand the in-
trinsic properties of radio sources (e.g. Algaba et al. 2012; O’Sullivan et al. 2011; Taylor & Zavala
2010; Taylor et al. 2005). On the other hand, observations with a low angular resolution at low fre-
quencies suffer from differential Faraday rotation as well as internal and external Faraday dispersion
(e.g. Sokoloff et al. 1998), and probe a much shallower ‘skin layer’ of the radio source. This has
been found, for example, in M51 and other nearby galaxies (Fletcher et al. 2011; Heald et al. 2009;
Braun et al. 2010; Bernet et al. 2012). The polarized emission from such a shallow layer more often
gets the Faraday rotation in the intergalactic medium between the source and us.

Therefore, in this paper, we compile the RMs of point-like sources, unresolved by observations
with resolution lower than 1′′ so that the RMs are mostly produced by the medium between the
source of the emission and the observer, rather than dominated by intrinsic RMs from the sources.
We do not collect the RMs of well-resolved sources with a resolution better than 1′′, for which the
observed RMs are mostly intrinsic to the source. If an object has two components, and each com-
ponent has a measured RM, we include them in our catalog as two sources. If a source component
is resolved in polarization observations, we only include the average RM of the component in our
catalog (e.g. Pedelty et al. 1989).

We compiled a catalog of RMs for 4553 sources, as shown in Table 1, which are ordered in terms
of Right Ascension (J2000), by searching RMs that have been published in the literature after the
1980s. Earlier RM compilations by Simard-Normandin et al. (1981) and Broten et al. (1988) have

1 http://zmtt.bao.ac.cn/RM/
2 Here we define a radio source as a more or less independent radio emission component, while an object such as a quasar

can produce a few radio sources, e.g. two unresolved lobes as two sources in addition to a compact core.
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been included in our catalog directly. We may miss a small number of RMs by sporadic observations
for individual objects, and will add new RMs to our catalog once they become available to us. In the
following, we explain how we compiled our RM catalog in more detail.
Sources with multiple RM measurements: When two or more RMs are available for one source,
we only choose one as the formal RM value of the source by considering uncertainties in the mea-
surement and the number of observing frequencies, though in our catalog we list other RM values of
the source for reference. We adopt a formal RM value in the following way.

First of all, we check the source positions. For the current density of polarized radio sources
on the sky, we assume that any sources within 3′′ are the same source, because almost all sources
in our catalog were observed with a resolution of > 2′′ except for a few percent (since we set
the 1′′ criterion above). Many old observations were made with a very low resolution of several
arcminutes for very strong sources but no value for the resolution is given in literature, for which
we mark them with “?” for the resolution in our catalog and check NED (NASA/IPAC Extragalactic
Database), NVSS or other catalog for the position, see below. Second, for a given source, if the
ionospheric RM was carefully corrected during observations, we take the RM as a formal value.
We then check how many frequency bands or channels were used to derive the RM. The RM value
derived from observations with more frequencies or channels is more reliable and in general good at
removing the nπ ambiguity. We prefer to take the formal RM from observations with more channels
or bands. Finally, we look at the uncertainty in RMs. The RM with a smaller uncertainty from a wider
frequency range or more sensitive observations is preferably taken as the formal value. If two RM
values are consistent with 2σ =

√
σ2

1 + σ2
2 , where σ1 and σ2 are the uncertainties of the two RM

measurements, we take the one with the smaller uncertainty. If they differ by more than 2σ, we take
the formal RM derived from the observations with more channels considering the similar emission
region and Faraday depth for many channels in one band. If the same RM value and uncertainty for
a source appears in two references, especially when the later authors cite the RM value obtained by
the former authors, we give credit to the former authors.

In Table 1, we list the formal RM as one entry indicated by the number of the source, together
with other RMs for this source indicated by “ 1”, “ 2” or “ n” in the numbering.
Coordinates: In Table 1 we use the following labels to indicate how we obtain source positions:

‘O’: We take the original published positions in the reference of RM observations;
‘M’: If coordinates were not published together with the RMs, we measured source positions

from the images or figures in the papers where the RMs were published;
‘N’: In some papers, RMs are given for a list of sources with only object names without coor-

dinates. We checked the NED (Helou et al. 1991, 1995) for positions. If observations for RMs have
a high resolution, we assume that the source is associated with the core, and then take the object
position that is given in NED. If the coordinates of the sources were misprinted in a paper, or if the
uncertainties in the published coordinates were large, we also used the positions from NED.

‘V’: Some early RM observations have a low angular resolution, and RM data were listed by
only specifying names of sources without coordinates. For these objects we first find the associated
NED objects, then we take the coordinates from the NVSS (Condon et al. 1998).

‘F’: For some sources RMs have been derived for more than one component. If the coordinates
of each of these components are not given in the references, we check and take the source positions
from the VLA Faint Images of the Radio Sky survey (FIRST, Becker et al. 1995).
Uncertainty level and ionospheric correction: We rank the RM uncertainty into four levels: A for
uncertainties smaller than 0–3 rad m−2, B and C for 3–10 rad m−2 and 10–30 rad m−2, respectively,
and D for uncertainties larger than 30 rad m−2. In some publications (e.g. Stanghellini et al. 1998;
Rossetti et al. 2008; Mantovani et al. 2009), the RM uncertainty was not given. For those cases we
check the figures or position angle data, and sometimes calculate RM values and their uncertainties
from polarization angle data given in a paper.
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The RMs from the ionosphere in general have not been discussed in most previous papers,
except for a few (Kim et al. 1994; Oren & Wolfe 1995; Minter & Spangler 1996; Brentjens 2008), for
which we should thank the careful authors. The combination of the electron density and the magnetic
field in the Earth’s ionosphere causes different RMs for different directions on the sky, especially at
sunrise or sunset (Sotomayor-Beltran et al. 2013). It may exceed ±5 rad m−2. If the contribution
of ionospheric RM was not mentioned in a paper, we interpreted that the RMs in the paper have
not been corrected for the ionospheric RM. Not correcting for the ionospheric RM may induce a
systematic error for RM values, which in general should be 2 ∼ 3 rad m−2. If the ionospheric
RM correction was explicitly made for RM measurements in the literature, we added “+” after the
uncertainty level (i.e. “B+”).
Object type and redshift: We checked the names of objects (galaxies or quasars, etc.) for ra-
dio sources or source components. By cross-correlating source positions with 3′′, with NED and
SIMBAD (the Set of Identifications, Measurements and Bibliography for Astronomical Data:
Wenger et al. 2000), we found object types and redshifts. When NED and SIMBAD give differ-
ent object types or redshifts for a given source, we use the information from NED.

The sky distribution of the compiled RMs is shown in Figure 1.

Fig. 1 The sky distribution of the compiled RMs in the Galactic coordinates (upper) and that of the
NVSS RMs (lower). The linear sizes of the symbols are proportional to the square root of the RM
values with limits of ±10 and ±300 rad m−2. Red pluses indicate positive RMs, while blue circles
indicate negative RMs.
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3 UNCERTAINTY IN THE COMPILED RMS AND COMPARISON WITH THE NVSS
RM CATALOG

Taylor et al. (2009) have reprocessed the NVSS polarization data of the two IF bands at 1435 MHz
and 1365 MHz, and derived RM values for 37 543 sources from the two-band polarization data. The
sky distribution of the NVSS RMs is also shown in Figure 1. Our compiled catalog contains RMs of
4553 sources derived from polarization observations at at least three frequencies. Over most of the
sky, the RM distribution is sparse. The NVSS RM catalog obviously has the advantage of having a
large number of sources and almost uniform sky coverage above a declination of −40◦.

Here we compare the RM uncertainties in the RM catalog we compiled with the RM uncertain-
ties from the RM catalog by Taylor et al. (2009). In Figure 2 we show the distributions of the RM
uncertainties σRM for the compiled RM catalog and the NVSS RM catalog. The uncertainties of
compiled RMs show a sharp peak at σRM < 4 rad m−2, because most of the compiled RM data are
determined by polarization angles at more than three frequencies or channels and because the ∆λ2

range is large and there is no nπ ambiguity in the data. The uncertainties in the NVSS RMs show a
broad distribution with a not-outstanding peak around σRM ∼13 rad m−2, and a median uncertainty
of ∼ 10.8 rad m−2 (Schnitzeler 2010; Stil et al. 2011).

We also compared the RM values of 1024 sources that appear in both RM catalogs. In general,
most RMs are consistent with each other within 20 rad m−2 (see Fig. 3), though the distribution
of RM difference ∆RM extends to 50 rad m−2, and a few sources even have differences up to
100 rad m−2 (see also fig. 3 of Pshirkov et al. 2011).

The systematic uncertainties in RM data should be but were rarely recognized in literature. The
RMs compiled from the literature may have not been corrected for the ionospheric RM, which causes
a systematic uncertainty, at most 3 rad m−2. We selected the RMs of 36 sources in both RM catalogs
which have formal uncertainties less than 1 rad m−2, and checked their RM differences from the
NVSS RMs. Because these sources are in general very bright and the RMs in the compiled RM
catalog were well determined, the distribution of ∆RM must come from the systematic uncertainty
of the NVSS RM catalog. We fit the distribution with a Gaussian and obtained a characteristic width

Fig. 2 Distribution of the uncertainty of RM measurements σRM for the compiled RM catalog
and the NVSS RM catalog. The formal uncertainties of the compiled RMs have a peak at less
than 4 rad m−2, while the uncertainties of the NVSS RMs are widely distributed in the range
0 − 20 rad m−2, with a peak around 13 rad m−2. Note here that the systematic uncertainty of the
two RM catalogs (< 3 rad m−2 for the compiled RMs and 10 rad m−2 for the NVSS RMs) have not
been considered.
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Fig. 3 Comparison of RM values for 1024 sources (left) in both the NVSS catalog and the catalog
we compiled and for the 36 sources (right) in both catalogs with formal uncertainties less than
1 rad m−2. Notice that the 36 sources are all bright sources and that their RMs have been well
determined in the literature. The ∆RM values of these 36 sources follow a Gaussian distribution
with a width of 10.46 ± 1.45 rad m−2, which mostly comes from the systematic uncertainty of the
NVSS RM measurements.

of σ0 = 10.46 ± 1.45 rad m−2 (see the right panel of Fig. 3). Because the upper limit of the
systematic uncertainty from our compiled RMs produced by the uncorrected ionospheric RM is
3 rad m−2, and even if we discount such a maximal value of σsys

CM = 3 rad m−2, the systematic
RM uncertainty of the NVSS RMs, in addition to the formal measurement uncertainty, should be
σsys

NVSS =
√

σ2
0 − (σsys

CM)2 = 10.0 ± 1.5 rad m−2. This systematic uncertainty can explain the
randomly scattered distribution of a few tens of rad m−2 around the equivalent line in figure 7 of
Mao et al. (2010), when the NVSS RMs are compared with the RMs derived by Mao et al. (2010)
for radio sources close to the two Galactic poles. We therefore agree with Mao et al. (2010) that RMs
derived in Taylor et al. (2009) can be used collectively to describe the large-scale Galactic RM sky
by averaging over large areas, as we will do in the next section. However, one should be cautious
to use the individual NVSS RM values even if they have a very small formal uncertainty, since
these RMs can potentially be inaccurate due to the systematic uncertainty in RM that we identified.
For example, two standard calibration sources, 3C286 (J133108.3 +303033, with expected RM =
0 rad m−2) and 3C138 (J052109.9 +163822, with expected RM = −1 rad m−2), have RM values
of 8.8 ± 0.1 and 7.0 ± 0.2 rad m−2 in the NVSS RM catalog, respectively. These values are only
understandable if such a systematic uncertainty of the NVSS RM catalog is taken into account.

4 THE GALACTIC FOREGROUND RM

We can derive the Galactic foreground RM from all available RM data. The observed RMs consist
of the RM contributions from the polarized sources themselves, i.e. the intrinsic RM, the RM from
intergalactic space and the RM from the interstellar medium in our Milky Way. The RM averaging
process of a set of sources can smear out the random RM contributions from intergalactic space,
which are not known exactly but could be random with an amplitude of a few rad m−2 according to
simulations by Akahori & Ryu (2011) and recent studies by Xu & Han (2014). Because the common
RM contribution of a set of neighboring radio sources comes from the interstellar medium in our
Milky Way, the mean RM sky is therefore an excellent description of the Galactic foreground RM.
In this averaging process, we should not use RMs that deviate significantly from neighboring RMs
because those RMs are probably dominated by the RM contribution that is intrinsic to the source.
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Fig. 4 The Galactic coordinates and azimuthal magnetic fields in the Galactic halo with reversed
directions above and below the Galactic plane. Such halo magnetic fields can explain the antisym-
metric RM sky in the inner Galaxy shown in Fig. 1 as proposed originally by Han et al. (1997).

Many authors have investigated structures in the RM sky, e.g. Simard-Normandin & Kronberg
(1980); Han et al. (1997, 1999); Taylor et al. (2009); Stil et al. (2011); Oppermann et al. (2012).
As shown in Figure 1, the RM distribution shows large-scale coherent structures on scales of up to
tens of degrees. The most striking feature is the antisymmetric (quadrupole-like) RM structure in the
inner Galaxy with respect to the Galactic plane and the Galactic meridian at l ∼ 0◦, as discussed by
Han et al. (1997, 1999), which consists of positive RMs in the upper left and lower right quadrants
and negative RMs in the upper right and lower left quadrants. Such a pattern has been attributed
to large-scale toroidal magnetic fields in the Galactic halo that go in opposite directions above and
below the Galactic plane (see Fig. 4), originally pointed out by Han et al. (1997, 1999) and later
modeled by Prouza & Šmı́da (2003); Sun et al. (2008); Pshirkov et al. (2011); Jansson & Farrar
(2012); Ferrière & Terral (2014). In the two Galactic pole regions, RMs have much smaller values
than those near the Galactic plane, as the magnetic fields in our Milky way are dominated by the
azimuthal components parallel to the Galactic plane (Han et al. 1999; Mao et al. 2010). Small scale
structures in the RM sky are related to known foreground objects, such as HII regions (Harvey-
Smith et al. 2011; Rodrı́guez et al. 2012), SNRs (Kim 1988; Simonetti 1992; Sun et al. 2011) and
high velocity clouds (McClure-Griffiths et al. 2010) in our Milky Way. Here, we do not study the
small-scale RM structure in detail. Instead we derive the Galactic foreground RM by using the RM
catalog we compiled together with the NVSS RM catalog. We first derive the Galactic foreground
RM, and then compare our result with that obtained by Oppermann et al. (2012).

4.1 The Galactic Foreground RM and its Uncertainty

We take all available RM measurements from the compiled RM catalog and the NVSS RM catalog
to estimate the Galactic RM foreground and its uncertainty. If multiple RMs are listed for a single
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source, we only took the formal best value. In total, we have RMs for 41 072 sources. Then, any
RMs with a formal uncertainty larger than 30 rad m−2 are discarded, because they are not reliable.
This leaves us 40 894 sources.

In principle, because of randomness of intergalactic RM contributions and intrinsic RMs of ra-
dio sources, the mean RM of many radio sources in a small patch of the sky represents the Galactic
foreground RM. Because of our position in the Milky Way as shown in Figure 4 and because of the
different properties of the regular and random magnetic field in the disk and the halo, the correlation
scale of the RM distribution should be very different in different parts of the sky. The RM distri-
butions are related to each other on large angular scales for different parts of the halo in the inner
Galaxy, but the RM values of background sources vary on small angular scales in the disk directions
because of density fluctuations of the interstellar medium and reversed fields in the spiral arms.

Previously, there were efforts to estimate the Galactic foreground RM. Frick et al. (2001) pro-
posed an RM estimation method which works on a sphere using wavelet approaches; Dineen &
Coles (2005) performed spherical harmonic analysis of RM data; Short et al. (2007) put forward
Gaussian process convolution models based on the Markov Chain Monte Carlo method to estimate
the Galactic RM foreground. Oppermann et al. (2012) proposed to use the signal reconstruction
algorithm for RM sky estimation. When RM data for the entire sky are analyzed using spherical
harmonics (Dineen & Coles 2005) or rely on spatial correlations (Oppermann et al. 2012; Johnston-
Hollitt et al. 2004), RMs from different parts of the sky are assumed to be correlated in a similar
format. We believe that the most secure approach for deriving the Galactic foreground RM is to
calculate the mean RM from a set of RM measurements of sources in a small patch of sky.

Here we use a simple statistical approach, the weighted average method, to derive the Galactic
foreground RM. Every measurement in a local sky area around a given line of sight is evaluated and
weighted to calculate the mean, 〈RM〉, and the uncertainty of the mean, σ〈RM〉:





〈RM〉 =

N∑
i=1

(wiRMi)

N∑
i=1

wi

,

σ〈RM〉 =




N∑
i=1

wi(RMi − 〈RM〉)2

(N − 1)
N∑

i=1

wi




1/2

.

(4)

The weight factor wi is defined as

wi = wσRM · wiono · woffset , (5)

where wσRM is the weight for measurement uncertainty, which consists of not only the formal ob-
servational uncertainty σobs

RM but also the systematic uncertainty σsys
RM as we discussed above, i.e.

σRM =
[
(σobs

RM)2 + (σsys
RM)2

]1/2

.

We adopt the σsys
RM = 0 rad m−2 for the compiled RMs, and σsys

RM = 10 rad m−2 for the NVSS
RMs. RM data of sources nearer to the sightline with better quality play a larger role in determining
the Galactic RM foreground at this direction. After comparisons, we found that in practice wσRM =
1/σ

1/2
RM is superior to wσRM = 1/σRM or wσRM = 1/σ2

RM for deriving the Galactic foreground
RM, because otherwise RM measurements with slightly better precision are overemphasized in the
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weighted average. The second term is the weight for the ionospheric RM correction3. If the RM of
a source has been corrected for the ionospheric RM, then we set wiono = 1.0, otherwise wiono =
0.5. The final term is the weight factor woffset for the angular distance a of a source to the given
line of sight, which is defined as the Gaussian function woffset = exp(−a2/2a2

0), where a0 is the
characteristic width. RM values of farther sources with a larger a have less weight in calculations
of the Galactic foreground RM for a given direction. For example, a = 0, woffset = 1; a = a0,
woffset = 0.607; and a = 2a0, woffset = 0.135. Oren & Wolfe (1995) calculated the mean RM
for all sightlines within 20◦, assigning equal weights to each of these measurements. Similarly, Han
et al. (1997) used a radius of 15◦. With the larger surface density of sightlines in our sample, we can
choose a much smaller a0 = 3◦. We calculate the mean RM using RM data within 2a0 for any given
direction. Over most of the NVSS region there are at least 10 measurements within this region. In
the southern sky of Dec< −40◦, however, the RMs are scarce, and we have to increase a0 from 3◦
to 6◦ or 9◦ or 12◦ so that we always use at least 10 RMs to calculate the average RM. In the future,
when RM data of more radio sources will become available, one can choose a smaller a0. We make
it possible to change the weighting scheme used to calculate the Galactic foreground RM on our
website.

To derive the Galactic foreground RM map, as the first step it is necessary to filter out the
“anomalous” RMs if they are obviously deviating from their neighbors, because such RMs are al-
most certainly dominated by intrinsic RMs. Such a filtering procedure for outliers was not done by
Oppermann et al. (2012), but has already been included in some early work (Han et al. 1997, 1999)
and recent modeling (e.g. Jansson & Farrar 2012). We compare the RM value of each source with
the weighted mean in Equation (4) and the weighted standard deviation

σ =

[
N∑

i=1

wi

(
RMi − 〈RM〉

)2/ (
N∑

i=1

wi

)]1/2

of neighboring sources within 3◦, 6◦, 9◦ or 12◦ as mentioned above, except for the target source. If
the RM of the target source deviates more than 3σ from the mean of surrounding sources, then we
discard it as an outlier. Galaxy clusters can contribute large RMs to background sources (Clarke et al.
2001; Bonafede et al. 2010), RMs of some radio sources behind galaxy clusters are “anomalous,”
and hence can be removed by this step in our analysis. After iterating a few times, we get good RMs
for 39 984 sources that we can use in our reconstruction of the Galactic foreground RM (see Fig. 5).
The scarcity of RM data is obvious in the region Dec < −40◦ which is not covered by the NVSS.

Using these RM data with the outliers removed, and by applying the weighted average in
Equation (4), we obtain the RM map of the Galactic foreground and its uncertainty, which we show
in Figure 6. Small-scale structures appear near the Galactic plane and towards some HII regions (e.g.
Sh 2-27 at (l = 8.0, b = +23.5), Harvey-Smith et al. 2011), and the large-scale foreground RM is
also visible away from the Galactic plane. The uncertainty is obviously large in the southern sky at
Dec < −40◦ due to the shortage of RM data. A larger scatter in the RM data and hence a larger
uncertainty in the estimated Galactic foreground RM is found near the Galactic plane, especially in
the inner Galaxy near tangential directions of spiral arms, where more turbulent clouds along the
line of sight are expected.

3 Most previous authors believe that the ionospheric RM has a small value, within ±5 rad m−2, and hence it is not
worth mentioning or correcting in RM measurements. However, it is very important to make the ionospheric RM correction
for many fields of research on the intergalactic medium, and it will become even more important during the SKA era in the
future. For example, when one looks for the residual RM evolution of a few rad m−2 with redshift from intergalactic magnetic
fields or fields in the cosmic web (e.g. Xu & Han 2014), only RM observations with proper ionospheric RM corrections can
really reduce such a systematic uncertainty in the estimation of the Galactic foreground RMs and ultimately the residual RMs.
Therefore, RMs with proper ionospheric RM corrections are emphasized here, and are given a double weight in Sect. 4.1 for
the averaging method so that it plays a “calibration” role. However, because of the relatively small number of RMs with
ionospheric RM correction, no obvious difference can be seen in the final foreground RM map if one takes wiono = 1.0 for
all RM data.
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Fig. 5 The RM distribution for sources from the compiled RM catalog and the NVSS RM catalog.
Outliers and RMs with an uncertainty larger than 30 rad m−2 have been discarded.

Fig. 6 The Galactic foreground RM map (top panel) and its associated uncertainty map (bottom
panel) that we calculated by combining the compiled RM catalog with the RM catalog by Taylor
et al. (2009).
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Fig. 7 The Galactic foreground RM derived by Oppermann et al. (2012) using information field
theory, and the difference map from our RM foreground.

4.2 Comparison of Our Foreground RM Map with that of Oppermann et al. (2012)

At present we have calculated the weighted average RM of the cleaned RM data for the Galactic fore-
ground RM. Given enough data points in a small area for averaging, our approach is very simple and
very straightforward, in comparison with previous efforts (Frick et al. 2001; Dineen & Coles 2005;
Short et al. 2007; Oppermann et al. 2012). The latest such an attempt before our work was made
by Oppermann et al. (2011, 2012) who used a signal reconstruction algorithm based on information
field theory (Enßlin et al. 2009). They took into account the spatial correlations and used the for-
malism of an extended critical filter (Oppermann et al. 2011) to reconstruct the map for the Galactic
foreground RM (see Fig. 7). Using priors for the signal s, noise n, the angular power spectrum and
the noise correction factors, they calculate the mean m = 〈s〉P (s|d) from data d, i.e. the reconstructed
signal by iterating filtering equations (eq. (9) – (11) in Oppermann et al. 2012). The posterior mean
for the Galactic Faraday depth is given by 〈φ〉 = pm. The critical step in the filtering process is
to identify the posterior probability density based on prior information. The relation between the
posterior mean and measured data contains an information propagator D (Enßlin et al. 2009) which
describes how the information contained in the data at one position propagates to another position.
The filtering equations are designed in the framework of a series expansion in spherical harmonics,
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Fig. 8 Comparison of the Galactic foreground RM calculated by our weighted mean and by
Oppermann et al. (2012) in the upper panels for three regions near the North Galactic pole (b > 75◦,
left panels), the South Galactic pole (b < −75◦, middle panels) and the Galactic plane of all Galactic
longitudes (b = 0◦, right panels). We calculate the Galactic foreground RM for 160 of 3279 pixels
in each polar cap with a separation of pixels larger than 1◦, and 256 equally separated pixels along
the Galactic plane. The distributions of uncertainty of the Galactic foreground RM are compared in
the lower panels, with a solid line for our calculations and a dashed line for the results by Oppermann
et al. (2012).

where the minimum length scale lmax is limited by the pixel size of the discretization. In their final
Faraday depth map (see the upper panel of Fig. 7), there are many small structures. RMs in some
areas that differ greatly from their surroundings come from outliers or RM values with very large
uncertainties (see the difference map in the lower panel of Fig. 7). The angular resolution of their
“extended critical filter” algorithm seems to be high enough to partially pick up anomalous RM val-
ues, though such a resolution seems to be necessary for recovering small-scale structures near the
Galactic plane if there are enough RM data. On the other hand, their approach seems to be very good
at extrapolating the foreground RM in the undersampled halo region at Dec < −40◦ using spherical
harmonic components. In our approach we only consider RM data close to any given line of sight,
without RM outliers, for the Galactic foreground RM. The RMs with different uncertainties are sim-
ply weighted for the averaging calculations. The uncertainty in the map of the Galactic foreground
RM that we constructed depends on the number and quality of RM data points in a local area.

We compare the values of the Galactic foreground RM calculated by our method and by
Oppermann et al. (2012) towards the North Galactic Pole, the South Galactic Pole and the Galactic
plane (see Fig. 8), and find that they are more or less consistent. However, in general our approach
gives more reliable estimates of the Galactic RM foreground with smaller uncertainties by using
more than 30 sources for averaging. The uncertainty for pixels near the Galactic plane is dominated
by scatter in the RM data.
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5 CONCLUDING REMARKS

We compiled an RM catalog of 4553 sources which have a small systematic uncertainty. Even though
the NVSS RM catalog by Taylor et al. (2009) contains 37 543 RMs, the measurement uncertainties of
their RMs are large and the RM values suffer from an additional systematic uncertainty of 10.0±1.5
rad m−2. The RM catalog we compiled provides a database for future calibration or comparisons
with wideband observations.

We make all compiled RM data publicly available on this webpage: http://zmtt.bao.ac.cn/RM/,
and provide an interface on this webpage to extract the RM data for a region and to calculate the
Galactic RM foreground. The RM data can be downloaded from the webpage. We will continuously
update the RM catalog on our webpage by including newly published RM values. Knowing the
RM of the Galactic foreground is important for many research fields, such as magnetic fields in
galaxy clusters (e.g. Bonafede et al. 2013), Galactic bubbles (e.g. Savage et al. 2013), HII regions
(e.g. Harvey-Smith et al. 2011) and SNRs (e.g. Sun et al. 2011). Using the RM catalog that we
compiled together with the NVSS RM catalog, users can always get the best estimates of the Galactic
foreground RM for any direction in the sky by using a weighted averaging method.

Finally, we would like to remind the users of the compiled RM catalog to also cite the original
RM observation papers if any individual RM data are used.
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Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693



Catalog of Rotation Measures 957

Dineen, P., & Coles, P. 2005, MNRAS, 362, 403
Eichendorf, W., & Reinhardt, M. 1979, Ap&SS, 61, 153
Enßlin, T. A., Frommert, M., & Kitaura, F. S. 2009, Phys. Rev. D, 80, 105005
Ferrière, K., & Terral, P. 2014, A&A, 561, A100
Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M., & Horellou, C. 2011, MNRAS, 412, 2396
Frick, P., Stepanov, R., Shukurov, A., & Sokoloff, D. 2001, MNRAS, 325, 649
Gaensler, B. M., Haverkorn, M., Staveley-Smith, L., et al. 2005, Science, 307, 1610
Gießübel, R., Heald, G., Beck, R., & Arshakian, T. G. 2013, A&A, 559, A27
Goldstein, S. J., Jr., & Reed, J. A. 1984, ApJ, 283, 540
Govoni, F., Dolag, K., Murgia, M., et al. 2010, A&A, 522, A105
Hammond, A. M., Robishaw, T., & Gaensler, B. M. 2012, arXiv:1209.1438
Han, J. L., Beck, R., & Berkhuijsen, E. M. 1998, A&A, 335, 1117
Han, J. L., Manchester, R. N., Berkhuijsen, E. M., & Beck, R. 1997, A&A, 322, 98
Han, J. L., Manchester, R. N., & Qiao, G. J. 1999, MNRAS, 306, 371
Harvey-Smith, L., Madsen, G. J., & Gaensler, B. M. 2011, ApJ, 736, 83
Heald, G., Braun, R., & Edmonds, R. 2009, A&A, 503, 409
Helou, G., Madore, B. F., Schmitz, M., et al. 1991, in Databases and On-line Data in Astronomy, Astrophysics

and Space Science Library, vol. 171, eds. M. A. Albrecht & D. Egret, 89
Helou, G., Madore, B. F., Schmitz, M., et al. 1995, in Information & On-Line Data in Astronomy, Astrophysics

and Space Science Library, vol. 203, eds. D. Egret & M. A. Albrecht, 95
Hennessy, G. S., Owen, F. N., & Eilek, J. A. 1989, ApJ, 347, 144
Jansson, R., & Farrar, G. R. 2012, ApJ, 761, L11
Johnston-Hollitt, M., & Ekers, R. D. 2004, arXiv: astro-ph/0411045
Johnston-Hollitt, M., Hollitt, C. P., & Ekers, R. D. 2004, in The Magnetized Interstellar Medium, eds.

B. Uyaniker, W. Reich, & R. Wielebinski, 13
Kim, K.-T. 1988, Journal of Korean Astronomical Society, 21, 133
Kim, K.-T., Kronberg, P. P., Dewdney, P. E., & Landecker, T. L. 1994, A&AS, 105, 385
Law, C. J., Gaensler, B. M., Bower, G. C., et al. 2011, ApJ, 728, 57
Leahy, J. P. 1987, MNRAS, 226, 433
Mantovani, F., Mack, K.-H., Montenegro-Montes, F. M., Rossetti, A., & Kraus, A. 2009, A&A, 502, 61
Mao, S. A., Gaensler, B. M., Haverkorn, M., et al. 2010, ApJ, 714, 1170
Mao, S. A., Gaensler, B. M., Stanimirović, S., et al. 2008, ApJ, 688, 1029
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