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Abstract New physics beyond the standard model of particles might cause a de-
viation from the inverse-square law of gravity. In some theories, it is parameterized
by a power-law correction to the Newtonian gravitational force, which might origi-
nate from the simultaneous exchange of particles or modifiedand extended theories
of gravity. Using the supplementary advances of the perihelia provided by INPOP10a
(IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides,we obtain prelim-
inary limits on this correction. In our estimation, we take the Lense-Thirring effect
due to the Sun’s angular momentum into account. The parameters of the power-law
correction and the uncertainty of the Sun’s quadrupole moment are simultaneously
estimated with the method of minimizingχ2. From INPOP10a, we findN = 0.605
for the exponent of the power-law correction. However, fromEPM2011, we find that,
although it yieldsN = 3.001, the estimated uncertainty in the Sun’s quadrupole mo-
ment is much larger than the value given by current observations. This might be caused
by the intrinsic nonlinearity in the power-law correction,which makes the estimation
very sensitive to the supplementary advances of the perihelia.
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1 INTRODUCTION

Although gravitation was the first known fundamental force in the Universe, it still cannot be in-
cluded into a quantum framework, such as the standard model of strong, weak and electromag-
netic interactions. It is undoubtedly a grand challenge to unify gravitation with the three others.
Some candidate theories of quantum gravity predict there may be some possible deviation from
the inverse-square law (ISL) of gravity. Therefore, searching for such deviation experimentally and
observationally might shed light on new physics (see Adelberger et al. 2003, for a review).

Historically, the experimental tests of ISL were used to setlimits on violations that took the form

F (r) = G
m1m2

r2+ǫ
. (1)
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HereG is the gravitational constant,mi (i = 1, 2) is the mass of theith body andr is the distance
between them. The parameterǫ represents the deviation from ISL. Different theoretical scenarios
might yield different values ofǫ (e.g. Reissner 1916; Weyl 1917; Nordström 1918; Mostepanenko
& Sokolov 1987b; Ferrer & Grifols 1998; Ferrer & Nowakowski 1999; Randall & Sundrum 1999;
Dobrescu & Mocioiu 2006; Navarro & van Acoleyen 2005, 2006a,b; Adelberger et al. 2007, 2009).
From the perspective of Gauss’s Law, the exponent2 is a purely geometrical effect of three dimen-
sional space, so this parameterization was not well-grounded in theory. Many theoretical models
of modified gravity parameterize the deviation using the Newtonian gravitational potential with an
additional Yukawa correction (Fischbach et al. 1986, 1992). That is,

V (r) = VN(r) + VYK(r), (2)

where

VN(r) =
Gm1m2

r
, (3)

VYK(r) =
Gm1m2

r
α exp

(

− r

λ

)

. (4)

Hereα is a dimensionless strength parameter andλ is a length scale (see Fischbach & Talmadge
1999, for a review of constraints onα andλ). Recently, some works have been devoted to astro-
nomical tests of the Yukawa correction (e.g. Iorio 2002, 2007b, 2008b; Deng et al. 2009; Lucchesi
& Peron 2010; Lucchesi 2011; Deng & Xie 2013) and Li et al. (2014) foundα is at the level of
10−11 andλ is about0.2 astronomical units (au) with the motions of planets in the solar system’s
planets. With such a parameterization, Xie & Deng (2014) investigated the possibility of detecting a
deviation from ISL in exoplanets using transit timing variations and found that these effects are still
at least two orders of magnitude below the current capabilities of observation.

Other researchers have considered power-law modificationsto the ISL which have the form of
(Fischbach et al. 2001)

V (r) = VN(r) + VPL(r), (5)

whereVPL(r) is the power-law correction to the Newtonian potential and it is

VPL(r) =
Gm1m2

r
αN

(

r0

r

)N−1

. (6)

HereαN is a dimensionless constant,N is the exponent of the power-law andr0 corresponds to a
new length scale associated with a non-Newtonian process. Terms withN = 2 andN = 3 may
be generated by the simultaneous exchange of two massless scalars and two massless pseudoscalar
particles, respectively (Feinberg & Sucher 1979; Drell & Huang 1953; Mostepanenko & Sokolov
1987a), whileN = 5 may be generated by the simultaneous exchange of two massless axions
(Ferrer & Grifols 1998) or a massless neutrino-antineutrino pair (Fischbach 1996). There are three
trivial cases: (i) whenαN = 0, VPL vanishes; (ii) whenN = 0, VPL is a constant and it will not
affect the equations of motion; and (iii) whenN = 1, the gravitational potentialV (r) has the same
structure as ISL but with a “new” gravitational constantG′ = G(1 + αN ).

Equation (6) can be transformed to the MOdified Newtonian Dynamics (MOND) (Milgrom
1983c,a,b) by takingN = 1 − 2n where2n is the exponent ofr in the interpolating function
of MOND. MOND suggests that gravitation departs from ISL when dynamical accelerations are
small and it can explain the asymptotically flat rotation curves of spiral galaxies and the Tully-
Fisher law (for a recent review see Famaey & McGaugh 2012, andreferences therein). Iorio (2008a)
found that the range1 ≤ n ≤ 2 (−3 ≤ N ≤ −1) is neatly excluded at much more than the
3σ level with the solar system ephemeris EPM2004 (IAA RAS, Russia) (Pitjeva 2005). In recent
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years, it was also found that power-law corrections generated by modified and extended theories of
gravity can simulate astrophysical dark matter (e.g. Capozziello et al. 2004, 2007; Capozziello &
Francaviglia 2008). However, Iorio & Ruggiero (2008) showed that, with the parameters determined
by the rotation curves of galaxies, the power-law correction is not compatible with the motions of
planets in the solar system. WhenαN = −1 andN = 1− β, Equation (6) reduces to the power-law
correction, which was investigated by Iorio & Ruggiero (2008).

Inspired by the idea of tests of modified gravity using orbital motions of celestial bodies and
artificial objects (e.g. Damour & Esposito-Farèse 1994; Iorio 2002, 2007b, 2008c; Deng et al. 2009;
Deng 2011; Iorio 2012c; Iorio & Saridakis 2012; Deng & Xie 2013; Xie & Deng 2013, 2014; Deng
& Xie 2014), we will try to find quantitative limits on the power-law correction by making use
of the supplementary advances of the perihelia provided by INPOP10a (IMCCE, France) (Fienga
et al. 2011) and EPM2011 (IAA RAS, Russia) (Pitjeva 2013) ephemerides. These two ephemerides
were recently used in detecting gravitational effects and testing gravitational theories (e.g. Iorio &
Saridakis 2012; Iorio 2013b; Xie & Deng 2013; Iorio 2014a,c;Li et al. 2014; Deng & Xie 2014;
Liang & Xie 2014). Since INPOP10a and EPM2011 are significantly improved compared with
EPM2004, we expect to obtain refined results.

In Section 2, we will calculate advances in the perihelia of planets in the solar system by treating
the power-law correction as a small disturbance and then connect them with the data of ephemerides.
In Section 3, the supplementary advances of the perihelia provided by INPOP10a and EPM2011
will be used to obtain the limits of their parameters when theLense-Thirring effect due to the Sun’s
angular momentum and the uncertainty of the Sun’s quadrupole moment are taken into account. Our
conclusions and discussion will be presented in Section 4.

2 TWO-BODY PROBLEM WITH A POWER-LAW CORRECTION

We consider a gravitational two-body problem of massive particles with the power-law correction of
Equation (6). The effective gravitational potential of this system can be written as

V̄ (r) = V̄N(r) + V̄PL(r), (7)

where

V̄N(r) =
µ

r
, (8)

V̄PL(r) =
µ

r
αN

(

r0

r

)N−1

. (9)

Here µ ≡ G(m1 + m2). Such a power-law correction will introduce anadditional advance of
the periastron (Iorio & Ruggiero 2008). In order to investigate the secular evolution of the orbit of
a planet in the solar system in the presence of this correction, we need to averagēVPL over one
Keplerian periodP of the planet, that is

〈

V̄PL

〉

≡ 1

P

∫ P

0

V̄PLdt =
µAN−1

P

∫ P

0

r−Ndt, (10)

whereAN−1 = αN rN−1
0 . Its derivative with respect to eccentricitye is

∂

∂e

〈

V̄PL

〉

= N
µAN−1a

−N

2π

∫ 2π

0

cosE − e

(1 − e cosE)N+1
dE, (11)

wherea is the semimajor axis andE is the eccentric anomaly. Therefore, the secular precession
of the periastron caused by this power-law correction can beobtained as (Danby 1962; Adkins &
McDonnell 2007; Iorio 2007a, 2012b,e)

ω̇PL =

√
1 − e2

na2e

∂

∂e

〈

V̄PL

〉

= µ1/2AN−1Na−N−1/2f(e, N), (12)
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where

f(e, N) ≡
√

1 − e2

2πe

∫ 2π

0

cosE − e

(1 − e cosE)N+1
dE. (13)

This result can return the one given by Iorio & Ruggiero (2008) whenαN = −1 andN = 1− β. In
the case of planets in the solar system, it is closely connected to the supplementary advances of the
periheliaω̇sup provided by modern ephemerides, such as INPOP10a (Fienga etal. 2010, 2011) and
EPM2011 (Pitjeva 2013; Pitjeva & Pitjev 2013; Pitjev & Pitjeva 2013).

INPOP10a and EPM2011 were obtained by fitting the “standard model” of dynamics to ob-
servational data, where “standard model” means Newton’s law of gravity and Einstein’s general
relativity (GR) (apart from the Lense-Thirring effect, seebelow for details). Therefore, the effects of
the power-law correction were neither modeled in INPOP10a nor in EPM2011, and the parameters
αN , r0 andN were not determined in these least-square fittings. In this sense, the results we obtain
in the next section may not be considered as genuine “constraints” (they would be so if one solved
for them in a covariance analysis by reanalyzing the data with modified software including these
effects) but rather as preliminary indications of acceptable values to the best of the contemporary
knowledge in the field of ephemerides, so that we call them “preliminary limits” (see Iorio 2014a,
for a further discussion).

Theseω̇sup might represent possibly mismodeled or unmodeled parts of perihelion advances ac-
cording to Newton’s law and GR. They are almost all compatible with zero, so that they can be used
to draw bounds on quantities parametrizing unmodeled “forces,” like the power-law correction in
this case. Nonetheless, the latest results by EPM2011 (Pitjeva & Pitjev 2013; Pitjev & Pitjeva 2013)
returned non-zero values for Venus and Jupiter. Although the level of their statistical significance
was not too high and further investigations are required, westill take them into account in this work.
In the recent past, an extra non-zero effect on Saturn’s perihelion was studied (Iorio 2009b). The
ratios of the non-zero values of the supplementary precessions of Venus and Jupiter by EPM2011
(Pitjeva & Pitjev 2013; Pitjev & Pitjeva 2013) have recentlybeen used to test a potential deviation
from GR (Iorio 2014c).

In the construction oḟωsup (see Fienga et al. 2010, for details), the effects caused by the Sun’s
quadrupole mass momentJ⊙

2 are considered and isolated in the final results, but the perihelion shifts
caused by the Lense-Thirring effect (Lense & Thirring 1918)due to the Sun’s angular momentum
S⊙ are absent. Therefore, the entire relation betweenω̇PL andω̇sup is

ω̇sup = ω̇PL + ω̇LT + ω̇δJ⊙

2

. (14)

Here, the Lense-Thirring terṁωLT is (Lense & Thirring 1918; Iorio 2001, 2009a; Renzetti 2013)

ω̇LT = − 6GS⊙ cos i

c2a3(1 − e2)3/2
, (15)

wherec is the speed of light,S⊙ = 1.9×1041 kg m2 s−1 (Pijpers 2003) andi is the inclination of the
planetary orbit with respect to the equator of the Sun. The uncertainty ofS⊙ is currently about1%
(Pijpers 2003). This effect of the Sun on planetary motions has been studied in several works (e.g.
Iorio 2005b; Iorio et al. 2011; Iorio 2012a). Equation (15) only holds in a coordinate system whose
z axis is aligned with the Sun’s angular momentum. A general formula for an arbitrary orientation
can be found in Iorio (2011, 2012d). This is useful in extrasolar planets and black holes, for which
the orientation of the spin axis is generally unknown.

We add the third term in Equation (14) to include the uncertainty of the Sun’s quadrupole mo-
mentδJ⊙

2 (Iorio 2005a), which is currently about±10% of J⊙

2 (Damiani et al. 2011; Pireaux &
Rozelot 2003; Rozelot et al. 2004; Rozelot & Damiani 2011; Rozelot & Fazel 2013). The Sun’s
quadrupole moment in INPOP10a is fitted to observations withJ⊙

2 = (2.40± 0.25)× 10−7 (Fienga
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et al. 2011) and its value in EPM2011 isJ⊙

2 = (2.0 ± 0.2) × 10−7 (Pitjeva 2013). This uncertainty
in J⊙

2 can cause an extra precession for a planet, which is (Kozai 1959)

ω̇δJ⊙

2

=
3

2

δJ⊙

2 R2
⊙

p2
n

(

2 − 5

2
sin2 i

)

, (16)

wheren is the Keplerian mean motion,R⊙ is the Sun’s radius andp = a(1 − e). The higher order
multipoles , such asJ⊙

4 , have a negligible impact on the perihelion precessions (see Renzetti 2013,
for a recent calculation of theJ⊙

4 precessions). There are also post-Newtonian GR effects driven by
J⊙

2 (Iorio 2013a, 2014b). While they may have an impact in other systems, such as close extrasolar
planets with highly eccentric orbits, they can be left asidein the present case (i.e. our Sun and its
planets).

The effect of the cosmological constantΛ, which should be considered as somewhat “standard”
in GR in view of the observed acceleration of the Universe (e.g. Riess et al. 1998; Perlmutter et al.
1999), has not been included in INPOP10a and EPM2011, so it should also appear in Equation (14).
Its effects on the perihelion of planets were studied (e.g. Iorio 2008c; Arakida 2013; Liang & Xie
2014). However,Λ can be left out from the analysis of the present work since it mainly affects the
outer planets but not the inner planets.

3 PRELIMINARY LIMITS ON PARAMETERS OF THE POWER-LAW CORRECTION

The INPOP10a (Fienga et al. 2011) ephemeris providesω̇sup for some planets in the solar system:
Mercury, Venus, Earth-Moon Barycenter (EMB), Mars, Jupiter and Saturn. Similarly, EPM2011
(Pitjeva 2013) also gives those values for the planets from Mercury to Saturn. These numbers are
taken from table 5 in Fienga et al. (2011) and tables 4 and 5 in Pitjeva & Pitjev (2013) and Pitjev
& Pitjeva (2013) respectively (see Table 1 for details). It can be found thaṫωsup of Mercury and
Venus from EPM2011 are considerably larger than those of INPOP10a, while Venus and Jupiter
have non-zero values ofω̇sup in EPM2011.

In order to apply the method of minimizingχ2 for estimating the parameters in a more conve-
nient way, we rewritėωPL for a planet in the solar system as

ω̇PL = C⊙AF (a, e, N), (17)

where

C⊙ = µ
1/2

⊙ au−3/2, (18)

A = AN−1au−N+1, (19)

F (a, e, N) = Nā−N−1/2f(e, N). (20)

Hereā ≡ a/au. With the notationX = δJ⊙

2 /J⊙

2 , we can also rewrite Equation (14) as

ω̇sup = C⊙AF (a, e, N) − 6GS⊙ cos i

c2a3(1 − e2)3/2
+

3

2
X

J⊙

2 R2
⊙

p2
n

(

2 − 5

2
sin2 i

)

. (21)

This can be used to constructχ2 as

χ2 =
∑

j

C2
⊙

σ2
j

[

AF (aj , ej, N) + PjX − Qj

]2

, (22)

where

Pj =
3

2

J⊙

2 R2
⊙

C⊙p2
j

nj

(

2 − 5

2
sin2 ij

)

, (23)

Qj =
6GS⊙ cos ij

c2C⊙a3
j(1 − e2

j)
3/2

+ C−1
⊙ ω̇sup

j . (24)
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Table 1 Supplementary Advances of the Perihelia
ω̇sup Given by INPOP10a and EPM2011

ω̇sup (mas cy−1)

INPOP10aa EPM2011b

Mercury 0.4 ± 0.6 −2.0 ± 3.0
Venus 0.2 ± 1.5 2.6 ± 1.6
EMB −0.2 ± 0.9 –
Earth – 0.19 ± 0.19
Mars −0.04 ± 0.15 −0.020 ± 0.037
Jupiter −41 ± 42 58.7 ± 28.3
Saturn 0.15 ± 0.65 −0.32 ± 0.47

a Taken from table 5 in Fienga et al. (2011).b Provided by table 4
in Pitjeva & Pitjev (2013) and table 5 in Pitjev & Pitjeva (2013).

Herej denotes each planet in Table 1. It can be easily checked thatA, N andX are all dimensionless.
They can relate the parameterǫ in Equation (1) with

ǫ = −ANr̄−N+1[ln(r)]−1 + O(α2
N ) ,

wherer̄ ≡ a/au.
For estimating the values ofA, N andX , we need to solve the equations of∂χ2/∂A = 0,

∂χ2/∂X = 0 and∂χ2/∂N = 0. Equation (22) shows the linear dependence ofA andX and
the nonlinear dependence ofN . Therefore, we cananalytically solve for the expressions ofA and
X according to the equations∂χ2/∂A = 0 and∂χ2/∂X = 0 first and then substitute them into
∂χ2/∂N = 0 to numerically solve forN . From INPOP10a, we findN = 0.605, A = 1.88× 10−12

andX = 5.77% (see Appendix A for details). This result is consistent withand refines the constraint
obtained by Iorio (2008a).

However, from EPM2011, we findN = 3.001, A = 4.746 × 10−11 andX = −1100%. This
estimatedX is three orders of magnitude larger than the limit of±10% set by current observations
(Damiani et al. 2011; Pireaux & Rozelot 2003; Rozelot et al. 2004; Rozelot & Damiani 2011; Rozelot
& Fazel 2013) (see Appendix A for details). This might be explained by the nonlinear dependence
of N in Equation (22). This nonlinearity makes the method of minimizing χ2 very sensitive to the
supplementary advances of the perihelia so that differences between those values of INPOP10a and
EPM2011 can make them return radically different results.

4 CONCLUSIONS AND DISCUSSION

Using the supplementary advances of the perihelia providedby INPOP10a (Fienga et al. 2011) and
EPM2011 (Pitjeva 2013) ephemerides, we estimate preliminary limits on the deviation from the ISL
of gravity, which is parameterized by a power-law correction to the Newtonian gravitational force.
Taking the uncertainty in the Sun’s quadrupole moment into account and estimating it along with the
parameters of the power-law correction, we findN = 0.605 for the exponent of the correction from
INPOP10a with the method of minimizingχ2. However, from EPM2011, we find that, although it
yieldsN = 3.001, the estimated uncertainty in the Sun’s quadrupole moment is much larger than
the value of±10% given by current observations (Damiani et al. 2011; Pireaux& Rozelot 2003;
Rozelot et al. 2004; Rozelot & Damiani 2011; Rozelot & Fazel 2013). This might be explained by
its intrinsic nonlinearity in the power-law correction.

With tremendous advances in techniques for deep space exploration in the solar system,
ephemerides are going to be increasingly improved by high-precision datasets provided from track-
ing spacecraft and by sophisticated data analysis methodology (e.g. Fienga et al. 2013; Verma et al.
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2013, 2014). The resulting limits on deviation of gravity from the ISL are expected to be better in
the future.

It will also be necessary and important to do a similar analysis for these deviations with other
local systems by using proper observable quantities (e.g. radial velocities, timing, eclipsing times and
so on). These local systems can be extrasolar planets (e.g. Xie & Deng 2014), some wide compact
binaries that host neutron stars and/or white dwarfs, or other binary systems, such asα Centauri AB
(e.g. Iorio 2013b).
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Appendix A: MINIMIZING χ2

Based on Equation (22) and using∂χ2/∂A = 0, we can find
[

∑

j

1

σ2
j

F 2
j (N)

]

A +

[

∑

j

1

σ2
j

PjFj(N)

]

X =
∑

j

1

σ2
j

Fj(N)Qj . (A.1)

From∂χ2/∂X = 0, we can have
[

∑

j

1

σ2
j

PjFj(N)

]

A +

[

∑

j

1

σ2
j

P 2
j

]

X =
∑

j

1

σ2
j

PjQj, (A.2)

whereFj(N) ≡ F (aj , ej , N). With the above two equations, we can solve forA andX as

A = D−1
∑

j,k

1

σ2
j σ2

k

[

PjQjPkFk(N) − P 2
j QkFk(N)

]

, (A.3)

X = D−1
∑

j,k

1

σ2
j σ2

k

[

PjQkFj(N)Fk(N) − PjQjF
2
k (N)

]

, (A.4)

where

D =
∑

j,k

1

σ2
j σ2

k

[

PjPkFj(N)Fk(N) − P 2
j F 2

k (N)

]

. (A.5)

Substituting Equations (A.3) and (A.4) into∂χ2/∂N = 0, which is
[

∑

j

1

σ2
j

Fj(N)F ′

j(N)

]

A +

[

∑

j

1

σ2
j

PjF
′

j(N)

]

X =
∑

j

1

σ2
j

F ′

j(N)Qj , (A.6)

we can obtain

h(N) ≡
∑

l,j,k

1

σ2
l σ2

j σ2
k

Fl(N)F ′

l (N)

[

PjQjPkFk(N) − P 2
j QkFk(N)

]

+
∑

l,j,k

1

σ2
l σ2

j σ2
k

PlF
′

l (N)

[

PjQkFj(N)Fk(N) − PjQjF
2
k (N)

]

−
∑

l,j,k

1

σ2
l σ2

j σ2
k

QlF
′

l (N)

[

PjPkFj(N)Fk(N) − P 2
j F 2

k (N)

]

= 0, (A.7)
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Table A.1 Summary of the Numerical Solutions ofN , A andX

Ephemeris N a A (10−13) X (%) χ2

INPOP10a 0.605 18.77 5.77 1.070
2.830 −5.231 13.00 1.079
3.005 −459.1 901.2 1.032
3.186 2.416 −0.899 1.082

EPM2011 3.001 474.6 −1100 8.084

a N is numerically solved by Equation (A.7) in the domainN ∈ [−10, 10 ].

whereF ′
j(N) = ∂Fj(N)/∂N . The roots of Equation (A.7) are numerically found in the domain

N ∈ [−10, 10 ] by the method of bisection (Press et al. 1992). Their values based on INPOP10a
and EPM2011 are listed in Table A.1. Here, as we discussed in Section 1, we discard two trivial
cases:N = 0 andN = 1. AlthoughN = 3.005 can give the minimalχ2 based on INPOP10a, its
resulting value ofX is not physically reasonable. Therefore, the best values given by INPOP10a are
N = 0.605, A = 1.88 × 10−12 andX = 5.77%. However, from EPM2011, we findN = 3.001,
A = 4.746 × 10−11 andX = −1100%. This estimatedX is three orders of magnitude larger than
±10% set by current observations (Damiani et al. 2011; Pireaux & Rozelot 2003; Rozelot et al.
2004; Rozelot & Damiani 2011; Rozelot & Fazel 2013).
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