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Abstract A model which includes the relativistic effect is derived that can be ap-
plied to space very long baseline interferometry (SVLBI) while taking observations
of sources at infinite distance. In SVLBI, where one station is on a spacecraft, the
length of the baseline and the orbiting station’s maximum speed in an elliptical orbit
around the Earth is much larger than the ground-based VLBI , which leads to a larger
delay and higher delay rate. The delay models inside VLBI correlators are usually ex-
pressed as fifth-order polynomials during a limited time interval, which are evaluated
by firmware in the correlator and track delays in the interferometer over the limited
time interval. The higher SVLBI delay rate requires more accurate polynomial fitting
and evaluation, as well as more frequent model updates.
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1 INTRODUCTION

The technique of very long baseline interferometry (VLBI) is widely used in radio astronomical ob-
servations. In general, the angular resolution of VLBI is determined by the observing frequency and
the length of the baseline. Limited by the size of the Earth, the angular resolution of ground VLBI
(GVLBI) is not good enough for many compact sources. One technique to improve the resolution
at a fixed frequency is to place a radio telescope in space, preferably in an elliptical orbit around
the Earth. A radio telescope that is part of the satellite then observes in conjunction with ground-
based radio telescopes, synthesizing an aperture whose effective resolution is that of a radio tele-
scope which is much larger than the Earth. This technique is called space VLBI (SVLBI). SVLBI
projects have been proposed or planned by several agencies,including Quasat, by the European
Space Agency and NASA in 1980s (Schilizzi et al. 1984; Schilizzi 1988); VSOP, by the Institute
for Space and Astronautical Science in Japan (Hirabayashi 1988), which was successfully launched
on 1997 February 12 (Hirabayashi et al. 1997a,b); and, RADIOASTRON, by the Space Research
Institute of the USSR Academy of Sciences (Kardashev & Slysh1988), which was launched on 2011
July 18 (Alexandrov et al. 2012). The Chinese Space VLBI project (hereafter C-SVLBI), which was
recently proposed by Shanghai Astronomical Observatory and National Space Science Center of
China, plans to launch two antennas into Earth orbit as a firststep (Hong et al. 2013; Shen et al.
2013).

The delay model is a representation of the apparent delay in the wavefront received at a radio
telescope, which refers to its arrival time at the other telescope. Correlation in VLBI requires an
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accurate delay model for each instant of an observation. An accurate delay model corresponds to
small residual delays and delay rates in correlation, whichenable long coherent integrations in fringe
fitting and translate into a capability for detecting fringes from weaker sources.

In GVLBI, the telescope is constructed on the Earth’s surface, so its acceleration is about
34 mm s−2. Considering that the maximum delay is about 21 ms, the effect of acceleration on the
baseline in the delay interval is about 0.006 mm, which can beneglected in the GVLBI delay model
(Petit & Luzum 2010). For SVLBI, the acceleration and the maximum delay are much larger. For
example, if the spacecraft has an apogee height of 90 000 km and a perigee height of 1 000 km, then
the delay is approximately 0.3 s and the maximum acceleration will be 8 m s−2, yielding a difference
of 0.36 m in the baseline of the delay interval. Thus, the effect of the spacecraft’s acceleration should
be included in the delay model for SVLBI.

Solutions for the delay and delay rate inside a VLBI correlator are produced at two-minute
intervals (Benson 1995). A series of ten consecutive solutions are windowed into a quintic spline
fitting algorithm and the resulting fifth-order polynomialsare evaluated by firmware in the correlator
and track the interferometer delays over two minute intervals that are used by the model (Wells
et al. 1989; Benson 1995). For SVLBI, the delay rate is more difficult to address. The spacecraft’s
maximum speed in an elliptical orbit around the Earth is about 10 km s−1, yielding a delay rate of
33µs s−1, which is much larger than the delay rate of GVLBI. With an acceleration close to 8 m s−2,
the SVLBI delay rate may require more accurate polynomial fitting or more frequent model updates
to meet a certain accuracy.

In Section 2, a delay model including the effect of the spacecraft’s acceleration for SVLBI is
derived. Section 3 gives the simulation of the SVLBI model and the modification should be made
when the model is applied in the SVLBI correlator. Section 4 gives the conclusion.

2 DELAY MODEL FOR SVLBI

2.1 Coordinate System Transformation

A reference system should be chosen so that the physical process under study can be described as
simply as possible. Considering the effect of Earth’s revolution in the solar system and the gravita-
tional effect on signal propagation, the delay model shouldbe described in the Barycentric Celestial
Reference System (BCRS), whose time-coordinate is called TCB. Meanwhile, the positions and ve-
locities of the VLBI stations (both the ground-based VLBI stations and the orbiting SVLBI stations)
are given in the Geocentric Celestial Reference System (GCRS), whose time-coordinate is called
TCG.

The coordinate transformation between BCRS and GCRS given by the XXIV IAU General
Assembly is written as (Soffel et al. 2003):
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∫
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∑
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|X−XP | is the gravitational potential at the geocenter, neglecting the
effects of Earth’s mass. At a picosecond level, only the solar potential needs to be included (Petit &
Luzum 2010).V E is the barycentric velocity of the geocenter.XE is the barycentric radius vector
of the geocenter,X is the station’s barycentric position vector, whilex is the GCRS position vector.
T refers to the barycentric coordinate time TCB, andt refers to TCG.c is the speed of light in a
vacuum.AE is the acceleration of the geocenter andRE = X − XE.



A Model of Geometric Delay in Space VLBI 1031

In particular, we assume that the proper time of the clock in the orbiting station has been trans-
ferred to TCG. The transformation of the proper time of the satellite clock to TCG will not be
discussed in this paper; readers can refer to IERS Convention 2010, Chapter 10 for more details.

2.2 SVLBI Delay Model

In the barycentric frame, the delay equation is, to a sufficient level of approximation,

∆T = T2 − T1 = −
K

c

[

X2(T2) − X1(T1)
]

+ ∆Tgrav . (3)

HereK is the unit vector from the barycenter to the source in the absence of gravitational or the
aberrational bending;Xi is the barycentric radius vector of theith receiver at the TCB timeTi.
∆Tgrav is the general relativistic delay. The relationship between the receiving stations is shown in
Figure 1.

As shown in Figure 1, the position vector of the orbiting station in BCRS can be approximated
with coordinate velocity and acceleration as

X2(T2) = X2(T1) + V E(T2 − T1) + V 2(T2 − T1) + 1
2a2(T2 − T1)

2 . (4)

where V 2 is the orbital velocity of the space station, anda2 is its orbital acceleration. With
Equation (4), Equation (3) can be rewritten as

K

2c
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2 +

[
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K

c
(V E + V 2)

]

(T2 − T1) +
K

c
B0 − ∆Tgrav = 0 , (5)

with B0 = X2(T1) − X1(T1). Equation (5) is a quadratic equation. According to Halley’s method
(Danby 1988), when a quadratic equation has the following form

1

2
Ax2 + Bx + C = 0 , (6)

its approximate solution is obtained by

x = −
C

B
[

1 − CA

2B2

] . (7)

This approximation gives third-order convergence when iterations are used to solve a quadratic equa-
tion (Sekido & Fukushima 2006). This is quite effective, especially whenA ·C ≪ B2, as is the case
here.

The solution of Equation (5) is obtained using Halley’s method as
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The error that arises from approximation when Halley’s method is applied is given by
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The order ofδx is
(

K

c
· a2

)2
≈ 10−16 s, which can be neglected.

When observations are taken with SVLBI, the time interval between the arrival of the signal
at the two antennas is on the order of0.1 s, so the coordinate transformation between BCRS and
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Fig. 1 Geometry of the receiving stations in SVLBI. (a) The orientation of the signal at the ground
station. (b) The orbital movement of the antenna that is partof the satellite at the time the signal is
received. The geocenter of the Earth has moved.

GCRS can be approximated up to the order of(VE

c
)2 for 1 picosecond accuracy, where the coordinate

velocity of the Earth and the external gravitational potential in the interval defined by Equation (1)
and Equation (2) can be treated as constant
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Substituting Equation (10) and Equation (11) into Equation(8), the SVLBI delay model can be
written as
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The time derivative of Equation (12) is the delay rate.

3 MODEL CALCULATION AND FITTING IN THE VLBI CORRELATOR

In the VLBI correlator, the delay and delay rate are calculated at two-minute intervals. A series of
ten consecutive solutions are windowed into a quintic spline-fitting algorithm (Benson 1995)

y = p1t
n + p2t

n−1 + · · · + pnt + pn+1 , n = 5 . (13)
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Fig. 2 The simulation delay and delay rate of GVLBI (G-G,left) and C-SVLBI (S-G,right).

The resulting fifth-order polynomials are evaluated by firmware in the correlator and track the
interferometer delays over the intervening two-minute interval used by the model. The next two
minutes will be evaluated using another fifth-order polynomial by fitting the next series of solutions.
The precision of the fitting should meet the precision required by calculations from the model in the
VLBI correlator, which has the following form (Shu & Zhang 2001)

∆τ ≤
N

2B
, ∆τ̇ ≤

1

2T · f
, (14)

whereB is the bandwidth of the base band converter,N is the number of delay channels,T is the
integration time andf is the observing frequency.

For example, ifN is 32 andB is 16 MHz, the integration time is 4 s, and the observing frequency
of SVLBI can reach 50 GHz. The precision of calculations fromthe model is as follows

∆τ ≤
32

2 · 16MHz
= 1 µs , ∆τ̇ ≤

1

2 · 4s · 50 GHz
= 2.5 ps s−1 . (15)

In GVLBI, the maximum delay is about 21 ms, and the delay rate is less than 3µs s−1. For
SVLBI, the maximum delay and fringe rate that must be accommodated are much larger. Take C-
SVLBI as an example; the spacecraft has an apogee height of 60000 km, and the maximum delay
will be approximately0.2 s. The maximum speed of the spacecraft around the perigee is about
8 km s−1, corresponding to a delay rate of 26µs s−1 as shown in Figure 2.

3.1 Simulation Results

In order to examine the effectiveness of the quintic spline fitting for SVLBI, we show the simulation
results in this section.

The simulation conditions are shown as follows. The initialorbital elements of the C-SVLBI
orbit are shown in Table 1. The simulation time is from 2004 September 8 at 04:00:00 UT to 2004
September 10 at 04:00:00 UT. The orbit of C-SVLBI is simulated with the Satellite Tool Kit (STK).
We adopt the Shanghai 65-meter radio telescope as the groundstation, which can observe in con-
junction with the orbiting telescope. For GVLBI, in order toget the maximum delay, we consider
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Fig. 3 The spline fitting error of delay and delay rate of GVLBI (left) and C-SVLBI (right).

Table 1 Initial Orbital Elements of the Orbiting Telescope

Orbit element Value

Semimajor Axis 36 978.14 km
Eccentricity 0.79
Inclination 28.5◦

Period 19.65 h
Perigee Altitude 1 200 km
Apogee Altitude 60 000 km

Notes: Two orbiting telescopes are planned to be launched asthe first step
of C-SVLBI, and the angle between the two orbital planes is about120◦.

Table 2 Positions of Ground-based Stations

65-m telescope GVLBI-1 GVLBI-2

Longitude 121
◦
11

′
59

′′E 0
◦

90
◦/180◦

Latitude 31
◦
05

′
57

′′N 0
◦

0
◦

Altitude (m) 5 0 0

Notes: GVLBI-1 and GVLBI-2 refer to the two ground based telescopes.

two imaginary telescopes, which are located on the equator with a respective difference in longitude
of 90◦ and 180◦. The one with a difference of 180◦ has the maximum delay rate, as shown in Table 2.

We calculate the SVLBI delay and delay rate by using Equation(12) and its time derivative, and
the GVLBI delay and delay rate by using the formulas given by IERS. The simulation results are
shown in Figure 2. We use Equation (13) to fit the ten consecutive solutions, then we evaluate the
intervening delay of two minutes and delay rate. We repeat these steps through the simulation. The
fitting error is obtained by comparing the fitting result withthe result from the model calculation.
Compared with the GVLBI, the delay rate of SVLBI is more difficult to address. As shown in
Figure 3, around the perigee, the error in the fifth-order fitting for the delay rate of the SVLBI is
about 2 ns s−1, which is much larger than the required precision calculated in Equation (15).
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Fig. 4 The left panel shows the fitting result of a 2 min interval using an 8th-order polynomial. The
right panel is the fitting error for a 30 s interval using a 5th-order polynomial.

As shown in Figure 4, if we use an eight-order polynomial to fitthe delay and delay rate, the
fitting result is much better. Another solution is to shortenthe time interval used by calculations of
the model to 1 min or less, say 30 s as shown in the right panel ofFigure 4. Therefore, the SVLBI
delay rate requires a more accurate polynomial fitting and evaluation, and more frequent model
updates, especially around the perigee.

4 CONCLUSIONS

In this paper, a relativistic delay model for SVLBI is derived. The acceleration of the orbiting tele-
scope is much larger than the GVLBI, and should be included inthe delay model. The SVLBI delay
rates are higher than GVLBI. The delay models used by VLBI correlators are expressed as polyno-
mials in time. The higher delay rate requires more accurate polynomial fitting and evaluation, and
more frequent model updates.

Acknowledgements We are indebted to Dr. Ming Zhao and Dr. Wenbiao Han for their valuable
suggestions.

References

Alexandrov, Y. A., Andreyanov, V. V., Babakin, N. G., et al. 2012, Solar System Research, 46, 458
Benson, J. M. 1995, in ASPC, 82, Very Long Baseline Interferometry and the VLBA, eds. J. A. Zensus, P. J.

Diamond, & P. J. Napier, 117
Danby, J. M. A. 1988, Fundamentals of Celestial Mechanics, Richmond: Willman-Bell, c1992, 2nd ed.
Hirabayashi, H. 1988, IAU Symp. 129, The Impact of VLBI on Astrophysics and Geophysics, eds. M. J. Reid

& M. Moran, 449 (Dordrecht: Kluwer)
Hirabayashi, H., Edwards, P., et al., 1997a, VSOP News No.55(http://www.vsop.isas.jaxa.jp/obs/Newsletters.

html) and (http://www.vsop.isas.jaxa.jp/obs/news/www.55.html)
Hong, X. Y., Shen, Z. Q., et al., 2013, The Second China-U.S. Workshop on Radio Astronomy Science and

Technology (http://rast2.csp.escience.cn/dct/page/65579)
Hirabayashi, H., Edwards, P., et al., 1997b, VSOP News No.56(http://www.vsop.isas.jaxa.jp/obs/Newsletters.

html) and (http://www.vsop.isas.jaxa.jp/obs/news/www.56.html)



1036 S. L. Liao et al.

Kardashev, N. S., & Slysh, V. I. 1988, in The Impact of VLBI on Astrophysics and Geophysics, IAU

Symposium, 129, eds. M. J. Reid, & J. M. Moran, 433 (Dordrecht: Kluwer)
Petit, G., & Luzum, B. 2010, IERS Conventions (2010) in IERS Technical Note, 36, 1
Schilizzi, R. T., Burke, B. F., Booth, R. S., et al. 1984, in VLBI and Compact Radio Sources, IAU Symposium,

110, eds. R. Fanti, K. I. Kellermann, & G. Setti, 407 (Dordrecht: Reidel)
Schilizzi, R. T. 1988, in The Impact of VLBI on Astrophysics and Geophysics, IAU Symposium, 129, eds.

M. J. Reid & J. M. Moran, 441 (Dordrecht: Kluwer)
Sekido, M., & Fukushima, T. 2006, Journal of Geodesy, 80, 137
Shen, Z. Q., Zhang, Z. P., Wu, Z. B., et al., 2013, The Second China-U.S. Workshop on Radio Astronomy

Science and Technology (http://rast2.csp.escience.cn/dct/page/65579)
Shu, F., & Zhang, X. 2001, Shanghai Observatory Annals, 22, 100
Soffel, M., Klioner, S. A., Petit, G., et al. 2003, AJ, 126, 2687
Wells, D., Benson, J., Broadwell, C., Horstkotte, J., & Romney, J. 1989, Software Architecture for the VLBA

Correlator, Tech. rep., Technical Report, National Radio Astronomy Observatory


