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Abstract The attitude dynamics of a rigid artificial satellite subject to a gravity gradi-
ent and Lorentz torques in a circular orbit are considered. Lorentz torque is developed
on the basis of the electrodynamic effects of the Lorentz force acting on the charged
satellite’s surface. We assume that the satellite is moving in a Low Earth Orbit in the
geomagnetic field, which is considered to be a dipole. Our model of torque due to the
Lorentz force is developed for an artificial satellite with a general shape, and the non-
linear differential equations of Euler are used to describe its attitude orientation. All
equilibrium positions are determined and conditions for their existence are obtained.
The numerical results show that the charge q and radius ρ0 of the center of charge
for the satellite provide a certain type of semi-passive control for the attitude of the
satellite. The technique for this kind of control would be to increase or decrease the
electrostatic screening on the satellite. The results obtained confirm that the change in
charge can affect the magnitude of the Lorentz torque, which can also affect control
of the satellite. Moreover, the relationship between magnitude of the Lorentz torque
and inclination of the orbit is investigated.

Key words: space vehicles — atmospheric effects — celestial mechanics — kine-
matics and dynamics

1 INTRODUCTION

An artificial satellite moving in Low Earth Orbit (LEO) or High Earth Orbit naturally tends to accu-
mulate an electrostatic charge. Ambient plasma and the photoelectric effect can produce a Lorentz
force on satellites in LEO. Interactions between the spacecraft and plasma are the main source for
spacecraft charging. Due to plasma interactions, surface charging on the spacecraft is the major
source of anomalies in its orbit (Garrett 1981; Purvis et al. 1984). In some cases, the accumulation
of electrostatic charge can affect instruments and other devices onboard the satellite, which may
ultimately lead to difficulties in operating the satellite. For example, the newly launched LARES
satellite could be effected by electrostatic charging (Ciufolini et al. 2012). Similarly, the space shut-
tle has been investigated for effects due to charging (BiléN et al. 1995). Different research efforts
have led to the development of technology for active mitigation of satellite charging through the
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control of charge. The effect of electrostatic charge may negatively impact the error budget of satel-
lites that are designed for experiments about fundamental physics by damaging onboard electronic
instruments or by interfering with scientific measurements. Damage to electronic instruments is rare
but may be harmful in many ways. Interference in scientific measurements is very common due
to spacecraft charging; see references Everitt et al. (2011), Worden & Everitt (2013), Nobili et al.
(2009), Iorio (2009) and Iorio et al. (2004) and the references there in.

Saad & Ismail (2010) determined the orbital effects of the Lorentz force on the motion of an
electrically charged artificial satellite moving in Earth’s magnetic field. The influence of the geo-
magnetic field manifests itself predominantly by the Lorentz force. Then in 1990, Coprophilagy
studied variations in the orbital elements due to the Lorentz force with variations in natural charge.
Pollock et al. (2010) showed that the Lorentz force can be used to save substantial amounts of pro-
pellant in maneuvers that change inclination. Heilmann et al. (2012) showed that the effect of an
electric dipole moment induced by the Earth’s electric field at high altitude is very small compared
to the electromagnetic effect. Peng & Gao (2012) showed that the Lorentz force can be implemented
for J2 invariant formation given that the deputy spacecraft has an electrostatic charge. Therefore, the
Lorentz force is a possible means for charging and thus controlling spacecraft orbits without con-
suming propellant. Peck (2005) was the first to introduce a control scheme. The orbits of a spacecraft
that are accelerated by the Lorentz force are termed Lorentz–augmented orbits, because the Lorentz
force cannot completely replace traditional rocket propulsion. After Peck (2005), a series of papers
(King et al. 2003; Natarajan & Schaub 2006; Streetman & Peck 2007; Yamamoto & Yamakawa
2008; Yamakawa et al. 2010) applied charge control techniques to utilize Lorentz forces to control
the orbit of a satellite.

Abdel-Aziz (2007) studied the stability of an equilibrium position due to Lorentz torque in the
case of a uniform magnetic field and cylindrical shape for an artificial satellite. Yamakawa et al.
(2012) investigated the attitude motion of a charged satellite having the shape of a dumbbell pen-
dulum due to Lorentz torque. Their study of the stability of equilibrium points only focused on the
pitch within the equatorial plane.

In this paper, we focus on the attitude motion of an artificial satellite with a general shape moving
in a circular orbit under gravity gradient torque and Lorentz torque. Euler equations will be used to
describe the attitude dynamics of the satellite. Determination of the equilibrium orientation of a
satellite under the action of gravitational and Lorentz torques is one of the basic problems addressed
in this paper. Finally, we will analyze the equilibrium positions based on control of the center of
charge for the satellite relative to its center of mass and amount of charge.

Before we move onto the next section to formulate the problem in question, we would like to
point out that electromagnetic effects caused by a Lorentz force on satellites moving in the gravi-
tational field of the Earth, which are the subject of this paper, should not be confused with purely
gravitational effects, which are dubbed “gravitomagnetic” and arise from general relativity. They are
widely discussed in literature (Mashhoon et al. 2001; Mashhoon 2007; and Iorio & Lichtenegger
2005). The name “gravitomagnetic” is due to a purely formal resemblance of the Lense-Thirring
effects, occurring in stationary spacetimes generated by stationary mass-energy currents, such as
a rotating planet, with the linear equations of electromagnetism by Maxwell and with the Lorentz
force acting on electrically charged bodies moving in a magnetic field (Iorio et al. 2011; Iorio et al.
2002; Renzetti 2013; Mashhoon 2013).

Section 2 gives the formulation of the spacecraft and description of the coordinate system used.
In Section 3, expression of the torque due to Lorentz force is derived. In Section 4, certain equilib-
rium positions are identified. In Section 5 numerical experiments are used to explain the effect of
charge and inclination on ρ0 and torque. Conclusions are given in Section 6.
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2 FORMULATION OF THE PROBLEM

A rigid spacecraft is considered, whose center of mass moves in the Newtonian central gravitational
field of the Earth in a circular orbit with radius r. We suppose that the spacecraft is equipped with
an electrostatically charged protective shield, having an intrinsic magnetic moment. The rotational
motion of the spacecraft about its center of mass will be analyzed, considering the influence of
gravity gradient torque TG and the torque TL due to Lorentz forces. The torque TL results from the
interaction of the geomagnetic field with the charged screen that is part of the electrostatic shield.

The rotational motion of the satellite relative to its center of mass is investigated in the orbital
coordinate system Cxoyoz0(see Fig. 1) with Cxo tangent to the orbit in the direction of motion; Cyo

lies along the normal to the orbital plane and Czo lies along the radius vector r of the point OE

relative to the center of the Earth. Our investigation is carried out assuming the rotation of the orbital
coordinate system relative to the inertial system has angular velocity Ω. As an inertial coordinate
system, the system OXY Z is taken, whose axis OZ(k) is directed along the axis of Earth’s rotation,
the axis OX(i) is directed toward the ascending node of the orbit, and the plane coincides with
the equatorial plane. In addition, we assume that the satellite’s principal axes of inertia Cxbybzb

are
rigidly fixed to a satellite (ib, jb, kb). The satellite’s attitude may be described in several ways. In this
paper the attitude will be described by the angle of yaw ψ, the angle of pitch θ and the angle of roll
ϕ, between the satellite’s Cxbybzb

and the set of reference axes OXY Z . The three angles are obtained
by rotating the satellite’s axes from an attitude coinciding with the reference axes to describe the
attitude in the following way:

– Allow a rotation ψ about the z-axis;
– About the newly displaced y-axis, rotate through θ;
– Finally, allow a rotation ϕ about the final position of the x-axis.
Although the angles ψ, θ and ϕ are often referred to as Euler angles, they differ from classical

Euler angles in that only rotation takes place about each axis, whereas in the classical Euler angular
coordinates two rotations are made about the z-axis. The relationship between the orbital coordinate

Fig. 1 Coordinates used in the derivation of the equations of motion.
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system and reference system OXY Z is determined below:

ı̂ = − sinuα+cos uγ ,

̂ = cos i cos uα− sin iβ+cos i sinuγ ,

κ̂ = sin i cos uα+cos iβ+sin i sinuγ ,

(1)

where i is the orbital inclination, u = Ωt + u0 is the argument of latitude, Ω is the orbital angular
velocity of the satellite’s center of mass, u0 is the initial latitude and α, β and γ are unit vectors
along the axes of the orbital coordinate system. These vectors are the different directions of the
tangent to the plane of the orbit, its radius and the normal of the orbit, respectively (Gerlach 1965).

The relationship between the reference frames Cxbybzb
and Cxoyoz0 is given by the matrix A

which is the matrix of unitary vectors αi, βi, γi (i = 1, 2, 3).

A =




α1 α2 α3

β1 β2 β3

γ1 γ2 γ3


 , (2)

where
α1 = cos θ cos ψ ,

α2 = − cos φ sinψ + sin φ sin θ cos ψ,

α3 = sin φ sinψ + cos φ sin θ cos ψ,

β1 = cos θ sinψ,

β2 = cos ϕ cos ψ + sinφ sin θ sinψ,

β3 = − sinφ cos ψ + cos φ sin θ sinψ,

γ1 = − sin θ ,

γ2 = sinφ cos θ ,

γ3 = cos φ cos θ,

(3)

and
α = α1ib + α2jb + α3kb, β = β1ib + β2jb + β3kb, γ = γ1ib + γ2jb + γ3kb. (4)

3 TORQUE DUE TO THE LORENTZ FORCE

The geomagnetic field with magnetic induction B is approximated by a dipole. The spacecraft is
supposed to be equipped with a charged surface (screen) with area S and electric charge q =

∫
S

σ dS
distributed over the surface with density σ. Therefore, we can write the torque of these forces relative
to the spacecraft’s center of mass as follows (Griffiths 1989)

T L =
∫

S

σρ× (V ×B)dS, (5)

where ρ is the radius vector of the screen’s element dS relative to the spacecraft’s center of mass and
V is the velocity of the element dS relative to the geomagnetic field. As in Tikhonov et al. (2011),
the torque T L can be written as

T L = (TLx, TLy, TLz) = qρ0 ×AT(V rel ×Bo), (6)

ρ0= x0ib+y0jb+z0kb=q−1

∫

S

σ ρ dS, (7)
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where ρ0 is the radius vector of the center of charge of the spacecraft relative to its center of mass
and AT is the transpose of the matrix of unitary vectors A. As in Gangestad et al. (2010), we use

V rel = (Vrel1, Vrel2, Vrel3) = V − ωe × r = r(Ω−ωE cosi)×α+RωE sin i cos u β , (8)

where V rel is the velocity vector of the spacecraft’s center of mass relative to the geomagnetic field,
V is the initial velocity of the satellite, ωe=ωeκ̂ is the angular velocity of the diurnal rotation of the
geomagnetic field that moves with the Earth and Bo is the magnetic field in the orbital coordinates.
Substituting Equations (5)–(7) into Equation (8), we can write the final form of the components of
torque due to the Lorentz force as:

TLx = q

{
y0

[
α3Vrel2Bo3 − β3Vrel1Bo3 + γ3(Vrel1Bo2 − Vrel2Bo1)

]

−z0(α2Vrel2Bo3 − β2Vrel1Bo3 + γ2(Vrel1Bo2 − Vrel2Bo1)

}
, (9)

TLy = q

{
z0

[
α1Vrel2Bo3 − β1Vrel1Bo3 + γ1(Vrel1Bo2 − Vrel2Bo1)

]

−x0(α3Vrel2Bo3 − β3Vrel1Bo3 + γ3(Vrel1Bo2 − Vrel2Bo1)

}
, (10)

TLz = q

{
x0

[
α2Vrel2Bo3 − β2Vrel1Bo3 + γ2(Vrel1Bo2 − Vrel2Bo1)

]

−y0(α1Vrel2Bo3 − β1Vrel1Bo3 + γ1(Vrel1Bo2 − Vrel2Bo1)

}
. (11)

Like in Wertz (1978), we can write the components of the magnetic field in the orbital system
directed to the tangent of the orbital plane, normal to the orbit and in the direction of the radius,
respectively, as below:

Bo1 =
B0

2r3
sin θ′m

[
3 cos(2ν − αm) + cos αm

]
,

Bo2 = − B0

2r3
cos θ′m , (12)

Bo3 =
B0

2r3
sin θ′m

[
3 sin(2ν − αm) + sinαm

]
,

where B0 = 7.943× 1015 is the intensity of the magnetic field, θ′m = 168.6◦ is the co-elevation of
the dipole, αm = 109.3◦ is the east longitude of the dipole and ν is the true anomaly measured from
the ascending node.

4 EQUILIBRIUM POSITIONS AND ANALYTICAL CONTROL LAW

The equations of motion for a rigid artificial satellite are usually written in terms of the Euler -
Poisson variables ω, α, β and γ, and have the following form (Abdel-Aziz 2007).

d ω

dt
I + ω × ωI = T G + T L , (13)

d α

dt
+α×ω= −Ωγ ,

d β

dt
+β × ω = 0 ,

d γ

dt
+γ × ω = Ωα, (14)

where T G = 3Ω2γ × γI is the well known formula of the gravity gradient torque. I is the inertia
matrix of the spacecraft, Ω is the orbital angular velocity and ω is the angular velocity vector of the
spacecraft. The components of T G can be written as

TGx= 3Ω2γ2γ3(C −B) ,

TGy= 3Ω2γ1γ3(A− C) ,

TGz= 3Ω2γ1γ2(B −A) ,

(15)
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where A, B and C are moments of inertia of the spacecraft. According to Gerlach (1965), the angular
velocity of the spacecraft in the inertial reference frame is ω = (ωx, ωy, ωz), and in the orbital
reference frame it is ωo= (ωox, ωoy, ωoz) as given below:

ωx = φ̇− ψ̇ sin θ,

ωy = θ̇ cos φ + ψ̇ cos θ sinφ,

ωz = −θ̇ sinφ + ψ̇ cos θ cos φ,

(16)

and
ωox = φ̇− ψ̇ sin θ − Ω sin ψ cos θ,

ωoy = θ̇ cos φ + ψ̇ cos θ sinφ− Ω(cos ϕ cos ψ + sinφ sin θ sinψ),

ωoz = −θ̇ sinφ + ψ̇ cos θ cos φ− Ω(− sinφ cos ψ + cos φ sin θ sinψ).

(17)

It is well known that the orbital system rotates in space with a fixed orbital angular velocity Ω
about the axis, which is perpendicular to the orbital plane. The relation between the angular velocity
in the two systems is ω= ωo − Ωβ.

At equilibrium positions, the right hand side of Equation (13) will be zero. Substituting
Equations (9)–(11) and Equation (15) in Equation (13) and after some algebraic manipulation we
get the following equilibrium positions:

Equilibrium 1.

θ = 0, φ = 0, ψ =
π

2
, (α1, α2, α3) = (0,−1, 0), (β1, β2, β3) = (1, 0, 0), (18)

(γ1, γ2, γ3) = (0, 0, 1), (19)

x0 =
−Vrel1Bo3

Vrel1Bo2 − Vrel2Bo1
z0, y0 =

−Vrel2Bo3

Vrel1Bo2 − Vrel2Bo1
z0. (20)

Equilibrium 2.

θ = 0 , φ =
π

2
, ψ = 0, (α1 , α2 , α3) = (1, 0, 0) , (β1 , β2 , β3) = (0, 0,−1) , (21)

(γ1, γ2, γ3) = (0, 0, 1), (22)

x0 =
Vrel2

Vrel1
z0 , y0 =

Vrel1Bo2 − Vrel2Bo1

Vrel1Bo3
z0 . (23)

Equilibrium 3.

θ =
π

2
, φ = 0 , ψ = 0, (α1, α2 , α3) = (0, 0, 1) , (β1, β2 , β3) = (0, 1, 0) , (24)

(γ1, γ2, γ3) = (−1, 0, 0) , (25)

x0 =
Vrel2Bo1 − Vrel1Bo2

Vrel2Bo3
z0, y0 =

−Vrel1

Vrel2
z0. (26)

Equilibrium 4.

θ = 0 , φ = 0 , ψ = 0 , (α1, α2 , α3) = (1, 0, 0) , (β1, β2 , β3) = (0, 1, 0) , (27)

(γ1, γ2, γ3) = (0, 0, 1), (28)
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x0 =
Vrel1Bo3

Vrel1Bo2 − Vrel2Bo1
z0 , y0 =

Vrel2Bo3

Vrel1Bo2 − Vrel2Bo1
z0 . (29)

It can be seen that the four equilibrium positions depend on z0, which can be used to control
the equilibrium positions. We will study the relationship between the magnitude of the torque, the
magnitude of the radius vector of the center of charge of the spacecraft relative to its center of mass,
the amount of charge and the inclination of the orbit. This analysis will be done for two different
values of z0,

– z0 = k Bo2, k = − 2r3

B0
which approximately equals unity (1 meter).

– z0 = 4.

5 NUMERICAL RESULTS

5.1 Equilibrium 1

In this equilibrium position, the attitude motion of the satellite is only in the ψ direction. The mag-
nitude of the radius vector ρ0 is given by ‖ρ0‖ =

√
x2

0 + y2
0 + z2

0 . In case of Equilibrium 1, the
values of x0 and y0 can be determined from Equation (20), which will give the magnitude of ρ0 as
a function of u, i and z0.

ρ0(u, i, z0) = ‖ρ0‖ = z0

√√√√√√
1+2.98×1030

[
−1.1×10−3+7.27×10−5cos(i)

Deq1

]2

+1.57×1022
[

cos(u)sin(i)
Deq1

]2 , (30)

where
Deq1 = 2.07×1012−1.37×1011cos(i)+2.83×1011cos(u)sin(i). (31)

Similarly, the magnitude of torque T L can be determined from Equations (6) to (11).

‖T L(q, u, i, r)‖=
qz0

r2Deq1

√√√√√√√√

cos2 u sin2 i
[
2.52× 1015 + 1.10× 1013 cos2 i

+2.84× 1014 cos u sin i + 1.95× 1013 cos2 u sin2 i

+cos i(−3.33× 1014 − 1.88× 1013 cos u sin i)
] . (32)

It can be seen from Equation (30) that ‖ρ0(u, i, z0)‖ is independent of r even though its com-
ponents depend on it. Equation (32) gives the magnitude of the torque. ‖ρ0(u, i, z0)‖ is an almost
periodic function of inclination i and latitude u with a maximum value of 1.4029 m and minimum
value of 1.236 m for z0 = kBo2 = 0.96. Since the function is almost periodic, these optimum values
occur at various values of i and u. For example the maximum occurs at (i, u) = (23.63, 21.99) and
(58.05, 53.41). Similarly the minimum occurs at (i, u) = (39.00, 37.70) and (58.05, 56.55). To see
the dependence of ‖ρ0(u, i, z0)‖ on the inclination i and latitude u, please refer to Figure 2. It can
be seen from both Equation (30) and Figure 2 that z0 can be used to control ρ. In a similar way, z0

can be used to control torque, as can be seen in Equation (32). The relationship of torque with r and
q is straightforward. It can be seen from Equation (32) that the torque is directly proportional to q
and inversely proportional to r2.

Figure 3 also shows that q can be used to control the torque if desired. It can also be seen from
Figure 3 which is given for fixed values of q, u and r that torque has a maximum value of the order
10−13 for each value of inclination i.
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Fig. 2 (a) Contour plot of ‖ρ0(u, i, z0)‖ with maximum and minimum values occurring more than
once confirming its periodic behavior. z0 is taken to be 0.96 in the case of Equilibrium 1. (b) Same
as (a) except that z0 is taken to be 4.

Fig. 3 ‖T L(q, u, i, r)‖ for fixed values of charge q = 10 000 C (left), 100 C (right), r = 6900 km
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5.2 Equilibrium 2

In this equilibrium position, the attitude motion of the satellite is only in the roll direction. In this
case, ‖ρ0(z0)‖ is only a linear function of z0. It has a value of 2.47z0. Torque is only a function of
inclination i, charge q and r.

‖T L(q, i, r)‖ = 1.27× 1016 z0

r2

∣∣∣q(0.0011− 0.0000727 cos i)
∣∣∣ . (33)

In the same way as in Equilibrium 1, it is directly proportional to q and inversely proportional to r2.
However, unlike Equilibrium 1, torque in this case is a periodic function of the inclination i for fixed
values of q and r2. For fixed values of charge q = 0.01 C, or q = 10 C, z0 = 1, and r = 6900 km
or r = 12 300 km the optimum values of torque change periodically. To see the periodic behavior
of the torque and a comparison of the torque for two different values of r, see Figure 4. From the
comparison for r = 6900 km and r = 12 300 km we can see that the value of the Lorentz torque
is higher in LEO. When charge is increased from 0.01 C to 10 C the magnitude of Lorentz torque
significantly increases. This means that electrostatic charge can be used as some type of control if
desired, as can be seen in Figure 4.

5.3 Equilibrium 3

In this case, ‖ρ0‖ is a linear function of z0. It has a value of 1.42138z0. The torque in this case is
zero. The attitude motion of the satellite is in the pitch direction and the electrostatic charge of the
screen surface is almost constant, which makes the components of the Lorentz torque zero.

5.4 Equilibrium 4

This position is a special case that can only happen when the orbital system coincides with the
principal axis of inertia, which is rigidly fixed to the satellite. For Equilibrium 4, as described in
Section 4, ‖ρ0‖ and ‖T L‖ are determined in the same way as in the case of Equilibrium 1.

‖ρ0(u, i, z0)‖ = z0

√
1 +

2.98(0.11− 0.727 cos i)2

Deq4
+

1.57(cos u sin i)2

Deq4
, (34)

Deq4 = (42.8− 2.83 cos i− 1.37 cos u sin i)2 .

‖T L(q, u, i, z0, r)‖ =
qz0 × 1011

r2

×
√√√√

[
19− 1.25(cos i + cos u sin i)

]2
+

[
19− 1.25(cos i− cos u sin i)

]2

+
(
3.6− 47.6 cos i + 1.57 cos2 i + 1.57 cos2 u sin2 i

)2 1
Deq4

.(35)

It can be seen from Equation (34) that ‖ρ0(u, i, z0)‖ is independent of r even though its compo-
nents depend on it. Equation (35) gives the magnitude of torque. ‖ρ0(u, i, z0)‖ is an almost periodic
function of inclination i and latitude u with a maximum value of 1.057 m and minimum value of
1.04611 m for z0 = 0.96. Since the function is almost periodic, these optimum values occur at
various values of i and u. For example, the maximum occurs at (i, u) = (61.33, 34.56).

Similarly the minimum occurs at (i, u) = (58.05, 53.40). For some other occurrences of the
optimum values, see Figure 5. It can be seen from both Equation (34) and Figure 5 that z0 can be
used to control ρ0. In a similar way, z0 can be used to control torque as can be seen in Equation (35).
The relationship of torque with r and q is straightforward. It can be seen from Equation (35) that the
torque for Equilibrium 4 is directly proportional to q and inversely proportional to r2. Therefore, q
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Fig. 5 Same as Fig. 2 except for Equilibrium 4.
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Fig. 6 ‖T L(q, u, i, r)‖ for fixed value of altitude (r = 6900 km), latitude (u = 20) and two different
values of z0 = 1, z0 = 4, and q = 0.01 C, q = 10 C in the case of Equilibrium 4.

Fig. 7 ‖T L(q, u, i, r)‖ for fixed values of q = 0.01 C, z0 = 2 and r = 6900 km in the case of
Equilibrium 4.
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and z0 can be used to control torque if desired. To completely describe the torque, its representative
graph is given in Figure 6. In the same way as in Equilibrium 2, when the charge is increased
from 0.01 C to 10 C, the magnitude of Lorentz torque significantly increases. This means that the
electrostatic charge can be used as some type of control if desired, which can be seen in Figure 6.
It can also be seen from Figure 7, which is given for fixed values of q = 0.01 C, z0 = 2 and
r = 6900 km, that torque has a maximum value of the order 10−2 for each value of inclination i.

6 CONCLUSIONS

To control the attitude of a charged satellite with a general shape, we have proposed utilizing a
Lorentz torque with a gravity gradient torque. The effect of the Lorentz torque on the attitude dy-
namics and the orientation of the equilibrium positions is discussed. The satellite is assumed to move
in a circular orbit in the geomagnetic field. For this particular setup, we derived four equilibrium po-
sitions. The attitude motion for these equilibrium positions is analyzed in detail for different values
of charge (q), magnitude of the radius vector of the center of charge for the satellite relative to its
center of mass (ρ0), inclination and latitude. The numerical results confirm that the Lorentz torque
has a significant effect on the attitude orientation of the satellite for any inclination, especially in
highly inclined orbits.

In the case of Equilibria 1, 2 and 4, it is shown that the value of charge q can control the
magnitude of the Lorentz torque. We can choose the optimal torque to create a natural force which
can be used to control the attitude of the satellite. In case of Equilibrium 1, a very high amount
of charge is needed to generate a reasonable amount of torque. That is, a 1000 C charge is needed
to generate a Lorentz torque of the order 10−13. On the other hand, in the case of Equilibria 2
and 4, a charge of 0.01 C will generate a torque of the order 10−3. This means that the use of
charge as a control is a more realistic option in Equilibria 2 and 4. This also means that the Lorentz
force can be used to control the satellite without consuming too much propellant. The installation
of such a control on a satellite is dependent on the size of the surfaces of the satellite and how the
screen is charged, which can be implemented by manufacturing a system of electrodes simulating
the controlled electrostatic layer. Such a kind of control may be used instead of a magnetic control
system because it is easy to constrain the mass of the satellite and decrease the cost.
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