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Abstract This paper deals with the general class of Bianchi cosmological models
with bulk viscosity and particle creation described by full causal thermodynamics in
Brans-Dicke theory. We discuss three types of average scale-factor solutions for the
general class of Bianchi cosmological models by using a special law for the deceler-
ation parameter which is linear in time with a negative slope. The exact solutions to
the corresponding field equations are obtained in quadrature form and solutions to the
Einstein field equations are obtained for three different physically viable cosmologies.
All the physical parameters are calculated and discussed in each model.
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1 INTRODUCTION

Brans-Dicke theory, which is a generalization of general relativity, is more consistent with Mach’s
principle and less reliant on the absolute properties of space. In this theory, the gravitational effects
are part geometrical and part due to a scalar interaction. There is a formal connection between this
theory and one class of Jordan’s theory (Jordan 1955, 1959; Brill 1962), but the interpretation is
quite different. For example, Jordan’s aspect of mass creation and non-conservation of energy and
momentum is absent from this theory.

This new theory (called Brans-Dicke theory or BD theory) involves a violation of the strong
principle of equivalence, but the weak principle of equivalence is satisfied. Thus we have a theory for
which matter moves gravitationally on geodesics, and the locally measured value of the gravitational
constant depends on a scalar field determined by the mass distribution of the universe.

If the gravitational “constant” is to vary, it should be a function of some scalar field variable.
We postulate the existence of a new scalar field and the gravitational phenomenon is to be described
by both this scalar field and the Riemannian metric tensor. The primary function of this field is the
determination of the local value of the gravitational constant.

The possibility of Brans-Dicke theory with negative coupling constant ω as a viable alternative
to general relativity has been discussed by Smalley & Eby (1976). They have also shown that this
type of theory fits the measurement of electromagnetic-signal deflection and of the time variation
of the gravitational constant. The large negative value of ω now seems to be consistent with the
observations of small solar oblateness by Hill et al. (1974). The experimental results of the Robertson
parameter γ and the time variation of the gravitational constant G also seem to demand such an
alternative, even though the magnitude of ω is large.
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Among the various modifications of the general theory of relativity, the scalar tensor theory of
Brans-Dicke is treated most seriously (Brans & Dicke 1961; Weinberg 1972). In this modified form
of gravitational theory, a dynamical scalar field φ is introduced, which corresponds to the variation
in gravitational constant with respect to cosmic time, i.e. φ ≈ G−1. The Brans-Dicke theory also
contains a dimensionless free coupling parameter, ω, between the scalar and tensor components of
gravitation. It has already been pointed out in the literature that Brans-Dicke theory is consistent
with the observations as long as ω ≥ 500 (Will 1993). However, there are no a priori theoretical
reasons for excluding other values of ω. Adhav et al. (2007) observed that for a string Bianchi
type-I metric of Kasner form, it is not possible to describe an anisotropic physical model of the
universe in the Brans-Dicke scalar tensor theory of gravity with matter fluid satisfying the second
law of thermodynamics and various energy conditions. The cosmological evolution of the Brans-
Dicke field reduces the possible primordial anisotropy of the universe. Rathore & Mandawat (2009)
obtained a five-dimensional Bianchi type-I string cosmological model in Brans-Dicke theory.

In the construction of a cosmological model, the assumption of homogeneity and isotropy of the
universe are motivated by the cosmological principle and mathematical tractability of the resulting
Friedmann-Robertson-Walker (FRW) models. Therefore, these symmetries can only be approximate.
There are theoretical arguments (Chimento 2004; Misner 1968) and recent experimental data regard-
ing cosmic background radiation anisotropies that support the existence of an anisotropic phase that
approaches an isotropic one (Land & Magueijo 2005). These observations led us to consider more
general anisotropic cosmologies, while retaining the assumption of large-scale spatial homogeneity.
Wainwright & Ellis (1997) discussed how the spatially homogeneous and anisotropic cosmological
models, which provide a richer structure, both geometrically and physically, than the FRW model,
play a significant role in the description of early universe.

The spatially homogeneous cosmological models allow an extension of the cosmological investi-
gations of distorted and rotating universes, giving estimates of the effects of anisotropy on primordial
element production and on the measured isotropy in the spectrum of the cosmic microwave back-
ground radiation (Ellis & van Elst 1999). Aside from the observational reasons, there are various
theoretical considerations that have motivated the study of anisotropic cosmologies. Among these
are (i) some kind of singularity in our “past” is strongly indicated if certain reasonable conditions
hold (Hawking & Ellis 1973). However, this could differ greatly from the type found in FRW models
(Belinskij et al. 1970). (ii) The “Chaotic Cosmology” program of Misner (1968) sought a mecha-
nism to explain why the observed isotropy and homogeneity should exist regardless of the initial
conditions (MacCallum 1979; Ellis 1993; Kolb & Turner 1990).

A wide class of anisotropic cosmological models exist, and these are often studied in cosmol-
ogy (Misner et al. 1973). There are theoretical arguments that sustain the existence of an anisotropic
phase that approaches an isotropic case (Misner 1968) (Chaotic Cosmology), and anisotropic cos-
mological models are found to be a suitable candidate in avoiding the assumption of specific initial
conditions in FRW models. The early universe could also be characterized by an irregular expansion
mechanism. Therefore, it would be useful to explore cosmological models in which anisotropies,
existing at an early stage of expansion, are damped out in the course of evolution. Such models have
received interest (Hu & Parker 1978).

It is believed that the early universe was characterized by a highly irregular expansion mecha-
nism, which isotropized later. The level of anisotropy left out by the era of decoupling is only about
10−5, as revealed by the cosmic microwave background (CMB) observations (Vishwakarma 2005).
In many cosmological and astrophysical situations, an idealized fluid model of the matter is inap-
propriate. Dissipative effects, including both the bulk and shear viscosities, are supposed to play an
important role in the early evolution of the universe. From a physical point of view, the inclusion
of dissipative terms in the energy momentum tensor of the cosmological fluid seems to be the best
motivated generalization of the matter term in the gravitational field equations. The dynamics of the
universe may be governed by the creation of matter. Particle creation corresponds to an irreversible
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energy flow from the gravitational field to the created matter constituents. On a phenomenological
level, particle production has also been described in terms of effective bulk viscosity coefficients.

Particle production processes in the early universe are supposed to have considerably influenced
cosmological history. These processes are quantum in nature (Birrell & Davies 1982). Their back
reaction on the cosmological dynamics, however, are frequently studied phenomenologically. As was
observed by Zel’dovich (1970) and Murphy (1973) and later discussed by Hu (1982), Montani (2011)
and Zimdahl et al. (1996), a non-vanishing particle production rate is equivalent to a bulk viscous
pressure in fluid cosmology. It has been shown by Triginer et al. (1996) that the effective viscous
pressure approach is compatible with kinetic theory in homogeneous spacetimes. Zel’dovich (1970)
suggested that vacuum viscosity arises from the fluctuation (particle creation) and polarization (trace
anomaly) of quantized fields interacting with dynamical spacetime. This differs from the classical
viscosity that arises from the differential motion of a classical fluid. The irreversible process of
bulk viscosity and particle (matter) creation generates cosmological models with the same physical
properties. So in the same sense, they are equivalent processes and hence have been considered by
many authors (Hu 1982; Lima & Germano 1992; Belinskiǐ et al. 1979).

Particle production that arises from the energy of the gravitational field (Prigogine et al. 1989;
Barrow 1988) may also play an important role in Brans-Dicke theory when studying the behavior of
the expanding universe (Sen & Banerjee 2000). Quantum field theories in curved spacetime should
provide the mechanism that accounts for such processes (Birrell & Davies 1982). On a phenomeno-
logical level, particle production has been described in terms of bulk viscous stress (Zel’dovich 1970;
Hu 1982; Lima & Germano 1992). Belinskiǐ et al. (1979) studied the cosmological evolution of vis-
coelastic matter with causal thermodynamics in Bianchi type-I spacetime geometry. They found that
the effect of matter creation near the initial singularity is preserved. Romano & Pavón (1993) stud-
ied the evolution of a Bianchi type-I universe with viscous dissipation. The effect of bulk viscosity
on the evolution of FRW models was investigated by Desikan (1997), and Singh et al. (2002) pre-
sented FRW cosmological models with particle production and bulk viscosity in Brans-Dicke theory.
Meanwhile, Singh & Kale (2011) studied anisotropic Bianchi type-I bulk viscous cosmological mod-
els with particle creation in Brans-Dicke theory, and recently, Chaubey (2012) obtained a Bianchi
type-V bulk viscous cosmological model with particle creation in Brans-Dicke theory. The role of
bulk viscosity in cosmic evolution, especially in its early stages, seems to be significant. One can use
bulk viscosity to evaluate the rate of cosmological entropy production. Initially it was believed that
the neutrino viscosity could smooth out initial anisotropies and lead to the isotropic universe that we
observe today. In this paper, we study the general class of Bianchi bulk viscous cosmological models
with particle creation in Brans-Dicke theory. The exact solutions to the Einstein field equations with
particle creation in Brans-Dicke theory are obtained for three different physically viable cosmolo-
gies in Bianchi type-III, V, VI0 and VIh spacetimes. All the physical parameters are calculated and
discussed in each model.

2 MODEL AND BASIC EQUATIONS

The well known Einstein field equations in Brans-Dicke theory are

Gij +
ω

φ2

[
φ,i φ,j −1

2
gijφ,l φ

,l

]
+

1
φ

[
φ,i;j −¤φgij

]
=

8π

φ
Tij , (1)

where ¤φ = − 8πT
3+2ω . The energy momentum tensor (Tij) is defined as

Tij = (ρ + p + pc + Π)uiuj − (p + pc + Π)gij , (2)

where pc is the creation pressure and Π is the bulk viscosity of the cosmic fluid.
WMAP data have indicated that the universe was not isotropic in early times. Further proof of

this is given by the anisotropies of order 20 µK (microKelvin) in the CMB. Even though the CMB is
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almost isotropic, it has been previously demonstrated that this does not guarantee that the universe
was always isotropic (Coley 2003; Nilsson et al. 1999). The Bianchi models must now be introduced,
and these have less symmetry than the standard Friedmann model. Such models can be examined to
include the effects of shear in the early universe.

The diagonal form of the metric for a general class in the Bianchi cosmological model is given by

ds2 = dt2 − a1
2dx2 − a2

2e−2xdy2 − a3
2e−2mxdz2 . (3)

We have additional classes of Bianchi models as follows: type III corresponds to m = 0, type V
to m = 1, type VI0 to m = −1, and all other m give VIh, where m = h− 1.

The functions a1(t), a2(t) and a3(t) are the three anisotropic directions of expansion in normal
three-dimensional space, where as earlier, we were considering only one expansion parameter, a(t),
in the Friedmann model (i.e. we were assuming radial symmetry, and as such, a1(t) = a2(t) = a3(t)
in that scenario).

We first define the expressions for the average scale factor and volume scale factor, defining the
generalized Hubble parameter H in analogy with a flat FRW model.

The average scale factor ‘a’ and spatial volume ‘V ’ of the homogeneous, anisotropic general
class of Bianchi cosmological models (Eq. (3)) are defined as

V = a3 = a1a2a3 . (4)

We define the generalized Hubble parameter H as

H =
1
3

V̇

V
=

1
3
(H1 + H2 + H3) =

ȧ

a
=

1
3

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
, (5)

where H1 = ȧ1
a1

,H2 = ȧ2
a2

and H3 = ȧ3
a3

are the directional Hubble parameters. An overhead dot
denotes differentiation with respect to cosmic time t. By using Equations (2) and (3), we get the
following Einstein field equations:

ä2

a2
+

ä3

a3
+

ȧ2ȧ3

a2a3
− m

a1
2

= −8π(p + pc + Π)
φ

− ω

2

(
φ̇

φ

)2

− φ̈

φ
−

(
ȧ2

a2
+

ȧ3

a3

)
φ̇

φ
, (6)

ä1

a1
+

ä3

a3
+

ȧ1ȧ3

a1a3
− m2

a1
2

= −8π(p + pc + Π)
φ

− ω

2

(
φ̇

φ

)2

− φ̈

φ
−

(
ȧ1

a1
+

ȧ3

a3

)
φ̇

φ
, (7)

ä1

a1
+

ä2

a2
+

ȧ1ȧ2

a1a2
− 1

a1
2

= −8π(p + pc + Π)
φ

− ω

2

(
φ̇

φ

)2

− φ̈

φ
−

(
ȧ1

a1
+

ȧ2

a2

)
φ̇

φ
, (8)

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
− m2 + m + 1

a1
2

=
8πρ

φ
+

ω

2

(
φ̇

φ

)2

−
(

ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
φ̇

φ
, (9)

ȧ2

a2
+ m

ȧ3

a3
= (m + 1)

ȧ1

a1
, (10)

and
φ̈

φ
+

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
φ̇

φ
= − 8π

(3 + 2ω)φ
[ρ− 3(p + pc + Π)] . (11)

By using Equations (6) to (9), we obtain the continuity equation as follows

ρ̇ +
(

ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
(ρ + p) = −(pc + Π)

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
. (12)
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Now, by adding three times Equation (9) and Equations (6), (7) and (8), one can easily obtain

ä1

a1
+

ä2

a2
+

ä3

a3
+ 2

(
ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
− m2 + m + 1

a1
2

)

= −12π(ρ− p− pc −Π)
φ

− 3φ̈

2φ
− 5

2

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
φ̇

φ
. (13)

From Equation (4), we find

V̈

V
=

ä1

a1
+

ä2

a2
+

ä3

a3
+ 2

(
ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1

)
. (14)

From Equations (13) and (14), one can easily obtain

V̈

V
− 2(m2 + m + 1)

a2
1

=
12π(ρ− p− pc −Π)

φ
− 3φ̈

2φ
− 5

2

(
V̇

V

)
φ̇

φ
. (15)

The cosmological parameters such as the expansion parameter (θ), shear scalar (σ2) and mean
anisotropy parameter (A) are defined as:

θ = ui;i = 3H , (16)

σ2 =
1
2
σijσ

ij =
1
2

[(
ȧ1

a1

)2

+
(

ȧ2

a2

)2

+
(

ȧ3

a3

)2
]
− θ2

6
, (17)

and

A =
1
3

3∑

i=1

(
∆Hi

H

)2

, (18)

where ui = (0, 0, 0, 1) is the co-moving velocity vector, ∆Hi = Hi −H (i = 1, 2, 3) and

σij =
1
2
(ui;α pα

j + uj ;α Pα
i )− 1

3
θPij . (19)

The projection tensor Pij is given by

Pij = gij − uiuj . (20)

Recently, Akarsu & Dereli (2012) proposed a special law for the deceleration parameter, which
is linear in time with a negative slope. This law covers the Berman law (where the deceleration
parameter is constant), which is used to obtain exact cosmological models, in the context of dark
energy, to account for the current acceleration of the universe. According to this law, only spatially
closed and flat universes with cosmological fluid exhibiting quintom like behavior are allowed, and
the universe ends with a Big Rip. This new law provides the opportunity to generalize many of these
dark energy models, and therefore has better consistency with the cosmological observations. The
linearly varying deceleration parameter q is defined as (Akarsu & Dereli 2012)

q = −aä

ȧ2
=

d

dt

( 1
H

)
− 1 = − Ḣ

H2
− 1 = −kt + n− 1 , (21)

where k and n are positive constants. We see that the deceleration parameter q is linear in time with
a negative slope. The sign q indicates whether the model accelerates or not, and the positive sign of
q corresponds to the standard decelerating model, whereas the negative sign indicates accelerated
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expansion. For n > 1 + kt, q > 0, therefore the model represents a decelerating model, whereas for
kt < n ≤ 1 + kt, we get −1 ≤ q < 0, which describes an accelerating model of the universe.

Solving Equation (21) for the scale factor, we obtain the law of variation for average scale factor
a as

a = (nlt + c1)1/n, k = 0, n > 0; (22)
a = c2e

lt, k = 0, n = 0; (23)

a = c3e
2
n tanh−1( kt

n −1), k > 0, n > 1 , (24)

where c1, c2 and c3 are constants of integration.

3 BULK VISCOSITY WITH PARTICLE CREATION

The balance equation is defined as

Nµ;µ = η̇ + 3ηH = Γ , (25)

where Nµ is the particle number density flow vector, η is the particle number density and Nµ = ηuµ

satisfies the above Equation (25).
The covariant derivative of the entropy flux vector is defined as

Sµ;µ = ην̇ + νΓ ≥ 0 , (26)

where Sµ = Sηuµ is the entropy flux vector, ν is the entropy per particle and Γ is the source
term. For the production of particles, the source term should be positive, and for the annihilation of
particles, the source term should be negative.

For no particle production or annihilation, the source term becomes zero. For an open thermo-
dynamical system of temperature (T ), the Gibbs equation is

ηT ν̇ = ρ̇− (ρ + p)
η̇

η
, (27)

where ν is given as

ν̇ = −3Hpc

νT
− 3HΠ

νT
− (ρ + p)

η2T
Γ . (28)

ν is uniform due to the adiabatic process, so ν may change only by vicious phenomena, and therefore
the creation pressure (the pressure arising from particle production) is given by

pc = − (ρ + p)
3H

Γ = − (ρ + p)
3H

(
3H +

η̇

η

)
. (29)

From Equations (25), (28) and (29), we get

ν̇ = −3HΠ
ηT

. (30)

Using Equation (26) in Equation (30), we obtain

Γ ≥ 3HΠ
Tν

. (31)

By using Equations (27) and (30), we find

η̇

η
=

ρ̇ + 3HΠ
ρ + p

. (32)
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Here, we consider the barotropic fluid, and the equation of state for this fluid is given by

p = γρ, 0 ≤ γ ≤ 1 . (33)

From Equations (32) and (33), the particle number density (η) is given by

η1+γ = Bρ exp
(∫

3HΠρ−1dt

)
, (34)

where B is a constant of integration.
The causal evolution equation of bulk viscosity for full causal non-equilibrium thermodynamics

is given by

Π + τ Π̇ = −ξ

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
− ετΠ

2

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3
+

τ̇

τ
− ξ̇

ξ
− Ṫ

T

)
, (35)

where ξ and τ are the bulk viscosity coefficient and relaxation time, respectively.
For ε = 0, 1 and τ = 0, the above Equation (35) reduces to truncated theory, full causal theory

and non-causal theory (Eckart’s theory) respectively.

3.1 Bulk Viscosity in the Eckart, Truncated and Full Causal Theories

The role of bulk viscosity in cosmic evolution, especially in its early stages, seems to be significant.
Here, we discuss the viscosity in the Eckart, truncated and full causal theories.

Several authors (Maartens 1995; Zimdahl 1996) have studied the bulk viscosity in Eckart’s non
causal theory. This is the most common and simplest relation between the bulk viscous stress Π and
the Hubble parameter (H). For (τ = 0), Equation (35) reduces to

Π = −3ξH . (36)

For (ε = 0), the above evolution Equation (35) reduces in truncated theory as follows

Π + τ Π̇ = −3ξH , (37)

where

τ =
ξ

ρ
. (38)

Gibb’s integrability condition (Maartens 1995) is defined as

T ∝ exp
(∫

dp(ρ)
ρ + p(ρ)

)
,

where T is the temperature of the barotropic fluid (T = T (ρ)). By using Equation (33) in the above
expression, we get

T = T0ρ
γ

1+γ , (39)

where T0 is a constant.
By using Equations (38) and (39) in Equation (35), the evolution Equation (35) then reduces to

Π +
ξ

ρ
Π̇ = −3ξH − ξΠ

2ρ

[
3H −

(
1 + 2γ

1 + γ

)
ρ̇

ρ

]
. (40)
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4 COSMOLOGICAL SOLUTIONS

Here, we discuss three different physically viable cosmologies k = 0, n > 0; k = 0, n = 0; and
k > 0, n > 1, respectively, which motivate physical interests in describing the decelerating and
accelerating phases of the universe. Here, we take scalar potential φ as

φ = φ0t
β , (41)

where φ0 and β are constants.

Case 1. When k = 0, n > 0 and a3 = V b, where b is any constant number.

Using Equations (4), (10) and (22), we obtain

a1(t) = (nlt + c1)(3+3mb−3b)/n(m+2) , (42)

a2(t) = (nlt + c1)(3+3m−3b−6mb)/n(m+2) , (43)

a3(t) = (nlt + c1)3b/n . (44)

The directional Hubble parameters H1, H2 and H3 have values given by

H1 =
(3 + 3mb− 3b

m + 2

) l

nlt + c1
, (45)

H2 =
(3 + 3m− 3b− 6mb

m + 2

) l

nlt + c1
, (46)

H3 =
3bl

nlt + c1
. (47)

From Equation (5), the average generalized Hubble parameter H has the value given by

H =
l

nlt + c1
. (48)

From Equations (16), (17) and (18), the dynamical scalars are given by

θ =
3l

nlt + c1
, (49)

σ2 = (3 + 3m− 18b− 18mb + 27mb2 − 18m2b + 27m2b2 + 27b2 + 3m2)

× l2

(m + 2)2(nlt + c1)2
, (50)

and

A = (2 + 2m− 12b− 12mb + 18mb2 − 12m2b + 18m2b2 + 18b2 + 2m2)
1

(m + 2)2
. (51)

The scalar curvature R for the general class of a Bianchi cosmological model is defined as

R = 2
[
ä1

a1
+

ä2

a2
+

ä3

a3
+

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
− (m2 + m + 1)

a1
2

]
. (52)

From Equations (42), (43), (44) and (52), we get

R =
2l2

(m + 2)2(nlt + c1)2
[
(m + 1)(27− 18b + 27b2 − 12n) + m2(9− 18b + 27b2 − 3n)

]

+2(m2 + m + 1)(nlt + c1)
− 2(3+3mb−3b)

n(m+2) . (53)
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From Equation (9), we obtain

ρ =
9φ0l

2k1

8π

tβ

(nlt + c1)2
− φ0(m2 + m + 1)

8π

tβ

(nlt + c1)
k2
n

−φ0ωβ2

16π
tβ−2 +

3φ0lβ

8π

tβ−1

nlt + c1
, (54)

where k1 and k2 are constants and defined as

k1 =
1 + m + 2b + 2mb + 2m2b− 3mb2 − 3m2b2 − 3b2

(m + 2)2
,

k2 =
3 + 3mb− 3b

m + 2
.

From Equations (33) and (54), we get

p = γ

[
9φ0l

2k1

8π

tβ

(nlt + c1)2
− φ0(m2 + m + 1)

8π

tβ

(nlt + c1)
k2
n

−φ0ωβ2

16π
tβ−2 +

3φ0lβ

8π

tβ−1

nlt + c1

]
. (55)

We now investigate the behavior of the above cosmological model by analyzing the different
physical parameters. Here, we observe the above results showing that the spatial volume (V ) is zero
at t = t0 = − c1

nl . The scalar curvature R, the energy density and pressure are infinite at this epoch.
The rate of expansion and the mean anisotropy parameter are infinite at t → t0. Thus the universe
starts evolving with zero volume at t = t0 = 0, which implies that c1 = 0 and it expands with
cosmic time, ‘t’.

For large cosmic time t, the spatial volume, expansion parameter, shear scalar and mean
anisotropic parameter tend to zero. Here, limt→∞ σ2

θ = 0, so the model approaches isotropy for
large cosmic time t. The conditions of homogeneity and isotropization, formulated by Collins &
Hawking (1973), are satisfied in the present model.

Here we discuss four subcases. The values of creation pressure and bulk viscosity are given in
tabular form in Appendix 1 (see the online version) for each subcase.

Subcase 1A: Model With Bulk Viscosity Energy Density Law

The power-law relation between the bulk viscosity coefficient and the energy density has already
been considered by several authors (Johri & Sudharsan 1988; Maartens 1996; Pavon et al. 1991).

ξ = ξ0ρ
α , (56)

where ξ0 ≥ 0 and α ≥ 0 are constants.
Several authors (Murphy 1973; Santos et al. 1985) suggested, for α = 1 and α = 1.5, that the

above Equation (56) represents a radiative fluid and a string dominated universe, respectively.
Here we take a relation between the bulk viscous pressure and energy density as

Π = Π0ρ
α . (57)
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Here the particle number density is given by

η̇

η
=

[
3l2φ0(3k1 − βn)

8π

tβ−1

(nlt + c1)3
− 9φ0l

2nk1

4π

tβ

(nlt + c1)3
− φ0(m2 + m + 1)

8π

×
(

βtβ−1

(nlt + c1)
k2
n

− lk2t
β

(nlt + c1)
k2
n +1

)
− φ0ωβ2(β − 2)

16π
tβ−3 +

3φ0lβ(β − 1)
8π

tβ−2

nlt + c1

]

× 1

(1 + γ)
(

9φ0l2k1
8π

tβ

(nlt+c1)2
− φ0(m2+m+1)

8π
tβ

(nlt+c1)
k2
n

− φ0ωβ2

16π tβ−2 + 3φ0lβ
8π

tβ−1

nlt+c1

)

+
3π0l

(1 + γ)(nlt + c1)

[
9φ0l

2k1

8π

tβ

(nlt + c1)2
− φ0(m2 + m + 1)

8π

tβ

(nlt + c1)
k2
n

−φ0ωβ2

16π
tβ−2 +

3φ0lβ

8π

tβ−1

nlt + c1

]α−1

. (58)

Subcase 1B: Model With Uniform Particle Number Density

Here, η̇ = 0 for the uniform particle number density model. From Equation (25), the particle
production source (Γ) is determined as

Γ = 3Hη . (59)

Subcase 1C: Model For Ideal Gas

In this model, Γ = 0 and pc = 0. Then Equation (25) is reduced to

Nµ;µ = η̇ + 3ηH = 0 . (60)

From Equation (48) and Equation (60), the expression for the particle number density is obtained as

η = E(nlt + c1)−3/n , (61)

where E is a constant of integration.

Subcase 1D: Creation With Second-Order Correction in H

In this case, the total particle number is considered in the Taylor expansion of η̇
η = f(H) up to

the second order in H as (Triginer & Pavón 1994)

η̇

η
= −3H + b1H

2 , (62)

where b1 is a constant. From Equations (25) and (62), one can obtain

Γ = b1ηH2 . (63)

For creation, no creation or annihilation of particles, b1 should be greater than zero, equal to zero,
or less than zero, respectively. In the context of open thermodynamic systems, we take b1 as greater
than or equal to zero, i.e., there is either creation or no creation.

The behavior of creation pressure (pc) with a bulk viscosity energy density law, uniform particle
number density, ideal gas and second-order correction in H for Case 1 can be seen in Figure 1. Here,
we consider some very small values (α = 1, β = 0.25, γ = 1/3,Π0 = −1, φ0

16π = 1, n = 1, l =
1, c1 = 1, b1 = 1,m = 2 and b = 1/3) that do not give rise to singularity. It is observed that all
the parameters are a function of time and the solutions tend asymptotically to zero. The rapidity of
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Fig. 1 The variation in creation pressure (pc) with cosmic time t for the subcases 1A, 1B and 1D.
Here, the creation pressure is measured in Pa (pascals) and the unit of time is Gyrs.

Fig. 2 The variation of bulk viscosity (Π) with cosmic time t for the subcases 1A, 1B, 1C and 1D.
Here, the bulk viscosity is measured on the Hubble scale (km s−1 Mpc−1) and the unit of time is
inverse Hubble scale.

growth at an early stage depends on the different models of the universe. Later on, this tends to zero
for each model of the universe.

Figure 2 shows the variation in bulk viscous stress (Π) for various models against cosmic time
‘t’ for Case 1. It is observed that all the parameters are a function of time, and the solutions tend
asymptotically to zero. The rapidity of its growth at an early stage depends on the different models
of the universe. Later on, this tends to zero for each model of the universe.

The behavior of bulk viscosity (ξ) with a bulk viscosity energy density law, uniform particle
number density, ideal gas and second-order correction in H for Case 1 can be seen in Figures 3, 4,
and 5. Here, we consider a very small value of the constants that does not give rise to singularity. It
is observed that the bulk viscosities in Eckart’s theory and truncated theory are a function of time,
and the solutions tend asymptotically to zero. The rapidity of growth at an early stage depends on
the different models of the universe. Later on, this tends to zero for each model of the universe.
However, the bulk viscosity in full causal theory has a small value for large cosmic time t. From
Figures 3, 4, and 5, it is observed that initially the bulk viscosity is large, and for large cosmic time
t becomes almost equal to zero. Hence, we can say that bulk viscosity can play the role of an agent
that drives the present acceleration of the universe.

Case 2. When n = 0 and a3 = V b
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Fig. 3 The variation of bulk viscosity in Eckart’s theory (ξe) with cosmic time t for the subcases
1A, 1B, 1C and 1D. Here, the bulk viscosity in Eckart’s theory is measured on the Hubble scale
(km s−1 Mpc−1) and the unit of time is inverse Hubble scale.

Fig. 4 The variation of bulk viscosity in truncated theory (ξt) with cosmic time t for the sub-
cases 1A, 1B and 1D. Here, the bulk viscosity in truncated theory is measured on the Hubble scale
(km s−1 Mpc−1) and the unit of time is inverse Hubble scale.

Fig. 5 The variation of bulk viscosity in full causal theory (ξf ) with cosmic time t for the subcases
1A, 1B, 1C and 1D. Here, the bulk viscosity in full causal theory is measured on the Hubble scale
(km s−1 Mpc−1) and the unit of time is inverse Hubble scale.
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Using Equations (4), (10) and (23), we obtain

a1(t) = c
3+3mb−3b

m+2
2 e

(3+3mb−3b)lt
m+2 , (64)

a2(t) = c
3+3m−3b−6mb

m+2
2 e

(3+3m−3b−6mb)lt
m+2 , (65)

a3(t) = c3b
2 e3blt . (66)

The directional Hubble parameters H1, H2 and H3 have values given by

H1 =
(

3 + 3mb− 3b

m + 2

)
l , (67)

H2 =
(

3 + 3m− 3b− 6mb

m + 2

)
l , (68)

H3 = 3bl . (69)

From Equation (5), the average generalized Hubble parameter H has the value given by

H = l . (70)

From Equations (16), (17) and (18), the dynamical scalars are given by

θ = 3l , (71)

σ2 =
(
3 + 3m− 18b− 18mb + 27mb2 − 18m2b + 27m2b2 + 27b2 + 3m2

) l2

(m + 2)2
, (72)

and

A =
(
2 + 2m− 12b− 12mb + 18mb2 − 12m2b + 18m2b2 + 18b2 + 2m2

) 1
(m + 2)2

. (73)

From Equations (64), (65), (66) and (52), we get

R =
2l2

(m + 2)2
(27− 18mb− 18b + 27m + 27b2 + 9m2 + 27mb2 − 18m2b + 27m2b2)

−2(m2 + m + 1)c
−2(3+3mb−3b)

m+2
2 e−

2(3+3mb−3b)lt
(m+2) . (74)

From Equation (9), we obtain

ρ =
9φ0l

2k1

8π
tβ − φ0(m2 + m + 1)

8πc2k2
2

tβ

e2k2lt
− φ0ωβ2

16π
tβ−2 +

3φ0lβ

8π
tβ−1 . (75)

From Equations (33) and (75), we find

p = γ

[
9φ0l

2k1

8π
tβ − φ0(m2 + m + 1)

8πc2k2
2

tβ

e2k2lt
− φ0ωβ2

16π
tβ−2 +

3φ0lβ

8π
tβ−1

]
. (76)

We now investigate the behavior of the above cosmological model by analyzing the different
physical parameters. For large cosmic time t, the shear scalar and mean anisotropic parameter tend
to zero. Here, limt→∞ σ2

θ = 0, so the model approaches isotropy for large cosmic time t. The
conditions of homogeneity and isotropization, formulated by Collins & Hawking (1973), are satisfied
in the present model.
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Fig. 6 The same as Fig. 1 but for subcases 2A, 2B and 2D which are given in Appendix 2.

Fig. 7 The same as Fig. 2 but for subcases 2A, 2B, 2C and 2D which are given in Appendix 2.

Fig. 8 The same as Fig. 3 but for subcases 2A, 2B, 2C and 2D which are given in Appendix 2.

Here we discuss four subcases. The values of creation pressure and bulk viscosity are given in
tabular form in Appendix 2 (see the online version) for each subcase.

The behavior of creation pressure (pc) with a bulk viscosity energy density law, uniform particle
number density, ideal gas and second-order correction in H for Case 2 can be seen in Figure 6. Here
we consider a very small value of the constants that does not give rise to singularity. It is observed
that all the parameters are a function of time, and the solutions tend asymptotically to zero. The
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Fig. 9 The same as Fig. 4 but for subcases 2A, 2B, 2C and 2D which are given in Appendix 2.

Fig. 10 The same as Fig. 5 but for subcases 2A, 2B, 2C and 2D which are given in Appendix 2.

rapidity of growth at an early stage depends on the different models of the universe. Later on, this
tends to zero for each model of the universe.

Figure 7 shows the variation in bulk viscous stress (Π) for various models against cosmic time
‘t’ for Case 2. It is observed that all the parameters are a function of time, and the solutions tend
asymptotically to zero. The rapidity of growth at an early stage depends on the different models of
the universe. Later on, this tends to zero for each model of the universe.

The behavior of bulk viscosity (ξ) with a bulk viscosity energy density law, uniform particle
number density, ideal gas and second-order correction in H for Case 2 can be seen in Figures 8, 9
and 10. Here we consider a very small value of the constants that does not give rise to singularity.
It is observed that the bulk viscosity in Eckart’s theory and truncated theory are a function of time,
and the solutions tend asymptotically to zero. The rapidity of growth at an early stage depends on
the different models of the universe. Later on, this tends to zero for each model of the universe.
However, the bulk viscosity in full causal theory has a small value for large cosmic time t. From
Figures 8, 9 and 10, it is observed that initially the bulk viscosity is large, and for large cosmic time
t it becomes almost equal to zero. Hence, we can say that bulk viscosity could play the role of an
agent that drives the present acceleration of the universe.

Case 3. When k > 0 and n > 1



548 R. Chaubey & A. K. Shukla

Using Equations (4), (10) and (24), we obtain

a1(t) = c
3+3mb−3b

m+2
3 e

2(3+3mb−3b)
n(m+2) tanh−1( kt

n −1) , (77)

a2(t) = c
3+3m−3b−6mb

m+2
3 e

2(3+3m−3b−6mb)
n(m+2) tanh−1( kt

n −1) , (78)

a3(t) = c3b
3 e

6b
n tanh−1( kt

n −1) . (79)

The directional Hubble parameters H1, H2 and H3 have values given by

H1 =
(

3 + 3mb− 3b

m + 2

)
2

t(2n− kt)
, (80)

H2 =
(

3 + 3m− 3b− 6mb

m + 2

)
2

t(2n− kt)
, (81)

H3 =
6b

t(2n− kt)
. (82)

From Equation (5), the average generalized Hubble parameter H has the value given by

H =
2

t(2n− kt)
. (83)

From Equations (16), (17) and (18), the dynamical scalars are given by

θ =
6

t(2n− kt)
, (84)

σ2 =
(
1 + m− 6b− 6mb + 9mb2 − 6m2b + 9m2b2 + 9b2 + m2

) 12
t2(2n− kt)2(m + 2)2

, (85)

and
A =

(
1 + m− 6b− 6mb + 9mb2 − 6m2b + 9m2b2 + 9b2 + m2

) 2
(m + 2)2

. (86)

From Equations (77), (78), (79) and (52), we get

R =
8

t2(2n− kt)2(m + 2)2
(27 + 27m− 18b− 27mb + 36mb2 − 18m2b + 63m2b2
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From Equation (9), we obtain

ρ =
9φ0k1

2π
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From Equations (33) and (88), we get

p = γ

[
9φ0k1

2π

tβ−2

(2n− kt)2
− φ0(m2 + m + 1)

8πc2k2
3

tβ

e
4k2

n tanh−1( kt
n −1)

−φ0ωβ2

16π
tβ−2 +

3φ0β

4π

tβ−2

2n− kt

]
. (89)



The General Class of Bianchi Cosmological Models 549

Fig. 11 The same as Fig. 1 but for subcases 3A, 3B and 3D which are given in Appendix 3.

Fig. 12 The same as Fig. 2 but for subcases 3A, 3B, 3C and 3D which are given in Appendix 3.

We will now investigate the behavior of the above cosmological model by analyzing the different
physical parameters. For large cosmic time t, the shear scalar and mean anisotropic parameter tend
to zero. Here, limt→∞ σ2

θ = 0, so the model approaches isotropy for large cosmic time t. The
conditions of homogeneity and isotropization, formulated by Collins & Hawking (1973), are satisfied
in the present model.

Here we discuss four subcases. The values of creation pressure and bulk viscosity are given in
tabular form in Appendix 3 (see the online version) for each subcase.

The behavior of the creation pressure (pc) with a bulk viscosity energy density law, uniform par-
ticle number density, ideal gas and second-order correction in H for Case 3 can be seen in Figure 11.
Here, we consider a very small value of the constants that does not give rise to singularity. It is ob-
served that all the parameters are a function of time, and the solutions tend asymptotically to zero.
The rapidity of growth at the early stage depends on the different models of the universe. Later on,
this tends to zero for each model of the universe.

Figure 12 shows the variation in the bulk viscous stress (Π) for various models against cosmic
time ‘t’ for Case 3. It is observed that all the parameters are a function of time, and the solutions
tend asymptotically to zero. The rapidity of growth at an early stage depends on the different models
of the universe. Later on, this tends to zero for each model of the universe.

The behavior of bulk viscosity (ξ) in bulk viscosity energy density law, uniform particle number
density, ideal gas and second-order correction in H for Case 3 can be seen in Figures 13, 14, and
15. Here, we consider a very small value of the constants that does not give rise to singularity. It is
observed that the bulk viscosities in Eckart’s theory and truncated theory are a function of time, and
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Fig. 13 The same as Fig. 3 but for subcases 3A, 3B, 3C and 3D which are given in Appendix 3.

Fig. 14 The same as Fig. 4 but for subcases 3A, 3B, 3C and 3D which are given in Appendix 3.

Fig. 15 The same as Fig. 5 but for subcases 3A, 3B, 3C and 3D which are given in Appendix 3.

the solutions tend asymptotically to zero. The rapidity of growth at an early stage depends on the
different models of the universe. Later on, this tends to zero for each model of the universe. However,
the bulk viscosity in full causal theory has a small value for large cosmic time t. From Figures 13, 14
and 15, it is observed that initially the bulk viscosity is large, and for large cosmic time t it becomes
almost equal to zero. Hence, we can say that bulk viscosity could play the role of an agent that is
driving the present acceleration of the universe.
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5 CONCLUSIONS

This paper dealt with the general class of Bianchi cosmological models with bulk viscosity and par-
ticle creation described by full causal thermodynamics in Brans-Dicke theory. We used the general
class of cosmological models for different values of m as follows: Bianchi type-III corresponded
to m = 0, Bianchi type-V to m = 1, Bianchi type-VI0 to m = −1 and all other value of m gave
Bianchi type-VIh. The exact solutions to the corresponding field equations were obtained in quadra-
ture form. Three different cases were discussed, depending on the nature of the relation between the
scale factor and the cosmic time, t. All the models provided the solution which suggests a decreasing
form of energy density, pressure and creation pressure, and bulk viscosity with the evolution of the
universe. Here, we observed that bulk viscosity plays the role of an agent driving the present accel-
eration of the universe. Hence, we concluded that the bulk viscosity has played an important role
in the evolution of the universe. In each case, the spatial volume, expansion parameter, shear scalar
and mean anisotropic parameter tended to zero for large cosmic time, t. All the physical parameters
were calculated and discussed for each model, and in each case, the cosmological model approached
isotropy for a large value of cosmic time t. The model had a point singularity, and the rate of ex-
pansion slowed down and vanished as t → ∞ . This model represents a shearing, non-rotating and
expanding universe, which approaches isotropy for large values of t. The results of this paper agree
with the observational features of the universe.
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