
RAA 2014 Vol. 14 No. 4, 373–389 doi: 10.1088/1674–4527/14/4/001
http://www.raa-journal.org http://www.iop.org/journals/raa

Research in
Astronomy and
Astrophysics

The reionization of He II and the temperature evolution of
the intergalactic medium ∗

Yun-Chuan Yu, Chang-Shuo Yan and You-Jun Lu

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;
yyc213@126.com

Received 2013 May 13; accepted 2013 November 2

Abstract A number of observations suggest that He II in the intergalactic medium
(IGM) was fully ionized at z ∼ 3, probably by quasi-stellar objects (QSOs). Here we
construct a simple model of a QSO to study the reionization of He II and the corre-
sponding thermal evolution of the IGM. We assume that QSOs are triggered by major
mergers of dark matter halos, and the luminosity evolution of individual QSOs is de-
scribed by an initial accretion stage with a constant Eddington ratio and then a power-
law decay driven by long term disk evolution or fueling. Once a QSO is triggered, it
immediately ionizes its surrounding area as an ionized bubble. The resulting changes
in size and volume of the bubble are determined by the luminosity evolution of the
central QSO. With the emergence of more and more bubbles, they eventually over-
lap each other and finally permeate the whole universe. During the He II reionization,
the IGM temperature increases due to the photoheating by the ionization processes.
Applying the bubble model and considering various heating and cooling mechanisms,
we trace the thermal evolution of the IGM and obtain the average IGM temperature
as a function of redshift, which is very consistent with observations. The increase in
IGM temperature due to the reionization of He II may be determined more accurately
in the future, which may put robust constraints on the QSO model and the physics of
He II reionization.
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1 INTRODUCTION

It is widely accepted that the intergalactic medium (IGM) experienced two dramatic changes since
the cosmic dark ages. The two most abundant elements, hydrogen and helium, were transformed
from a completely neutral state to a highly ionized state because of ionizing photons emitted from
luminous sources like galaxies and quasi-stellar objects (QSOs). The reionization of H I and He I
happened earlier compared with He II (Giroux & Shapiro 1996), since the ionization threshold of
H I (or He I), i.e., 13.6 eV (or 24.6 eV), is lower than that of He II (54.4 eV). After the first stars and
galaxies turned on (at redshift z ∼ 30−15), the ultraviolet (UV) photons radiated by them gradually
ionized H I and He I in the IGM. The reionization of He II could only proceed when sources with
sufficiently hard spectra, such as QSOs, became abundant.

∗ Supported by the National Natural Science Foundation of China.



374 Y. C. Yu, C. S. Yan & Y. J. Lu

Constraints from both the Gunn-Peterson trough in the spectra of the highest redshift QSOs
(e.g. Fan et al. 2006) and polarization data from the cosmic microwave background (e.g. Larson
et al. 2011) suggest that the reionization of H I was completed at z ∼ 6− 10. The completion of the
He II reionization, however, happened at a later time of z ∼ 3 according to spectra of the He II Lyα
forest in extreme UV (e.g. Jakobsen et al. 1994; Zheng et al. 2004; Fechner et al. 2006). QSOs are
considered to be the most likely candidates responsible for the reionization of He II (Madau et al.
1999; Sokasian et al. 2002; Furlanetto & Oh 2008), though bright QSOs are rare and unlikely to
substantially contribute to the ionizing photon budget for either H I or He I at z > 5 (Dijkstra et al.
2004; Bolton & Haehnelt 2007; Jiang et al. 2008). Measurements of the He II Lyα optical depth
show that the optical depth rises rapidly at z ≥ 3 with an increasing amount of patchiness (Zheng
et al. 2004; Fechner et al. 2006). The rapid rise in the optical depth and the degree of patchiness
suggest a detection of the late stage of He II reionization, though data from observations are still not
sufficient to give a robust constraint on the redshift where the He II reionization was complete.

One of the main impacts of hydrogen and helium reionization was on the thermal state of the
IGM, which is particularly true for low density regions, where photoheating was the dominant heat-
ing process (Hui & Gnedin 1997; Becker et al. 2011). The cooling time of the IGM in low density
regions was long, and thus the IGM can retain some memory of when and how it was last heated and
correspondingly how the universe reionized (e.g. Zaroubi 2013). Recently, Becker et al. (2011) and
Bolton et al. (2012) reported new measurements of the IGM temperature derived from the Lyα forest
over the redshift z ∼ 2 − 6, which clearly showed an increase in temperature of the IGM at z ∼ 3.
The detected rise in the IGM temperature is probably evidence of the He II reionization beginning at
z ≥ 4.4 and ending at z ∼ 3, as suggested by opacity measurements of the He II Lyα forest (Becker
et al. 2011).

In this paper, we study the reionization of He II and IGM temperature evolution over redshift
2 − 6 by using a simple QSO model and try to explain the observations by Becker et al. (2011)
and Bolton et al. (2012). The paper is organized as follows. In Section 2, we construct a simple
QSO model by adopting the major merger hypothesis and a universal light curve to describe the
accretion history and luminosity evolution of individual QSOs. The model parameters are calibrated
by simultaneously fitting the optical and hard X-ray QSO/AGN luminosity functions. In Section 3,
we first adopt the light curve of QSOs determined by the calibrated model parameters to study the
evolution of individual He III ionization bubbles. By convolving the evolution of individual He III
bubbles with the generation rate of QSOs, we investigate the He II reionization and the corresponding
IGM temperature evolution in Section 4. We find that the observational results obtained by Becker
et al. (2011) and Bolton et al. (2012) can be explained well by our model. Discussion and conclusions
are given in Section 5 and Section 6, respectively.

Throughout this paper, we adopt Ωm = 0.26, ΩΛ = 0.74, Ωbh2 = 0.024, h = 0.72 and
σ8 = 0.85 (Dunkley et al. 2009). We assume that the IGM has a primordial composition with a
helium mass fraction of Y = 0.24. If not otherwise stated, all distances are expressed as comoving
quantities.

2 A SIMPLE QSO MODEL

The QSO luminosity function (LF) is determined by two physical quantities: (1) the triggering rate of
QSOs; and (2) the light curve, which represents the accretion history of massive black holes (MBHs)
and the luminosity evolution of individual QSOs. On one hand, the accretion history of an MBH is
directly reflected by the evolution of the QSO bolometric luminosity, denoted as Lbol(z;M•,f , zi),
if assuming a constant radiative efficiency ε. On the other hand, the triggering rate of QSOs can be
described by the number density of MBHs with an initial mass M•,i (or equivalently a final mass
M•,f for a fixed light curve) that were triggered at zi, here denoted as Ġ(M•,f ; zi). The growth rate
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of an MBH is given by

Ṁ•(τ ;M•,f ) = Ṁ•(z;M•,f , zi) =
(1− ε)Lbol(z;M•,f , zi)

εc2
, (1)

where c is the speed of light, and τ =
∫ zi

z

∣∣ dt
dz

∣∣ dz. Then the bolometric LF of QSOs is given by

dΦ(Lbol, z)
dLbol

=
∫ ∞

z

∣∣∣∣
dt

dzi

∣∣∣∣ dzi

∫
dM•,f Ġ(M•,f ; zi)δ(Lbol − Lbol(z;M•,f , zi)) . (2)

2.1 The Triggering Rate of QSOs

We assume that a QSO can be triggered once two dark matter halos with comparable mass merge
with each other. We adopt this major merger hypothesis as minor mergers may only affect the out-
skirts of halos and galaxies, and play an insignificant role in triggering nuclear activities. We assume
that major mergers of halos are followed by major mergers of galaxies within them, and QSOs are
triggered immediately after the mergers of halos, though there might be a time delay between galaxy
mergers and halo mergers. Therefore, the generation rate of QSOs at a given redshift is determined
by two factors: (1) the merger rate of dark matter halos, and (2) the relationship between a dark
matter halo and its central MBH.

Fakhouri & Ma (2008) find that the halo merger rate can be described by a universal form which
only depends on mass ratio x, resulting mass of the merged halos MH and redshift z,

R(MH, x, z) = R0

(
MH

1012M¯

)α

xβ exp
[(x

x̄

)γ]
(1 + z)η , (3)

where (α, β, γ, η, R0, x̄) = (0.133, −1.995, 0.263, 0.0993, 0.0104, 9.27 × 10−3) (Fakhouri et al.
2010). Integrating over x for major mergers (i.e., 1/3 < x < 1), the merger rate at any redshift z
can be expressed as

R(MH, z) =
∫ 1

1/3

R(MH, x, z) dx = R′0

(
MH

1012M⊙

)α

(1 + z)η , (4)

where R′0 = 0.373.
Observations suggest that the mass of the MBH is tightly correlated with the mass of its host dark

matter halo and the properties of its host galaxy (Ferrarese 2002; Bandara et al. 2009; Gebhardt et al.
2000; Tremaine et al. 2002). Booth & Schaye (2010) have demonstrated by numerical simulations
that the masses of MBHs are determined by the potential and masses of their host halos. For a halo
with mass of MH, if it follows the Navarro-Frenk-White density distributions as simulations have
suggested, on average the logarithmic mass of the MBH in its center is

〈log M•,f 〉 ∝ log
[
f(s, y)(1 + z)M5/3

H

]
, (5)

where s is the concentration of the dark matter halo, y = rej/rvir is the physical scale where the
MBH self-regulation takes place, rvir is the virial radius and

f(s, y) =
s

[ln(1 + s)− s/(1 + s)]2
×

(
1− 1

(1 + sy)2
− 2 ln(1 + sy)

1 + sy

)
. (6)

The halo concentration can be described by s = A(MH/Mpivot)B(1 + z)C , where Mpivot = 2 ×
1012 h−1 M¯, A = 5.71, B = −0.084 and C = −0.47 (Duffy et al. 2008). Booth & Schaye (2010)
find y = 0.22 in order to match their simulation results with the observations.
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Recent observations suggest that the stellar mass of the central galaxy in a cluster is proportional
to its halo mass to the power of 1/3 (Brown & Brown 2010). To reflect this, we adopt a modified
form for the relation between the mass of the MBH and the halo properties, i.e.,

〈log M•,f 〉 = log

[
B(1 + z)f(s, y)

(MH
M∗

z
)−5/3 + (MH

M∗
z
)−1/3

]
, (7)

where M∗
z = M∗

0 (1 + z)α, and M∗
0 , α and B are free parameters that can be constrained by obser-

vations.
Equation (7) gives the mean logarithmic masses of MBHs in halos with mass MH, but the real

MBH logarithmic masses may scatter around this value. To reflect this, we assume that the distri-
bution of the real logarithmic masses of MBHs around the mean value, P (log M•,f | 〈log M•,f 〉), is
Gaussian with a standard deviation of 0.3 dex, similar to that of the M• − σ relation. Probably not
every major merger of dark matter halos can lead to nuclear activity. We assume that only a fraction
of major mergers can lead to the formation of a QSO, and this fraction depends on the mass of dark
matter halos as

F (MH) =

{ (
MH
Mcut

)km

, if MH ≤ Mcut ,

1 , if MH ≥ Mcut .
(8)

Then the generation rate of QSOs is given by

Ġ(M•,f ; zi) =
∫ ∞

0

P (log M•,f | 〈log M•,f 〉)R(MH,i; zi)
M•,f ln(10)|dt/dzi| F (MH,i)

dn(MH,i; zi)
dMH,i

dMH,i , (9)

where the halo mass function dn(MH,i; zi)/dMH,i is given by the fitting formula in Sheth & Tormen
(1999). For the generation rate of QSOs, the model parameters involved are (M∗

0 , α,B, km,Mcut).

2.2 The QSO Light Curve

We assign each QSO a universal light curve, which describes two phases of accretion (e.g. Small
& Blandford 1992; Yu & Lu 2004, 2008): in the first phase, the central MBH accretes surrounding
material via a rate proportional to the Eddington limit, Ṁacc = λ0ṀEdd, where λ0 is the Eddington
ratio, and the QSO radiates at a bolometric luminosity of L = λ0LEdd, where LEdd = 1.26 ×
1046(M•/108M¯) erg s−1 and ṀEdd = LEdd/εc2.

While a fraction ε of the infalling matter is radiated away, the remaining (1−ε) feeds the central
MBH, which is the growth rate of the MBH Ṁ• = (1 − ε)Ṁacc. Therefore, the evolution of the
luminosity in the first phase is given by

L(τ) = λ0LEdd,P exp
(

τ − τP

τS

)
, for τ < τP , (10)

where λ0LEdd,P is the peak luminosity and τS = 4.5×108 yr λ−1
0 ε/(1−ε) is the Salpeter timescale.

The mass of the MBH in the first phase evolves as

M I
• = M•,P exp

(
τ − τP

τS

)
, for τ < τP , (11)

where M•,P is the peak mass of the MBH, and LEdd,P is the Eddington luminosity of an MBH with
mass M•,P.

The luminosity of the MBH increases exponentially until it reaches its peak luminosity at time
τP = ξτS (ξ is a dimensionless parameter), and then due to the feedback, the evolution of luminosity
changes and enters a declining phase. In this second phase, the accretion by the MBH gradually
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becomes inefficient and eventually terminates. The evolution of luminosity in this phase follows a
power-law, i.e.,

L(τ) = λ0LEdd,P

(
τ + τD − τP

τD

)−γ

, for τP < τ < τP + ητD , (12)

where τD = ζτS (ζ is a dimensionless parameter) is the characteristic decay timescale of the lumi-
nosity, η = 103/γ − 1 is set by assuming that the nuclear activity terminates once its luminosity
declines to less than 10−3 of its peak luminosity, and the duration of the second phase is ηζτS. The
mass of the MBH in the second phase evolves as

M II
• = M•,P

{
1 +

ζ

γ − 1

[
1−

(
τ + τD − τP

τD

)1−γ
]}

, for τP < τ < τP + ητD . (13)

For the QSO light curve, the model parameters involved are (ε, ξ, ζ, γ). According to Yu & Tremaine
(2002), hereafter we adopt ε = 0.1.

2.3 The QSO Luminosity Function

The observationally determined QSO LFs are given in either the optical band or the X-ray band. To
constrain the parameters involved in the above QSO model, it is necessary to derive the QSO LFs
at the same band as that of the observations. Below we introduce the bolometric correction (BC)
for a given band Y, CY = Lbol/νLν |ν=Y , where νLν |ν=Y is the monochromatic luminosity at the
central frequency of the Y-band.

According to Hopkins et al. (2007), the estimated BC in a given band Y depends on luminosity
and is defined by

〈log CY〉 = log

[
c1

(
Lbol

1010 L⊙

)k1

+ c2

(
Lbol

1010 L⊙

)k2
]

, (14)

with (c1, k1, c2, k2) = (10.83, 0.28, 6.08,−0.020) in the hard X-ray and (c1, k1, c2, k2) =
(6.25,−0.37, 9.00,−0.012) in the B-band. The effective dispersion in the BC in different bands
as a function of bolometric luminosity is

σlog(Lbol/LB) = σ1(Lbol/109L¯)β + σ2 , (15)

with (σ1, β, σ2) = (0.06, 0.10, 0.08) in the hard X-ray band and (σ1, β, σ2) = (0.08,−0.25, 0.060)
in the B-band. To take into account the correction for extinction in the different observed bands, we
need to adopt an obscuration fraction as a function of luminosity, which can be parameterized as a
power law,

FY(Lbol) = f46

(
Lbol

1046 erg−1

)β

. (16)

This gives values (f46, β) = (1.243, 0.066) for the hard X-ray band and (0.260, 0.082) for the
B-band (Hopkins et al. 2007). The obscuration fraction should be added into the integration when
estimating the optical QSO LF. Then the LF in any given Y-band can be obtained as

dΦ(LY, z)
dLY

=
∫ ∫ ∫ ∞

z

G(M•,f ; zi)δ
(

LY − Lbol(z;M•,f , zi)
CY

)

× FY(LYCY)P (log CY| 〈log CY〉)
∣∣∣∣

dt

dzi

∣∣∣∣ dzidM•,fd log CY ,

(17)
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Fig. 1 The QSO LFs in the hard X-ray band (2–10 keV). Circles represent the hard X-ray LFs
obtained by Aird et al. (2010). The solid lines represent the QSO LFs obtained from the QSO model
in this paper that best fit the observations.
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Fig. 2 The QSO LFs in the B-band. The filled and open circles represent the observationally deter-
mined LFs by Bongiorno et al. (2007) and Richards et al. (2006), respectively. The triangles in the
last figure represent that obtained by McGreer et al. (2013) at high redshift z ∼ 5. The solid lines
show the QSO LF obtained from the QSO model that best fits the observational data.

where P (log CY| 〈log CY〉) is assumed to be a Gaussian distribution of log CY around the mean
value 〈log CY〉 for any given Lbol.

Given the BCs and the obscuration fraction as above, the QSO LFs can be modeled in both
the optical band and hard X-ray band for a given set of model parameters. Using the simple QSO
model above, we use the Markov Chain Monte Carlo method to simultaneously fit the hard X-ray
LFs and optical LFs. We obtain the best fits of the model parameters, i.e., (M∗

0 , α,B, km,Mcut) =
(1013.9M¯,−1.27, 1010.172M¯, 0.539, 1014.45M¯) and (ξ, ζ, γ) = (2.019, 0.018, 1.045). There
could be some degeneracies among the model parameters. For example, if different forms for the
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Fig. 3 The M•,f − MH relation. The solid curve represents the M•,f − MH relation constrained
by the QSO model in this paper at redshift z = 0. The circles are the objects from Bandara et al.
(2009), in which the MBH masses are estimated by using the empirical relations and the halo masses
are estimated by using the gravitational lensing technique. The three dashed lines, from left to right,
represent the estimated M•,f−MH relation at z = 0 as described by eqs. (4), (6) and (7) in Ferrarese
(2002), respectively.

M•,f −MH relation and/or the light curves are adopted, statistically good fits may also be obtained.
Here we do not intend to go into details about the degeneracy of these model parameters, and the
effects of choosing forms for the M•,f − MH relation and/or the light curves different from those
adopted by Equations (7), (10) and (12).

As seen from Figures 1 and 2, the observationally determined hard X-ray LFs and optical QSO
LFs over redshift range (1.5–5) can be well fitted by our model. Figure 3 shows the M•,f −MH re-
lation at z = 0 constrained by the QSO model that best fits the QSO LFs, which is clearly consistent
with the observational results by Bandara et al. (2009) and Ferrarese (2002).

3 THE VOLUME EVOLUTION OF IONIZED BUBBLES

The evolution of an expanding He III bubble can be simply described by

dV

dt
=

Ṅion

nHe II
− V

trec
, (18)

where the mean density nHe II = nHe II,0(1 + z)3, nHe II,0 is the mean density of helium at present,
Ṅion is the emission rate of ionizing photons, V is the comoving volume of the He III bubble and
trec is the recombination time of He III defined as trec = (CαAne)−1, here C is a volume averaged
clumping factor, given by C =

〈
n2

He II

〉
/n2

He II, ne = nH + 2nHe and αA = 2.18× 10−12 cm3 s−1

is the case A recombination coefficient of He III at T ∼ 20 000 K. The recombination timescale can
be expressed in terms of the Hubble time, tH ≈ 2/3H(z)−1, as (McQuinn et al. 2009)

trec
tH

≈ 0.6
C

(
T

104K

)0.7 (
1 + z

4

)−3/2

∆−1
b , (19)

where ∆b = 1 + δb, and δb is the overdensity of gas.
Given the spectral energy distribution (SED) of a QSO, the injection rate of ionizing photons

by the QSO can be easily obtained. Here we adopt an SED that follows a power law with a slope
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of −1.57 at λ ≤ 1300 Å and −0.44 at 1 µm ≥ λ ≥ 1300 Å (Telfer et al. 2002). With the SED, the
ionizing photon emission rate of the resulting QSO is

Ṅion =
LB

νB

(
1300
4400

)0.44 ∫ ∞

νHe III

1
hν

(
ν

ν1300

)−1.57

dν = 2.09× 1055 s−1

(
LB

1012L¯

)
, (20)

νHe III is the frequency evaluated at the threshold for He II ionization (228 Å) and νB is the frequency
corresponding to the center of the B-band, 4400 Å.

Due to the obscuration, however, the ionized region is cone-like (with an opening angle) rather
than spherical. In the unified model of QSOs/AGN, the observable properties of a particular QSO
depend on the viewing angle relative to the central accretion disk. A type 2 QSO is presumably heav-
ily obscured by a dense, dusty torus in the direction of the line of sight and its intrinsic continuum
emission is highly absorbed by the torus, but a type 1 QSO is not obscured simply because the torus
is not in the direction of the line of sight. So, the real volume of ionized material caused by a central
QSO, either a type 1 or a type 2 case, is

Vreal =
Ω
4π

Vsph , (21)

where Ω is the solid angle opened by the ionized cone and Vsph is the volume of the spherical ionized
region without considering the obscuration fraction. For a QSO with a given Lbol, we adopt Ω/4π =
FB(Lbol), where FB(Lbol) is the ratio of type 1 QSOs to total QSOs as shown by Equation (16).

Figure 4 shows the radius evolution of a cone-like bubble. The bubble radius shown in this figure
is the effective radius,

R3
eff = gbubbleR

3
max =

∫ Rmax

0

3xi(R)R2dR , (22)

where gbubble is the volume averaged ionization fraction in the bubble, and xi(R) is the ionization
fraction evolution at a given radius, R. Then the bubble volume can be expressed as V = (4π/3)R3

eff .
After the bubble reaches its maximum radius, Rmax, the ionization fraction in the bubble declines
due to the recombination of He II and the decrease in the injection rate of ionizing photons, but the
volume of the bubble is still constant, until the outer region is completely recombined. Once the
bubble reaches its maximum radius, the photon injection rate decreases due to the decline in the
luminosity of the central QSO. Firstly, at a given time ttp we need to determine the turning point,
Rtp, the radius within which the recombination can still be balanced by the emission rate.

Ṅion(ttp) =
4π

3
R3

tpCαAnenHe III . (23)

Since there are no ionizing photons transmitted to the region out of the turning point, the ionization
state evolution, at a given time ti once the bubble reaches its maximum radius, is

xi(R) =
∫ ti

ttp

−Cαxi(R)nedt . (24)

Figure 5 shows the evolution of the ionizing fraction after the bubble reaches its maximum
radius, in a time interval of 25, 50, 100, 200 and 400 Myr from top to bottom. In our model, the
central QSO continues shining at a lower luminosity to prevent the bubble from quickly recombining.
In the inner regions, the ionization fraction drops at a slower rate, but in the outer regions it decrease
faster due to the lack of ionizing photons. In the same figure, the dashed line shows the effective
radius given by Equation (18) with the time interval of 25, 50, 100, 200 and 400 Myr once the
bubble reaches its maximum radius from right to left.
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Fig. 4 Effective radius evolution of an ionized bubble. The solid line and dotted line represent the
radius evolution of an ionized cone-like bubble associated with a central QSO that radiates via a
constant B-band luminosity of 1012 L¯ over a period of 108 yr at z = 3 for clumping factors of
C = 0 and C = 3, respectively. The dashed line (C = 0) and dot-dashed line (C = 3) represent the
radius evolution of an ionized cone-like bubble associated with a QSO that follows the light curve
described by Eqs. (10) and (12), respectively, with a peak luminosity of 1012 L¯ at the B-band.
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Fig. 5 Ionizing fraction, xi, at different radii within a bubble after it reaches the maximum size (for
a QSO with a light curve given by Eqs. (10) and (12) with a peak luminosity of 1012 L¯ at the
B-band). The solid lines show the ionizing fraction evolution in the time interval of 25, 50, 100,
200 and 400 Myr once the bubble reaches its maximum radius from top to bottom. The dashed lines
show the effective radius given by Eq. (18) with the time interval of 25, 50, 100, 200 and 400 Myr
once the bubble reaches its maximum radius from right to left respectively. The dotted lines are
the corresponding ionizing fraction evolution in the case in which the central QSO shuts off once it
reaches the maximum volume.

Figure 5 also shows the ionizing fraction evolution in the case that the central QSO shuts off
once it reaches the maximum volume. In this case, the ionizing fraction at different radii drops
simultaneously, since only recombination is present. Ignoring the later low luminosity stage of the
central source obviously leads to underestimates of the ionization fraction in the bubble after it
reaches its maximum volume.
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Fig. 6 The He II reionization history. The solid, dashed and dotted lines represent the evolution of
He II ionization with C = 0, 1 and 3, respectively.

Then the volume filling factor of He III, QHe III(z), can be determined by

QHe III(z) =
∫

d log CB

∫
dLbol

∫
dM•,f

∫ ∞

z

dzi

∫ z

zi

dz′
dV real

dz′

(
z′;

Lbol

CB
,M•,f , zi

)

×Ġ(M•,f ; zi)δ
(

LB − Lbol(z′;M•,f , zi)
CB

)
P (log CB| 〈log CB〉) . (25)

Figure 6 shows the He II ionization history, with values of a clumping factor given by C = 0,
C = 1 and C = 3. The C = 3 model shows that the He II reionization occurred at redshift z ∼ 2.7,
consistent with the observational results mentioned in Section 1 and other analytical models (e.g.
Furlanetto & Oh 2008; Haardt & Madau 2012). The contribution of active bubbles, Qactive, can be
calculated by

Qactive(z) =
∫

d log CB

∫
dLbol

∫
dM•,f

∫ z

∞
dzi

∫ z

zi

dz′
dV real

dz′

(
z′;

Lbol

CB
,M•,f , zi

)

×Ġ(M•,f ; zi)δ
(

LB − Lbol(z′;M•,f , zi)
CB

)

×P (log CB| 〈log CB〉)Θ1(zeq − zi) , (26)

where zeq = zeq(z, zi) is the redshift at which a QSO, triggered at zeq, reaches its maximum volume
at z, and the step function Θ1 = 1 for zi ≤ zeq or Θ1 = 0 for zi ≥ zeq. The corresponding
equilibrium timescale, τeq, can be set by integrating Equation (18) over time until the maximum
volume is reached. The contribution of fossil bubbles, Qfossil, can be calculated by

Qfossil(z) =
∫

d log CB

∫
dLbol

∫
dM•,f

∫ z

∞
dzi

∫ z

zi

dz′

×dV real

dz′

(
z′;

Lbol

CB
,M•,f , zi

)
Ġ(M•,f ; zi)δ

(
LB − Lbol(z′;M•,f , zi)

CB

)

×P (log CB| 〈log CB〉)Θ2(zi − zeq) , (27)

where the step function Θ2 = 1 for zi ≥ zeq or Θ2 = 0 for zi ≤ zeq, and zeq = zeq(z, zi) is the
redshift at which a QSO, triggered at zeq, reaches its maximum volume at z.

Figure 7 shows the contribution to ionization due to different parts of the IGM (see Sect. 4. for
details). It clearly shows that at the end of He II reionization, most bubbles are fossil bubbles.
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Fig. 7 The contribution to ionization due to active bubbles and fossil bubbles. The solid line shows
the He II reionization history by assuming a clumping factor of C = 3. The dashed line shows the
contribution from the fossil bubbles, while the dotted line shows that from the active bubbles.

4 THE IGM TEMPERATURE EVOLUTION DUE TO HE II REIONIZATION

The IGM has experienced two significant transitions, the reionization of hydrogen and helium.
During the reionization, the excess energy released by photoionization passes to the electrons and
thus increases the temperature of the IGM. In this paper, we focus on the impact of the helium
reionization and corresponding temperature evolution of the IGM.

Generally, the temperature increase of the ionized gas after reionization is simply given by
(Miralda-Escudé & Rees 1994)

k∆T =
〈E〉 − E0

3
, (28)

where 〈E〉 is the average energy of the ionizing photons, and E0 is the energy needed per ionization
in a mixture of hydrogen and helium gas. There are several thermal processes, such as photoion-
ization heating, adiabatic cooling and recombination cooling, that can affect the IGM temperature.
With these processes, the IGM temperature evolution is given by

dT

dt
= −2HT +

2T

3(1 + δ)
dδ

dt
− T

ΣiXi

dΣiXi

dt
+

2
3kBnb

dH
dt

, (29)

where H is the Hubble parameter, kB is Boltzmann’s constant, d/dt is the Lagrangian derivative
following each fluid element, nb is the proper number density of all gas particles (i.e. everything
except non-interacting dark matter), the symbol Xi is defined by ni = (1 + δ)Xiρ/mp, ni is the
proper number density of species i, ρb is the mean mass density of baryons, mp is the proton mass
and δ is the mass overdensity. On the right hand side of Equation (28), the first term accounts for
the adiabatic cooling driven by the Hubble expansion and is the dominant cooling term in regions
with moderate and low density (∆ = 1 + δ ≤ 10); the second term is the adiabatic cooling/heating
due to formation of the structure; the third term is for the internal energy gain or loss per particle
from changing the total particle density; and the last term represents the net heat gain or loss per unit
volume from radiation processes. We assume that the dominant heating mechanism is photoheating,
which is a reasonable assumption for low density regions with typical temperature of ∼ 20 000 K
during the reionization (Efstathiou 1992; Katz et al. 1996). Other cooling mechanisms, such as
adiabatic cooling and recombination cooling, can be neglected. The reason is that the adiabatic
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cooling timescale of the IGM (typically 109 yr) is relatively long compared with the lifetime of
QSOs (typically a few times 107 yr to 108 yr). Therefore, the adiabatic cooling can be neglected when
considering the expansion of active bubbles associated with QSOs. However, the cooling mechanism
can be important after the active bubbles become fossil bubbles because of the quench of their central
QSOs. In our calculations, the adiabatic cooling is the dominant cooling mechanism for those fossil
bubbles. Equation (29) has been solved by Hui & Gnedin (1997), which results in an asymptotic
evolution in temperature of the highly ionized IGM as T ∝ (1 + z)0.53. Therefore we simply use
this asymptotic value as the temperature evolution of the IGM after reionization is complete.

The photoionization rate is given by

Γi =
∫ ∞

νi

4πJνσi
dν

hν
, (30)

where Jν is the specific intensity of the ionizing radiation as a function of frequency ν, νi is the He II
ionization threshold frequency and σi is the cross section of He II. Then the photoheating rate due to
He II reionization is

Hi =
∫ ∞

νi

4πJνσi(hν − hνi)
dν

hν
. (31)

With the photoheating rate and the photoionization rate given above, we can obtain the expected
energy injected into the IGM per ionization as

〈E〉He II =
Hi

Γi
=

∫∞
νi

4πJνσi(hν − hνi) dν
hν∫∞

νi
4πJνσi

dν
hν

. (32)

Equation (31) implies that the increase in IGM temperature is larger if the ionizing sources have
harder spectra. Ignoring the collisional ionization of He II, the corresponding increase in IGM tem-
perature in an He III bubble, allowing for the injected energy to be shared by all the species present, is

kB∆T =
2YHe

3(8− 5YHe)
〈E〉He II =

2
3
〈E〉He II

27
, (33)

where ∆T is the increase in temperature, kB is the Boltzmann constant, YHe = 0.24 is the primordial
helium mass fraction and 27 is the number of particles over which this energy is distributed by
assuming YHe = 0.24 (see also Abel & Haehnelt 1999).

In our model, the IGM is divided into three components: (1) the active bubbles, (2) the fossil
bubbles and (3) the He II regions. As a bubble turned on, it became active until the photoionization
in the bubble was balanced by the recombination. Since the relevant cooling timescale for the low
density, photoionized gas in the IGM is always longer than the time that the QSO is active (∼ 108 yr),
the increase in temperature in the active bubble should stay constant (under the assumption that the
heating mechanism is photoheating). In the He II regions, since there is no He II reionization taking
place, the average temperature follows the thermal asymptote, THe II ∝ T0(1 + z)0.53, in which the
temperature is set by the shape of the UV background (Hui & Haiman 2003) and T0 is the IGM
temperature constrained by observations at z ∼ 6 (Bolton et al. 2012).

Before the reionization is complete, the mean IGM temperature at the mean density is

TIGM(z) = T1(z) + T2(z) + THe II(z)[1−QHe III(z)] , (34)

where QHe III(z) is the volume averaged fraction of ionized regions given by Equation (24), and
T1(z) and T2(z) are the contribution from active bubbles and fossil bubbles, respectively.

Adopting an optically thin approximation (the mean energy will be weighted by the ionization
cross section σν ∝ ν−3) and assuming an ionizing spectrum of Jν ∝ ν−α, Equation (31) reduces
to 〈E〉thin = 54.4(α + 2)−1 eV (Abel & Haehnelt 1999). A QSO like spectrum with α = 1.57
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gives an increase in temperature of ∆Tthin = 4400 K in the active bubbles. Adopting an optically
thick approximation, however, all photons emitted by the source are absorbed (i.e. σHe II = 1) and
〈E〉thick = 54.4(α − 1)−1 eV, which would give an increase in temperature of about 30 000 K.
Becker et al. (2011) recently reported an increase in temperature at the mean density from∼ 8000 K
at z ∼ 4.4 to ≥12 000 K at z ∼ 2.7. Since bubbles that ionized earlier have longer time to cool, at
later times the mean increase in temperature of the IGM should be lower than that in active bubbles.
Apparently, the increase in temperature in the optically thin approximation is less than that obtained
by observations, but in the optically thick approximation the increase in temperature is much larger.

To reconcile the difference shown above, we set a cut-off in energy of Emax = hνmax = 350 eV
to be that obtained by numerical simulations (McQuinn et al. 2009), in which the IGM is optically
thin to photons with energy above the cut-off and optically thick to photons with energy below the
cut-off. With the definition of Emax, the corresponding increase in temperature in active bubbles is
∆Tactive = 12 400 K. We will adopt this value as the increase in temperature in the active bubbles.
Then the volume averaged temperature contributed by the active bubble is

T1(z) =
∫

d log CB

∫
dLbol

∫
dM•,f

∫ z

∞
dzi

∫ z

zi

dz′
[
∆Tactive + THe II(z′)

]

×dV real

dz′

(
z′;

Lbol

CB
,M•,f , zi

)
Ġ(M•,f ; zi)δ

(
LB − Lbol(z′;M•,f , zi)

CB

)

×P (log CB| 〈log CB〉)Θ1(zeq − zi) , (35)

where zeq = zeq(z, zi) is the redshift at which a QSO, triggered at zeq, reaches its maximum volume
at z, and the step function Θ1 = 1 for zi ≤ zeq or Θ1 = 0 for zi ≥ zeq. The corresponding equilib-
rium timescale, τeq, can be set by integrating Equation (18) over time until the maximum volume is
reached. When the recombination in the bubbles became important, these active bubbles turned into
fossil bubbles, in which temperature decreased either as Tfossil ∝ (1 + z)2 due to the adiabatic cool-
ing or as Tfossil ∝ (1+ z)0.53 once a UV background was established. These temperature evolutions
approximate the maximum and minimum cooling rate toward lower redshift. In fossil bubbles, we
assume that once a region recombines, the temperature in this region approaches the temperature of
He II regions, Trec ∼ THe II. The reason is that at the mean density, the cooling timescale is less than
the recombination timescale (Bolton et al. 2009). Then the volume averaged temperature contributed
by the fossil bubble is

T2(z) =
∫

d log CB

∫
dLbol

∫
dM•,f

∫ z
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(
1 + z

1 + zeq

)α

dzi

∫ z
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dz′
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]

×dV real

dz′

(
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,M•,f , zi

)
Ġ(M•,f ; zi)δ

(
LB − Lbol(z′;M•,f , zi)

CB

)

×P (log CB| 〈log CB〉)Θ2(zi − zeq) , (36)

where α = 2 or 0.53 for adiabatic cooling or asymptotic cooling respectively and the step function
Θ2 = 1 for zi ≥ zeq or Θ2 = 0 for zi ≤ zeq.

After the reionization is complete, the mean temperature of the IGM increases significantly and
exceeds the temperature set by the UV background spectra (i.e. the asymptotic value). This biased
temperature would gradually approach the asymptotic value. In the case that the temperature of the
fossil bubble evolves as (1 + z)2, we simply assume that only adiabatic cooling is present once
He II is fully reionized. Then the mean temperature of the IGM after the reionization would evolve
as TIGM = Tpeak(1 + z)2, where Tpeak is the peak temperature of the IGM when He II reioniza-
tion is complete. This assumption, however, leads to underestimates of the temperature evolution at
lower redshift, since other heating mechanisms could exist to prevent the temperature from drop-
ping dramatically. Considering of the adiabatic heating and cooling, photoionization heating, etc.,
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Fig. 8 Temperature evolution of the IGM over the redshift range from z = 2 to z = 6. The dashed
line assumes that only adiabatic cooling is present in the fossil bubbles, while the solid line considers
the thermal asymptote in these fossil bubbles. The circles represent the temperature measurements
from the general Lyα forest at z ≤ 5 obtained by Becker et al. (2011) with 2σ uncertainties. The
solid and open circles represent the IGM temperature obtained by assuming an IGM temperature-
density relation, T ∝ (1 + δ)γ−1, with γ = 1.3 and γ = 1.5, respectively.

the IGM temperature evolution may achieve an asymptote of (1 + z)0.53 as suggested by Hui &
Gnedin (2003). Therefore, we also check the case of a thermal asymptote of TIGM ∝ (1 + z)0.53 if
the temperature of the fossil bubble evolves as (1 + z)0.53, which flattens the slope of temperature.
We take TIGM ∝ (1 + z)2 and TIGM ∝ (1 + z)0.53 as the maximum and minimum cooling rates in
the IGM respectively, and the actual temperature evolution should be between these two slopes.

Figure 8 shows a comparison between our results and the observational estimates of the IGM
temperature evolution. As seen from Figure 8, our model predicts that the IGM temperature peaks
at z ∼ 2.7, which is consistent with the redshift of the He II reionization being completed, as shown
in Figure 6 (for C = 3). This agrees well with the measurements of the IGM temperature by Becker
et al. (2011), in which they conclude that the temperature peak at z ∼ 2.8 indicates the reionization
of He II is complete. In general, our model results are consistent with the general trend shown by
observations.

Our model yields an IGM temperature evolution that follows the general trend in evolution
shown by observations, though the resulting temperature from He II reionization is slightly lower.
This discrepancy may come from the uncertain thermal history of the IGM, i.e., the Jeans smooth-
ing. The small-scale structure of the Lyα forest depends on the thermal broadening of the absorption
features, the Hubble broadening and the turbulent broadening. Heating the gas not only increases the
thermal broadening but also the characteristic physical size of absorbers. Hence, a greater Hubble
broadening across individual absorbers results in an additional smoothing of the Lyα forest. As a
result, the small scale structure of the Lyα forest depends not only on the instantaneous tempera-
ture of the gas but also on its integrated thermal history (Pawlik et al. 2009; Becker et al. 2011).
Considering the Jeans smoothing, the IGM temperature estimated from the Lyman α forest (as that
shown in Fig. 8) should move downward by ∼ 2000 K and ∼ 1200 K at redshifts z ∼ 2.0− 4.8 and
z ∼ 6, respectively (Bolton et al. 2012). After considering the correction due to the Jeans smooth-
ing, our result is quite consistent with the observations that are shown in Figure 9. There seems to
only be a slight difference, if any, between the temperature evolution predicted by the model in this
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Fig. 9 Same as Fig. 8, except also including the effect of Jeans smoothing.

paper and that obtained from observations, which could also be due to the limited number of QSOs
adopted. Becker et al. (2011) and Bolton et al. (2012) only use 61 high-resolution QSO spectra over
2.0 ≤ z ≤ 4.8 and seven QSO spectra at z ∼ 6 to estimate the temperature evolution, which may
induce some uncertainties.

5 DISCUSSION

The observational results obtained by Becker et al. (2011) show two trends in the temperature evo-
lution, which are due to uncertainty in the shape of the temperature density relation, i.e., γ. A flatter
temperature density relation may lead to a greater increase in the IGM temperature at the mean.
Becker et al. (2011) use two different slopes, γ ∼ 1.5 and γ ∼ 1.3, which show the apparent dif-
ference at low redshift. Schaye et al. (2000) adopt an even flatter temperature density relation with
γ ∼ 1 (i.e. the isothermal case), which further increases the temperature of the IGM at the mean
density. So, the key point is to establish the shape of the temperature density relation and its evolu-
tion with redshift. This will clarify the evolution of T0(z) at z < 4 and allows us to determine the
end of He II reionization based on the redshift at which T0 peaks (Becker et al. 2011).

In our model, there may also exist some uncertainties in the temperature evolution because of
the lack of accurate treatment of the radiative transfer process. We obtain an increase in temperature
of T = 4400 K in the active bubbles by using the optically thin approximation and a higher increase
in temperature of 12 400 K in these active bubbles by setting an energy cut-off of Emax = 350 eV.
Setting an energy cut-off in the QSO spectrum is obviously a simplification of the full radiative trans-
fer problem (Bolton et al. 2009). During the reionization, the radiative transfer effects can largely
increase the temperature in the bubbles. Since photons with higher energy have a photoionization
cross section that is smaller than σν ∝ ν−3 and correspondingly larger mean free paths, the aver-
age excess energy in Equation (31) is larger at a greater distance (Abel & Haehnelt 1999; Bolton
et al. 2004). Therefore, the IGM can harden and filter the ionizing radiation, imparting a significant
increase in temperature in the bubbles. A detailed radiative transfer process is needed to constrain
the increase in temperature in the active bubbles. The slope of the ionizing spectrum α would also
affect the energy that is input to the photoheating process in active bubbles (for our model, the QSO
spectral index is set to 1.57± 0.17). A flatter (harder) spectrum will cause a larger (smaller) energy
to be input. A QSO spectrum, being unclear at high redshift, may contribute further uncertainties to
the increase in temperature in these active bubbles.
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6 CONCLUSIONS

In this paper, we construct a simple QSO model to investigate the ionization evolution and the related
thermal evolution of the IGM during the reionization of He II. In our model, we simply assume
that major mergers of dark matter halos are responsible for triggering QSOs, and the luminosity
evolution of individual QSOs is described by the light curve in an initial accretion stage with a
constant Eddington ratio and then a power-law decay driven by long term disk evolution or fueling.
Once a QSO is triggered, it immediately ionizes its surrounding area as an ionized bubble. The
luminosity evolution of the central QSO determines the size and volume evolution of the bubbles.
As more and more bubbles emerge, they eventually overlap each other and finally permeate the whole
universe. During the He II reionization, the temperature of the IGM increases due to photoheating
by the ionization processes. Applying the bubble model and considering various heating and cooling
mechanisms, we trace the mean thermal evolution of the IGM and obtain the average temperature of
the IGM as a function of redshift. Our results are very consistent with observations. The increase in
IGM temperature due to He II reionization may be determined more accurately in the future, which
could put further constraints on the QSO model and the physics of He II reionization.
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